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Abstract. We have extended the complex Jacobi iteration to simulate nonlinear optical
components. The size of these components is comparable to the used wavelength (µm).
In this paper we will give an overview of the technique and several simulation results.
The algorithm uses a central difference analogue of the Helmholtz equation. The used
nonlinearity is the third order Kerr effect, which is modelled as an instantaneous intensity-
dependent refractive index.

1 INTRODUCTION

In present day optical fiber networks routing of light requires a conversion from light to
electrical signal and back. This botteneck can be alleviated by doing all signal processing
in the optical domain. The only way to achieve all optical signal processing, light switching
by light, is by using fast non linear optical components. One promissing nonlinear effect is
the third order Kerr effect. This small instanteneous nonlinearity (time scale: fs) changes
the refractive index of a material based on the local intensity (n = n + n2|E|2). Recent
fabrication progress results in high confinement of light which could allow the exploitation
of this effect. However, an accurate integration of Maxwell’s laws is required to effectively
investigate promising components.

Modelling of these components can be done either in the time domain or in the fre-
quency domain. In the time domain this means an integration of Maxwell’s laws. A very
popular method is Finite Differences in Time Domain (FDTD, [3]) . This method has the
advantage of giving the time evolution of the electromagnetic field. In the frequency do-
main, the problem reduces to numerical integration of the Helmholtz equation. The found
fields are invarient in time, save a phase factor. One method is non linear Eigenmode
Expansion (EME, [4]). This method is able to simulate a structure fast and rigorously.
It however imposes some restrictions to the structure.
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We propose the use of the complex Jacobi iteration (CJ, [1] and [2]). This method
solves the central difference equivalent of the Helmholtz equation. The fields are only
calculated for points located on an equidistent grid.

∆ei,j + (
2π

λ0

ni,j)
2ei,j = 0

ei,j = e(i∆x, j∆y)

∆ei,j = δ2
xei,j + δ2

yei,j

δxei,j =
ei+1,j − ei−1,j

2∆x
(1)

(2)

The wavelength in vacuum is λ0 and the discretization step is ∆x.
In this paper we will briefly outline the simulation method used. We will use this

method to simulate two non trivial optical components. The first component is a cavity
enclosed by 2 mirrors, [6]. In this section we will also address the problems which occur
when using finite differences compared to the actual analytical derivatives. The second
component will be a so called ’vertical grating coupler’, [7]. We will discuss the influ-
ence of the nonlinearity. In order to determine convergence we have used an alternative
convergence criterium.

2 Complex Jacobi iteration

The complex Jacobi iteration calculates the finite difference analogue of the Helmholtz
equation. Each iteration step the fields are refined based on previous values. This iteration
process finishes when sufficient convergence has been achieved. We will discus both the
linear algorithm and its nonlinear extension in this section. The field values have to
satisfy:

∆ei,j + (
2π

λ0

ni,j)
2ei,j = 0 (3)

The refractive index can be locally dependent on the local intensity:

ni,j = ni,j,0 + ni,j,2|E|2 (4)

The complex Jacobi iteration uses a Dirichlet boundary condition. This means the
fields of the simulation box’s boundaries have to been known. These fields however are
usually the unknowns. Using sources and absorbing boundary conditions can alleviate
this restriction. This has been described in [2], a small overview will be given in the next
subsection.

The complex Jacobi iteration refines the field amplitudes with a two step update equa-
tion until desired accuracy has been achieved. The additional update equation for the
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refractive index allows the simulation of Kerr based components.
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The superscript n is the iteration step. The position dependent refractive index isni,j Using
the time dependent phase factor exp(−jωt) results in the following optimal constants for
this iteration scheme: α1 =

√
3 − 1j and α2 = −α∗1. This derivation has been described

in [1].

2.1 Sources and absorbing boundary conditions

(a) Simulation box with ’total field/scattered field’ as field
source and PMLs as absorbing boundary conditions.

(b) Interface at index i′ be-
tween scattered field - total
field.

Figure 1: A general simulation box with sources and absorbing boundary conditions.

We use sources to circumvent the restrictions imposed by the Dirichlet boundary con-
ditions. The dipole source is one possible source. Another source formalism is the total
field/scattered field. This formalism is a well known formalism in FDTD, [3]. With this
formalism, we are able to inject a right propagating field profile in figure 1. Reflections
which might occur in the total field region can travel back to the left. These left propa-
gating waves can pass the transparent TFSF-interface. In the left ’scattered field’ region
we only find the reflected field. A TFSF interface placed at index i’, figure 1(b), can be
implemented with following equations: -The j-index has been omitted for simplicity.-
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Figure 2: Two Bragg mirrors encapsulate a cavity. (λresonance = 1.56µm)

(a) Power Tranmission and Reflection for
the linear structure

(b) Comparison between Eigenmode Ex-
pansion en complex Jacobi iteration,
both linear as non-linear.

Figure 3: Power Transmission and Reflection of 2

Elimination of spurious reflections at the boundaries of the finite simulation box can
be done by perfectly matched layers (PML). We have choosen a PML based on complex
coordinate stretching. This results in the easiest implementation for the complex Jacobi
iteration. The ’j-index’ has again been omitted for simplicity.

