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Impact of absorption mechanisms on Kerr-nonlinear resonator behavior
Gino Priem,a� Peter Bienstman, Geert Morthier, and Roel Baets
Department of Information Technology (INTEC), Ghent University, Sint-Pietersnieuwstraat 41,
9000 Ghent, Belgium

�Received 26 May 2005; accepted 7 February 2006; published online 28 March 2006�

The effect of both single-photon and two-photon absorption mechanisms on the Kerr-nonlinear
behavior of resonant structures is investigated using a semianalytical, one-dimensional model. In
particular, two-photon effects may severely degrade the ultrafast, nonlinear potential of these
structures. Based on this model, the feasibility of Kerr-nonlinear operation is derived for the AlGaAs
and Si material systems. © 2006 American Institute of Physics. �DOI: 10.1063/1.2184432�
I. INTRODUCTION

Nonlinear optics is known to have great potential for
all-optical signal processing because of its intrinsically ul-
trafast response times. The practical use of effects such as the
Kerr effect is, however, severely limited by the need for high
optical power or long device lengths, as these effects are
typically very small in common semiconductor systems �n2

�10−15–10−13 cm2/W�.
This problem can be solved by using structures which

show resonant behavior. In these resonant structures, the
electric field is enhanced and the pulse is slowed down, so
that the nonlinear response is larger. It has been shown that
these components exhibit large improvements for the pur-
pose of Kerr-nonlinear phase shifting.1–8 In addition, they
also show features which cannot be implemented with plain
waveguides, such as all-optical limiting,1,9 all-optical switch-
ing, and bistability.1,10–15 This enhancement of the nonlinear-
ity, however, happens at the cost of reduction of the signal
bandwidth, which typically leads to a trade-off situation.1,2

In practice, however, resonant structures such as ring
resonators and photonic crystal resonators are much more
critical to fabricate than simple waveguides and therefore
suffer from additional loss mechanisms such as radiation and
scattering loss. Furthermore, two-photon absorption
�2PA�—as intrinsic counterpart of the Kerr effect—will also
be present: in these resonant structures, the two-photon ab-
sorption effect is enhanced by the same principle—optical
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confinement and slow waving—as the Kerr effect.5,16 The
impact of these two absorption effects on resonant Kerr-
nonlinear behavior will be investigated in this paper in the
case of a single resonator in a semianalytical way. In this
way, their impact can rapidly be determined for different
materials systems and configurations.

The organization of this paper is as follows. First, the
lossless resonator behavior discussed in Refs. 1 and 2 will be
reviewed. After that, the effect of single-photon absorption
and two-photon absorption is discussed in Secs. III and IV.
The combination of these two effects together is then studied
in Sec. V. In Sec. VI, the feasibility of Kerr-nonlinear opera-
tion in the presence of both single-photon and two-photon
absorptions is derived for two material systems: AlGaAs and
Si. Finally, conclusions are drawn in Sec. VII.

II. LOSSLESS KERR-NONLINEAR RESONATOR
OPERATION

In this section, the most important equations from Refs.
1 and 2 are summarized. A resonator structure can generally
be understood as a cavity which is placed between two mir-
rors. In this work, the same one-dimensional resonator struc-
tures will be discussed as in Refs. 1 and 2: the mirror sec-
tions are built from quarter-wavelength layers of two
different refractive index materials na and nb, and the cavity
is assumed to be a multiple Ncav of �c /2na, with �c the so
called resonance wavelength �see below�, so that the resona-
tor structure is schematically given by1
Ndbr is the total number of b layers, and the input and output
sections were assumed to have the same effective index as
the cavity. An example of such a structure is shown in Fig. 1.

a�
A. Linear behavior

The cavity of a resonator typically gives rise to a phase
change e−j�cav for the light passing through, while the mirrors
�which are assumed to be equal� cause both phase and am-
plitude changes. As a result, the mirror amplitude transmis-
© 2006 American Institute of Physics3-1
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sion and reflection coefficients tdbr and rdbr can formally be
written as

tdbr = �tdbr�e−j�t, �1�

rdbr = �rdbr�e−j�r, �2�

with �tdbr�2+ �rdbr�2=1 in the lossless case.
The linear amplitude transfer function of a single reso-

nator can be calculated by adding up the different wave con-
tributions which circulate inside the structure, resulting in

ttot,L��� = e−j�cav�tdbr�2e−2j�t�1 + e−2j�cav�rdbr�2e−2j�r

+ e−4j�cav�rdbr�4e−4j�r + ¯ � , �3�

=e−j�cav
�tdbr�2e−2j�t

1 − e−2j�r−2j�cav�rdbr�2
. �4�

The resulting linear intensity transmission function is then
given by

�ttot,L����2 =
�tdbr�4

1 + �rdbr�2 − 2�rdbr�2 cos�2� + 2�cav�
. �5�

This transmission is equal to unity if �r+�cav=m� with m
integer. Frequencies for which �r+�cav=m� are called the
resonance frequencies and denoted as �c.

If the frequency dependence of the amplitude of the mir-
ror transmission and reflection coefficients tdbr and rdbr is
neglected and the frequency dependence of the mirror phase
is expanded linearly �ttot,L����2 can also be written as

�ttot,L����2 =
�tdbr��c

4

1 + �rdbr��c

4 − 2�rdbr��c

2 cos�U�� − �c��
, �6�

taking into account that �cav�� and U is constant. Close to
resonance ����c�, one obtains the lorentz form

�ttot,L����2 =
1

1 + �rdbr��c

2 U2�� − �c�2 , �7�

so that U=2/ �rdbr��c
��BW,lossless, with ��BW,lossless the lossless

resonance bandwidth.

B. Kerr-nonlinear behavior

In the presence of Kerr-nonlinear effects, the incoming
light with electric field amplitude Ein will build up inside the
cavity and partially in the mirrors and thus alter the refractive
index of the complete structure by an amount �n=n2�E�2 �n2

FIG. 1. Structural example of a single resonator. Mirror sections and cavity
are indicated.
being the Kerr coefficient and E the electric field�. As a re-
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sult, the linear resonance frequency �c will shift by an
amount ��c,lossless �this shift is negative if n2�0 and vice
versa�. The frequency shift for the frequency ���c will,
however, not be equal to ��c. The field profile of a resonator
for a certain frequency � scales, in good approximation, with
a factor �ttot,L���� compared to that for the frequency �c.

1 As
the Kerr effect scales with �E�2, the shift at frequency � will
only be

��NL � �ttot,NL����2��c,lossless �8�

which means that the Kerr-nonlinear intensity transmission
for one period is determined by

�ttot,NL�����2 = �ttot,L����2, �9�

with ��=�+ �ttot,L����2��c. Using Eq. �7�, this corresponds to

�ttot,NL�����6 − 2
�� − �c

��c,lossless
�ttot,NL�����4

+ ���BW,lossless
2

4��c,lossless
2 + � �� − �c

��c,lossless
	2
�ttot,NL�����2

−
��BW,lossless

2

4��c,lossless
2 = 0. �10�

This is an equation of the third order in �ttot,NL�����2 and
formally identical to the one derived in Ref. 17. Since its
coefficients are real for every frequency, one solution is al-
ways real and the other two solutions can be either complex
conjugants or also real. In the latter case, one has three pos-
sible solutions for the same frequency, of which only two are
stable—the solution is said to be bistable. In such a case,
�ttot,NL�����2 is not anymore a “function” in the strict sense of
the word.

A bistable region now exist, if for two frequencies �1

and �2, with �1��2, one has that �1���2�, with ��=�
+ �ttot,L����2��c,lossless=�+ �ttot,NL�����2��c,lossless. For the case
n2�0, this results in the following condition:

$�, 0 � − �d�ttot,L����2

d�

−1

� ��c,lossless. �11�

The bistable region can then be obtained by solving

�d�ttot,L����2

d�

−1

= − �c,lossless, �12�

and calculating ��=�+ �ttot,L����2��c,lossless.
In this way, it can also be determined from which

amount of resonance shift ��c,lossless a bistable region ap-
pears. This is the case if Eq. �12� has a twofold, real solution.
Using Eq. �7�, bistability arises if

���c,lossless� �
4�3

��BW,lossless �13�

9
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and the twofold solution is given by

�sol = �c ±
�3

2
��BW,lossless, �14�

depending on the sign of ��c. This also means that frequen-
cies inside the interval ��c− ��3/2���BW,lossless ,�c

+ ��3/2���BW,lossless� can in fact never be bistable.