δxei,j =
1

sx,i,j

ei+1,j − ei+1,j

2∆x
(8)

Regions where sx = 1.0 can be considered as normal space. Absorption occurs in regions
where <(sx) = 1.0 and =(sx) > 0.0. Reflection is limited at an interface between sx = 1.0,
=(sx) > 0.0 and <(sx) = 1.0, =(sx) > 0.0.

3 Cavity enclosed by 2 Bragg mirros

In this section we will discuss the reflection and transmission of a nonlinear cavity
enclosed by 2 Bragg mirrors, as seen in figure 2. We will validate our simulation results
by comparing with nonlinear eigenmode expansion. We will identify the biggest influence
of the numerical errors caused by central differences.

Figure 3 (a) shows the reflection and transmission of the linear structure. The two
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Figure 4: Shift of resonance peak of figure 3(b) in function of discretization step.

Bragg reflectors at left and right side are wavelength dependent mirrors. Transmission
can however occur at the resonance wavelength of λ = 1.56µm. This resonance is created
by the cavity. Without this cavity, we would see a photonic band gap from approximately
λ = 1.5µm to 1.62µm.

A nonlinear cavity of n2 = 5.10−3 m2

V 2 and incoming plane wave with field amplitude
e = 1 V

m
causes the shift of the resonance peak seen in figure 3(b). Figure 3(b) also

illustrates the good agreement between non linear eigenmode expansion and non linear
complex Jacobi iteration. The advantage of CJ is its flexibility. EME is faster than CJ
in the case of non linearity located in the cavity. In realistic cases, the non linearity will
also be present in other parts of the simulation area. In this general case, the EME speed
will lower significantly. From this point of view CJ is a much more flexible method. Our
method has been shown to converge for a refractive index shift up to ∆n = n2|E|2 ≈ 0.6.
This is higher than the highest shift possible with EME.

3.1 Influence of numerical dispersion

Figure 4 shows the shift of the resonance peak for a linear structure in function of
the discretization step. This demonstrates the dependency of a solution of equation 2
in function of the discretization step. A comparison between the continuous Helmholtz
equation and the finite difference Helmholtz equation gives us 2 causes for this effect:
stair-casing and numerical dispersion. Stair casing means we approximate the continuous
refractive index profile n(x, y) with ni,j, the refractive index located on the grid. Numerical
dispersion changes the dispersion relationship in function of the discretization step. The
dispersion relationship is the relationship between between frequency and wavelength for
a plane wave satisfying equation 2 in homogeneous space.

4 sin2(
2π
λ0

neff∆x

2
)

∆x2
=

ω2n

c2

neff =
arcsin(πn∆x

λ0
)

π∆x
λ0

(9)
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(a) (b)

Figure 5: Vertical injection of light in 2 horizontal waveguides. Injection is symmetrical.

The refractive index n in equation 9 is used in equation 2. The effective refractive index
neff is the refractive index which actually is ’felt’ by a plane wave. Small ∆x result in
neff ≈ n.

The resonance peak of the linear structure of figure 3(a) can be calculated analyti-
cally. This allows us to investigate the influence of numerical dispersion by replacing the
refractive indices (na, nb) with the effective refractive indices (na,eff , nb,eff ) of equation
9. Figure 4 then gives an indication what the influence is of numerical dispersion. We
therefore may conclude that the influence of numerical dispersion is much bigger than the
influence of stair casing. This also means that an adaptive grid to minimize stair casing
will not give a more accurate result for this structure.

4 Vertical Grating coupler

In this section we will discuss the simulation results of the vertical grating coupler, as
sketched in figure 5. Optical power is vertically injected in the structure. The setup has
been made completely symmetrical. Increasing the power will cause a shift in the central
peak, figure 5(b).

The used refractive indices correspond with the refractive indices found in a Silicon
on Insulator material system. (SOI) The non linearity used in the central material is
n2 = 0.1m2

V 2 . The used discretization step in both directions is ∆x = ∆y = 0.0137µm.
We use the change of the efficiency, figure 5(b), as convergence criterion. Convergence is

achieved when the change of the efficiency is below a certain value -for a certain amplitude
and wavelength-. This convergence criterion is used instead of calculating en+1

i,j − en
i,j. For

a certain convergence criterion value we see that convergence is met for 10000 iteration
steps for E = 0.1 V

m
. The increased amplitude E = 1.0 V

m
requires 60000 iteration steps to

reach the same convergence requirement.
Non linear eigenmode expansion is not suited to simulate this structure. Eigenmode ex-

pansion is not efficient for injection of fields in a direction perpendicular on the waveguides.
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5 CONCLUSIONS

Our extensions to the recently introduced complex Jacobi iteration allows the numerical
integration of the Helmholtz equation with Kerr-based materials.

Our proposed extension to the complex Jacobi method is very well suited for structures
where the non linearity is present in a large portion of the simulation domain.

We have used this technique to simulate 2 non trivial optical components. Good agree-
ment with non linear eigenmode expansion has been demonstrated for the first structure.
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