III. EFFECT OF SINGLE-PHOTON ABSORPTION „1PA…

Single-photon absorption is not necessarily present in
the case of Kerr-nonlinear behavior—especially not for typi-
cal wavelength operation around half the band gap of the
material.18 In reality, however, different loss mechanisms
will always be present, which have the appearance of a
single-photon absorption term, such as scattering loss, radia-
tion loss, etc.

These phenomena not only change the Kerr-nonlinear
behavior of the structure, but also its linear behavior.

A. Linear behavior

First, the effect of single-photon absorption �or equiva-
lent loss mechanisms� on the linear behavior of a resonator is
studied. In Fig. 2, the simulated linear transmission relations
of a single resonator are shown in the case of no loss and of
loss due to 1PA.

1PA loss reduces the peak transmission, but it also
changes the shape of the transmission relation �relative to the
peak transmission� to a non-Lorentzian curve.

FIG. 2. Effect of single-photon absorption on the linear resonator behavior.
The results were obtained by simulation with the following parameters:
refractive indices na=2.6, nb=2.34, extinction coefficients ka=kb=0.15
	10−3, Ncav=1, and Ndbr=54. The triangles show the analytical results for
the lossy structure obtained by means of Eq. �17�.
Downloaded 07 Apr 2006 to 18.62.8.199. Redistribution subject to A
In the presence of single-photon absorption, the linear
transfer function can be calculated in the same way as in the
lossless case,

ttot,L��� = e−j�cav�tdbr��e

2 e−2j�tAdbr
2 Acav�1 + e−2j�cav�rdbr��c

2 e−2j�r

	Adbr
2 Acav

2 + ¯ � , �15�

=e−j�cav
�tdbr��c

2 e−2j�tAdbr
2 Acav

1 − e−2j�r−2j�cav�rdbr��c

2 Adbr
2 Acav

2 , �16�

with Adbr and Acav the relative field amplitude after a lossy
mirror, respectively, after a lossy cavity section. For ex-
ample, Acav=exp�−�
 /2�L�, with 
 the single-photon absorp-
tion coefficient and L the cavity length.

In this way, the intensity transmission curve �for ���c�
is now given by

�ttot,L����2 �

�tdbr��c

4 Adbr
4 Acav

2

�1 − �rdbr��c

2 Adbr
2 Acav

2 �2

1 +
4�tdbr��c

4 Adbr
2 Acav

2

�1 − �rdbr��c

2 Adbr
2 Acav

2 �2

�� − �c�2

��BW,lossless
2

. �17�

This relation is used in Fig. 2 to explain the simulation re-
sults obtained with the simulation tool cavity modeling
framework19 �CAMFR�. As can be seen, an excellent agree-
ment with the numerical results is obtained.

At resonance, one has, for the total transmission,

�ttot,L��c��2 =
�tdbr��c

4 Adbr
4 Acav

2

�1 − �rdbr��c

2 Adbr
2 Acav

2 �2 . �18�

In a similar way, the total reflection �rtot,L����2 can be calcu-
lated. The insertion loss 1−Atot

2 ���—with Atot��� the relative
field amplitude after the complete resonator structure in the
case of linear loss—is then simply given by 1− �ttot,L����2
− �rtot,L����2. At resonance, one has

�rtot,L��c��2 =
�rdbr��c

2 Adbr
2 �1 − Adbr

2 Acav
2 �2

�1 − �rdbr��c

2 Adbr
2 Acav

2 �2 , �19�

1 − Atot
2 ��c� = 1 −

�tdbr��c

4 Adbr
4 Acav

2 + �rdbr��c

2 Adbr
2 �1 − Adbr

2 Acav
2 �2

�1 − �rdbr��c

2 Adbr
2 Acav

2 �2 .

�20�

For frequencies ��� , one has, in good approximation,
c
1 − Atot
2 ��� � �ttot����2��1 − �rdbr��c

2 Adbr
2 Acav

2 �2 − �rdbr��c

2 Adbr
2 �1 − Adbr

2 Acav
2 �2

�tdbr��c

4 Adbr
4 Acav

2 − 1
 , �21�
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which means that the loss is in fact linearly dependent on the
transmission.

B. Kerr-nonlinear behavior

Now that the change in the linear behavior of the reso-
nator structure due to 1PA is understood, one can investigate
the effect on its Kerr-nonlinear behavior. This is shown in
Fig. 3. In this figure, both the linear and the Kerr-nonlinear
transmission curves are shown for the lossless and 1PA in-
duced lossy cases of the same resonator.

As can be seen, the resonance shift ��c in the lossy case
is significantly smaller than in the lossless case. Furthermore,
in both cases, the nonlinear peak transmission remains equal
to its linear counterpart.

As in Sec. II, the frequency shift �� can be approxi-
mated by

��NL = �ttot,L����2��c,lossless. �22�

In the same way, the nonlinear transmission function can be
determined by �ttot,NL�����2= �ttot,L����2, with ��=�
+ �ttot,L����2 ��c,lossless=�+ �ttot,NL�����2��c,lossless. Substitution
of Eq. �17� leads to

�ttot,NL����6 −
2��� − �c�
��c,lossless

�ttot,NL�����4 + � ��� − �c�2

��c,lossless
2

+
��BW,lossless

2

4��c,lossless
2

�1 − �rdbr��c

2 Adbr
2 Acav

2 �2

�tdbr��c

4 Adbr
2 Acav

2 	�ttot,NL�����2

= �ttot,L��c��2
��BW,lossless

2

4��c,lossless
2

�1 − �rdbr��c

2 Adbr
2 Acav

2 �2

�tdbr��c

4 Adbr
2 Acav

2 , �23�

which approximately simplifies to

�ttot,NL�����6 −
2��� − �c�
�c,lossless

�ttot,NL�����4 + � ��� − �c�2

��c,lossless
2

+
��BW,lossless

2

4�ttot��c��2��c,lossless
2 
�ttot,NL�����2 =

��BW,lossless
2

4��c,lossless
2 .

�24�

FIG. 3. Effect of single-photon absorption on the Kerr-nonlinear resonator
behavior. The results were obtained by simulation with the following param-
eters: na=2.6, nb=2.34, ka=kb=0.15	10−3, Ncav=1, Ndbr=54, and n2�Ein�2
=8	10−6. The triangles show the analytical results for the lossy, nonlinear
situation obtained by means of Eq. �24�.
The analytical results obtained by this equation show excel-
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lent agreement with the nonlinear numerical results obtained
by the nonlinear extension20 to CAMFR.19

IV. EFFECT OF TWO-PHOTON ABSORPTION „2PA…

As mentioned above, the bound-electronic Kerr effect is
intrinsically related to two-photon absorption. This absorp-
tion effect is enhanced inside the resonator in the same way
as the Kerr-nonlinear effect and thus poses an inherent limi-
tation to its applicability.

In Fig. 4, an example of the effect of two-photon absorp-
tion is given. The linear transmission curve and both the
lossless and lossy �due to 2PA� frequency shifts obtained by
simulations are shown.

As can be seen, the resonance shift ��NL in the lossy
case is again significantly smaller than in the lossless case.
The lossy, nonlinear peak transmission is also smaller than
the linear one, as discussed in Sec. II. In addition, the lossy,
Kerr-nonlinear transmission relation has a different relative
shape than its lossless counterpart. This will now be investi-
gated in the following way: similar to Sec. III, the total in-
sertion loss and the resonance shift will first be determined at
resonance and then for a general frequency �. However, in
the general case of counterpropagating waves, the multi-
time-scale approach used in Refs. 1 and 2 for the Kerr effect
cannot be used to study the effect of 2PA. Therefore, simu-
lation results from different types of resonator structures
�both long and short cavities combined with weak and strong
mirror sections� will be used to characterize the influence of
two-photon absorption in a general way. With these results,
an equation for �ttot,NL�����2 will then be determined equiva-
lent to Eq. �24�.

The total transmission, reflection, and loss of any struc-
ture are for every frequency related by the following equa-
tion:

�ttot����2 + �rtot����2 = Btot
2 ��� , �25�

with ttot��� and rtot��� the total �nonlinear� field transmission
and reflection, respectively, and Btot��� the relative field am-
plitude after the complete resonator structure in the case of
two-photon absorption. Two additional relations between
�ttot����2, �rtot����2, and Btot

2 ��� now have to be found to deter-

FIG. 4. Effect of two-photon absorption on the Kerr-nonlinear resonator
behavior. The results were obtained by simulation with the following param-
eters: na=2.6, nb=2.34, Ncav=1, Ndbr=54, and n2�Ein�2=��c�Ein�2=8	10−6.
The triangles show the analytical results for the lossy, nonlinear situation
obtained by means of Eq. �46�.
mine these three quantities completely.
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At nonlinear resonance ��=�c�, with �c� the nonlinear
resonance frequency�, this can be done by fitting the simula-
tion results presented in Fig. 5. In this figure, the simulation
results �rtot��c���

2 and 1−Btot��c�� are plotted as a function of
�ttot��c���

2 for a large variation of all resonator parameters: the
refractive indices �na and nb� of the two mirror materials
were varied from 2.0–3.0, with na�nb. Mirror and cavity
lengths in the intervals Ndbr=40–200 and Ncav=1–20 were
simulated with input fields leading to nonlinear effects of
n2�Ein�2=10−6–10−4 and ��c�Ein�2=10−6–10−4, with � the
two-photon absorption coefficient and �c=1.55 �m.

It can be seen that the relation between �rtot��c���
2 and

�ttot��c���
2 is symmetrical around �rtot��c���

2= �ttot��c���
2. This re-

lation can therefore be expressed as

p + q��ttot��c���
2 + �rtot��c���

2� + r�ttot��c���
2�rtot��c���

2

+ s��ttot��c���
4 + �rtot��c���

4� + ¯ = 0. �26�

It was found that the choice

p = 1, �27�

q = − 2, �28�

r = − 2, �29�

s = 1, �30�

holds a very good approximation for the obtained simulation
results �see Fig. 5�. In this way, one has

��ttot��c���
2 − �rtot��c���

2�2 − 2��ttot��c���
2 + �rtot��c���

2� + 1 � 0.

�31�

As all parameters used in the simulations were varied over a
large range, this relation will be generally valid. Now, both
the �nonlinear� resonance transmission and reflection can be
expressed in terms of Btot

2 ��c�� as

�ttot��c���
2 = 1

2 �Btot
2 ��c�� + �2Btot

2 ��c�� − 1� , �32�

�ttot��c���
2 = 1

2 �Btot
2 ��c�� − �2Btot

2 ��c�� − 1� . �33�

To determine this nonlinear loss, the following method is
used. For small intensities, the loss due to two-photon ab-
sorption is equivalent to the phase shift at resonance induced

FIG. 5. Simulated results of �rtot��c���2 and 1−Btot��c�� as a function of
�ttot��c���2 for a variety of parameters.
by the Kerr effect,
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1 − Btot,small
2 ��c�� � 2

K2

c
�Ein�2 Û ��c � −

n2

c
�Ein�2,

with K2= �c /4���� the nonlinear extinction coefficient and
� the two-photon absorption coefficient. This relation repre-
sents nothing more than the refractive index—absorption co-
efficient duality. The factor 2 is due to the fact that loss is
related to the optical intensity, whereas the phase is related to
the optical field. The lossless resonance phase shift
��c,lossless is related to the resonance shift ��c,lossless by1,2

��c,lossless �
2

��BW,lossless
��c,lossless. �34�

In this way, one has, for small intensities,

1 − Btot,small
2 ��c�� = −

c

��c�

�

n2

��c,lossless

��BW,lossless
. �35�

For the general case, it was found by fitting the results of
Fig. 5,

1 − Btot
2 ��c�� � �ttot,NL��c���

4�1 − Btot,small
2 ��c��� �36�

=− �ttot��c���
4 c

��c�

�

n2

��c,lossless

��BW,lossless
. �37�

This �ttot,NL��c���
4 is at first unexpected, but will be explained

below. Using Eq. �32�, one obtains the following implicit
formula for the insertion loss:

1 − Btot
2 ��c�� � −

c

4��c�

�

n2
�Btot

2 ��c�� + �2Btot
2 ��c�� − 1�2

	
��c,lossless

��BW,lossless
. �38�

This equation together with Eq. �32� and �33� allows to de-
termine the total transmission, reflection, and insertion loss
at nonlinear resonance. The resonance shift ��c,2PA in the
case of two-photon absorption can then be calculated by
means of

��c,2PA � �ttot��c���
2��c,lossless. �39�

For a general frequency ����c�, Eq. �37� and �39� are to
be expanded to

1 − Btot
2 ���� � − �ttot,NL�����4

c

��c�

�

n2

��c,lossless

��BW,lossless
, �40�

��NL � �ttot,NL�����2��c,lossless, �41�

which are the natural expansions of both Eq. �21� and �22�.
This also explains the �ttot,NL�����4, which is nothing more
than the extension of the �ttot,NL�����2 dependence in the case
of single-photon absorption to the two-photon case.

In contrast to Eq. �37� and �39�, Eq. �31�—and thus Eqs.
�32� and �33�—is not valid for general frequencies ����c�.
Instead, the following relation can be used: the nonlinear
transmissivity �ttot,NL�����2 is approximately related to the lin-
ear transmissivity �ttot,L����2, with ��=�+ �ttot,NL�����2

��c,lossless �see also Eq. �41� and compare with Sec. II�, by
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�ttot,NL�����2 − �ttot,L����2

�ttot,L����2
= V�1 − Btot

2 ����� , �42�

with V a constant. This means that the relative change in the
transmission at a certain frequency is proportional to the total
insertion loss at that frequency. This is in agreement with
what could be expected. To calculate the constant V, this
equation is evaluated at �=�c� or

V =
�ttot��c���

2 − 1

1 − Btot
2 ��c��

, �43�

so that

�ttot,NL�����2 − �ttot,L�����2

�ttot,L�����2
= ��ttot,NL��c���

2 − 1�
1 − Btot

2 ����
1 − Btot� ��c��

.

�44�

Using Eq. �41�, this becomes

�ttot,NL�����2

�ttot,L����2
− 1 = ��ttot,NL��c���

2 − 1�
�ttot,NL�����4

�ttot,NL��c���
4 . �45�

Finally, substituting Eq. �7�, one obtains

�ttot,NL�����6 − 2
�� − �c

��c,lossless
�ttot,NL�����4

+ ���BW,lossless
2

4��c,lossless
2 +

��� − �c�2

��c,lossless
2 
�ttot,NL�����2

=
��BW,lossless

2

4��c,lossless
2 �1 − �1 − �ttot,NL��c���

2�
�ttot,NL�����4

�ttot,NL��c���
4 . �46�

As can be seen in Fig. 4, the analytical results obtained by
this equation show excellent agreement with the numerical
results obtained by the nonlinear extension of CAMFR.

V. EFFECT OF BOTH SINGLE- AND TWO-PHOTON
ABSORPTIONS

In most practical cases, both single- and two-photon ab-
sorption phenomena will be present—to a larger or lesser
Downloaded 07 Apr 2006 to 18.62.8.199. Redistribution subject to A
extent. An example of such a situation is shown in Fig. 6. In
this figure, the loss mechanisms of Fig. 2 and 4 are combined
for the same input optical power. Both the linear and nonlin-
ear transmission curves are shown in the case of lossless and
lossy �due to 1PA and 2PA� structures.

In the figure, the combination of both loss effects can
clearly be seen. The resonance shift ��c in the lossy case is
again much smaller than in the lossless case, but also smaller
than the individual cases of Fig. 2 and 4. The lossy, nonlinear
peak transmission is also smaller than the linear lossy one
�which is due to 1PA, as discussed in Sec. III� like in the case
of 2PA. And also the lossy, Kerr-nonlinear transmission re-
lation has a different relative shape than its lossless counter-
part.

To understand the Kerr-nonlinear behavior of a lossy
resonator with both 1PA and 2PA effects, the results of Sec.
III and IV must be combined. Based on Eqs. �21�, �22�, �37�,
and �41�, the total insertion loss 1−Ctot

2 ��� of the structure
with Ctot��� the relative field amplitude after the complete
resonator structure in the case of both 1PA and 2PA and the
frequency shift ��NL at any frequency �� is straightforwardly
given by

FIG. 6. Combined effect of single- and two-photon absorptions on the Kerr-
nonlinear resonator behavior. The results were obtained by simulation with
the following parameters: na=2.6, nb=2.34, ka=kb=0.15	10−3, Ncav=1,
Ndbr=54, and n2�Ein�2=��c�Ein�2=8	10−6. The triangles show the analytical
results for the lossy, nonlinear situation obtained by means of Eq. �53�.
1 − Ctot
2 ���� � �ttot,NL�����2��1 − �rdbr��c

2 Adbr
2 Acav

2 �2 − �rdbr��c

2 Adbr
2 �1 − Adbr

2 Acav
2 �2

�tdbr��c

4 Adbr
4 Acav

2 − 1
 − �ttot,NL�����4
c

��c�

�

n2

��c,lossless

��BW,lossless
, �47�
��NL � �ttot,NL�����2��c,lossless. �48�

Like in Sec. IV, the nonlinear transmission function
�ttot,NL�����2 can, in good approximation, be related to the
linear transmissivity �ttot,L,1PA����2, taking into account that
the linear transmission now includes single-photon absorp-
tion with ��=�+ �ttot�����2 ��c,lossless �see Eq. �48� and com-
pare with Sec. IV�:
�ttot,NL�����2 − �ttot,L,1PA����2

�ttot,L,1PA����2
= W�1 − Ctot�2����� , �49�

with W a constant and 1−Ctot�2 the 2PA loss part of Eq. �47�.
This means that the relative change in the transmission at a
certain frequency �compared to the linear transmission which
already includes 1PA� is proportional to the total 2PA in-
duced insertion loss at that frequency. This is again in agree-
ment with what could be expected. To calculate the constant

W, this equation is evaluated at ��=�c� �note that
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�ttot,L,1PA��c��2= �ttot,NL,1PA��c���
2�. In this way, one has

W =
�ttot,NL��c���

2 − �ttot,L,1PA��c��2

�ttot,L,1PA��c��2�1 − Ctot�2��c���
, �50�

so that

�ttot,NL�����2 − �ttot,L,1PA����2

�ttot,L,1PA����2

= � �ttot,NL��c���
2 − �ttot,L,1PA��c��2

�ttot,L,1PA��c��2

1 − Ctot�2����

1 − Ctot�2��c��
. �51�

Using Eq. �48�, this becomes

�ttot,NL�����2

�ttot,L,1PA����2
− 1 = � �ttot,NL��c���

2

�ttot,L,1PA��c��2
− 1
 �ttot,NL�����4

�ttot,NL��c���
4 .

�52�

After substitution of Eq. �17�, one obtains

�ttot,NL�����6 −
2��� − �c�
��c,lossless

�ttot,NL�����4 + � ��� − �c�2

��c,lossless
2

+
��BW

2

4�ttot,L,1PA��c��2��c,lossless
2 
�ttot,NL�����2

=
��BW

2

4��c,lossless
2 �1 − �1 −

�ttot,NL��c��2

�ttot,L,1PA��c��2

 �ttot,NL�����4

�ttot,NL��c���
4 .

�53�

The transmissivity �ttot,L,1PA��c��2 in case of only 1PA has
already been derived in Sec. IV. However, note that at this
point, �ttot,NL��c���

2 is still unknown. Clearly, the total reso-
nance transmission will be determined by both single- and
two-photon processes. To determine �tNL,tot��c���

2, simulation
results obtained from the parameter space used in Sec. IV
together with extinction coefficient variations of Ka= �0–5�
	10−3 and Kb= �0–5�	10−3 were polynomially fitted, lead-
ing to the following equation:

�tNL,tot��c���
6 + 1

8 �ttot,L,1PA��c��4�ttot,NL,2PA��c���
2

+ 1
8 �ttot,NL,2PA��c���

4�ttot,L,1PA��c��2

− 1
8 �ttot,L,1PA��c��4�ttot,NL��c���

2

− 1
8 �ttot,NL,2PA��c���

4�ttot,NL��c���
2

− 7
8 �ttot,NL��c���

4�ttot,L,1PA��c��2

− 7
8 �ttot,NL��c���

4�ttot,NL,2PA��c���
2

+ �ttot,L,1PA��c��2�ttot,NL,2PA��c��2�ttot,NL��c���
2

− 1
4 �ttot,NL��c���

4 = 0. �54�

This surface represents a so called “saddle.” A rms error of
about 2% was obtained with this fit. Note the
�ttot,L,1PA��c��2− �ttot,NL,2PA��c���

2 symmetry relation, which
means that, e.g., �ttot,L,1PA��c��2=0.7, �ttot,NL,2PA��c���

2=0.2,
and �ttot,L,1PA��c��2=0.2, �ttot,NL,2PA��c���

2=0.7, approximately
result in the same total transmission. In this way, Eq. �53� is

now fully determined.
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VI. IMPACT OF LOSS MECHANISMS

Resonator-based all-optical functionalities—such as all-
optical switching—are typically related to the shift of the
resonance frequency ��c.

1,2 As mentioned above, in the pres-
ence of single- and two-photon absorptions this resonance
shift is, in good approximation, a factor �ttot,NL��c���

2 lower,

��c,lossy � �ttot,NL��c���
2��c,lossless. �55�

Using Eqs. �34� and �35�, the nonlinear figure of merit
�FOM�,21 FOM��n2 /���, can be written as

FOM =
��c,lossless

2��1 − Btot,small��c���
. �56�

With Eqs. �32�, �37�, and �55�, this becomes

FOM �
�ttot,NL,2PA��c���

3

2��ttot,NL��c���
2�1 − �ttot,NL,2PA��c����

��c,lossy

��BW
.

�57�

Note, however, that ��BW is the lossless resonator band-
width. As mentioned above, the shape of the transmission
relation changes when loss is introduced. ��BW,lossy can ap-
proximately be calculated by solving Eq. �53�. In this way,
one obtains, for the lossy bandwidth in presence of both
single-photon and two-photon absorptions,

��BW,lossy ��3�ttot,L,1PA��c��2 − �ttot,NL��c���
2

2�ttot,NL��c���
2�ttot,L,1PA��c��2

��BW,lossless,

�58�

so that

FOM �
�ttot,NL,2PA��c���

3�3�ttot,L,1PA��c��2 − �ttot,NL��c���
2

2�2��ttot,NL��c���
3�ttot,L,1PA��c���1 − �ttot,NL,2PA��c����

	
��c,lossy

��BW,lossy
. �59�

Two of the most interesting semiconductor materials for
ultrafast, Kerr-nonlinear operation are the AlGaAs and Si
systems. Around the telecom wavelength of �=1.55 �m,
they have a nonlinear figure of merit value of

FOMAlGaAs � 5.38, �60�

FOMSi � 0.37, �61�

where the values of the nonlinear coefficients were used as
reported in Refs. 18 and 22. To evaluate the potential to these
materials for Kerr-nonlinear resonator-based functionalities,
the effect of two-photon absorption should be acceptable: in
most cases, the main linear loss mechanisms are related to
fabrication. The impact of 2PA can be expressed by the rela-
tive transmission parameter �ttot,NL��c���

2 / �ttot,L,1PA��c��2. In
the lossless case, bistability is obtained for a resonance shift
of ��c= �4�3/9���BW �see Sec. II�. In the lossy case, the
calculation is much more complex, however, in good ap-
proximation, one again obtains ��c,lossy��4�3/9���BW,lossy.
Using Eq. �59�, �ttot,NL��c���

2 / �ttot,L,1PA��c��2 can be calculated
2
for this resonance shift as function of �ttot,L,1PA��c�� for dif-
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ferent nonlinear materials. The result for AlGaAs and Si are
shown in Fig. 7.

As can be seen, the effect of 2PA is quite severe in the
case of Si and is only acceptable for very low linear losses.
For the AlGaAs system on the other hand, the impact of 2PA
is very limited, even for low linear transmissions. The total
rms error on this curve is approximately 5%.

For a linear peak transmission of �ttot,L,1PA��c��2=0.5, the
two-photon impact is visualized in Fig. 8 and 9.

The remaining peak transmission is in the AlGaAs sys-
tem about 48%, while in the case of Si, only 20% transmis-
sion remains for the maximum stable resonance shift of
��c,lossy= �4�3/9���BW,lossy. In addition, the bandwidth in-
creases approximately 4% in the AlGaAs case, while for Si,
this increase is already a factor of 2.

VII. CONCLUSIONS

Using analytical approximations, a Kerr-nonlinear model
was derived which takes into account both linear and two-
photon absorption effects. This model has been used to
evaluate the impact of two-photon absorption for different
nonlinear material systems at the telecom wavelength �
=1.55 �m. For the AlGaAs system, the effect is almost neg-

FIG. 7. Remaining nonlinear transmission as a function of the linear trans-
mission for both AlGaAs and Si for a resonance shift of ��c

= �4�3/9���BW.

FIG. 8. Example of linear and nonlinear transmission curves of an AlGaAs
material system with �ttot,L,1PA��c��2=0.5. The nonlinear curve corresponds to

�
a resonance shift of ��c,lossy= �4 3/9���BW,lossy.
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ligible and linear �fabrication� loss will be dominant. For Si,
however, two-photon absorption can result in severe degra-
dation and is only acceptable in the case of low linear losses.
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