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A Comparative Study of Higher Order Bragg
Gratings: Coupled-Mode Theory Versus
Mode Expansion Modeling

H. Wenzel, R. Giither, A. M. Shams-Zadeh-Amiri, Member, IEEE, and P. Bienstman

Abstract—The modal reflectivity and loss of lamellar diffraction
gratings to be used in distributed-feedback and distributed-Bragg
reflector lasers were computed in dependence of wavelength, duty
cycle and Bragg order. Different methods based on the approxi-
mate coupled-mode theory and and the exact bidirectional mode
expansion modeling were compared and a good mutual agreement
was found. The slab Green’s function needed to compute the cou-
pling coefficients can be approximated by that of a homogeneous
unbounded medium with sufficient accuracy.

Index Terms—Bragg grating, mode matching, radiation losses.

I. INTRODUCTION

AMELLAR diffraction gratings integrated into slab

waveguides (so-called Bragg waveguide gratings) found
widespread applications in distributed-feedback (DFB) and
distributed Bragg-reflector (DBR) lasers, either as edge or as
surface emitters. The propagation of electromagnetic waves
in these structures is essentially of two-dimensional nature.
Furthermore, the finite length of the gratings disturbs the
one-dimensional periodicity. During the last years, higher
order Bragg waveguide gratings have attracted again increasing
interest because of the demand for high-power edge-emitting
DFB and DBR lasers emitting at wavelengths below 1 pym. Due
to their larger periods, they can be easier fabricated.

For the numerical simulation of these structures, a large va-
riety of different models exists. Many models are based on the
coupled-mode theory (CMT), which was firstly applied to DFB
lasers in [1] and which was later improved in [2]. Within the
CMT the mode field is expressed as an infinite summation of
partial waves dictated by the Bloch-Floquet theorem. The re-
sults are coupled-mode equations for the amplitudes of the op-
positely propagating waves directly interacting with the Bragg
grating and an infinite set of equations for partial waves de-
scribing the radiation and evanescent fields. As outlined in [2],
these fields lead to a modification of the coefficients entering the
coupled-wave equations of [1].
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Fig. 1. Benchmark example.

Other models do not rely on the Bloch—Floquet theorem, but
are based on a direct solution of Maxwell’s equations. Some
of these models based on the method of lines (MoL), bidirec-
tional mode expansion or finite-difference time-domain (FDTD)
methods were compared in [3] by calculating the modal reflec-
tivity and transmittance of first-order Bragg waveguide gratings.
A good mutual agreement was found.

It is well known [4] that due to the approximations involved
in the derivation of the CMT it can not be applied to deeply
etched gratings as considered in [3]. However, the question
arises whether the CMT works for shallow gratings as typically
used in index-coupled DFB and DBR lasers and especially
whether the radiation loss of higher order gratings is correctly
computed because a comparison of the more rigorous models
with those based on the CMT is still missing.

In this paper, the modal reflectivity and transmittivity of first
and higher order Bragg waveguide gratings are calculated using
models based on the CMT [5] and the bidirectional mode expan-
sion model CAMEFR [6]. Thereby, an approximate solution for
the partial waves first presented in [7] exploiting the free-space
Green’s function is corrected and generalized.

The paper is organized as follows. In Section II, the bench-
mark example is introduced. The numerical methods are de-
scribed in Section III and the results are presented in Section I'V.

II. BENCHMARK EXAMPLE

The Bragg waveguide grating under study schematically
drawn in Fig. 1 consists of a periodic stack of two slab waveg-
uides, named slab 1 and slab 2. Details of the thicknesses and
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TABLE 1
THICKNESS d AND REFRACTIVE INDICES n OF THE
CONSTITUENT SLAB WAVEGUIDES

layer d/pm ng na
7 2.0 3.201
6 0.04 3.523 3.201
5 0.05 3.201
4 0.25 3.218
3 0.038 3.467
2 0.25 3.218
1 20 3.201

refractive indexes of the two slabs are given in Table I. The
only difference between the two slabs is caused by the variation
of the refractive index of layer 6.

For given Bragg order N and reference (Bragg) wavelength
Ao = 980 nm, the total length of the period of the grating is
given by

A= Mo
2Neff

ey

For given duty cycle D, the effective index n.g of the refer-
ence waveguide is obtained by averaging the dielectric function
e(r,z) = n*(x,z) along z

n2¢(z) = Dni(z) + (1 — D)n3(z).

ref

(@)

It varies between the effective indexes of the constituent
slab waveguides n.go = 3.217063 for D = 0 and
negr = 3.229026 for D = 1. Hence, the grating
period is correspondingly changed between A, =
N x 152.312851 nm and A, = N x 151.748 555 nm.
The lengths of slab 1 and 2 within a period are obtained from
a = AD and b = A(1 — D), respectively.

The DBR stack can be surrounded either by slab 1 and or by
slab 2. The total length of the grating is about Lppgr ~ 200 ym
and the number of periods is given by the integer quantum of
Lppr/A. For N = 1 and small duty cycles, the number of
periods is 1313. The L value of the grating is about 5 for NV =1
and D = 0.5.

The aim of the modeling task is the computation of the reflec-
tivity R at z = 0 of the fundamental guided transverse-electric
(TE) mode and the corresponding value for the loss

L=1-R-T A3)

with T being the transmittivity at z = Lppg versus the duty
cycle D for Bragg orders N = 1,...,3.

III. METHODS
A. Coupled-Mode Theory

The coupled-mode equations for the amplitudes of the oppo-
sitely going waves can be written as [8]

o

+
oz

= —iABYT — ik T

“
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for a symmetric grating. The complex valued total coupling co-
efficient x is composed of terms due to the direct and indirect
interactions of the two oppositely going waves with the grating
[2], [5]. The indirect interaction gives also rise to a modifica-
tion of both the real and imaginary parts of the relative propa-
gation coefficient Af via the self-radiation coupling coefficient
k% given in the Appendix

2mneg N

A A

Due to the fact that there is no gain and loss in the waveguide
sections, the corresponding modal gain-loss function is omitted
in (5).

It should be noted, that the CMT used here is different from
the CMT applied to the modeling of optical waveguides, e.g.,
compare [9]. In the latter case, co- or contra-directional cou-
pling of guided and radiation waveguide modes is considered
and the CMT is here a rigorous method as far as a complete set
of eigenmodes is taken as its basis.

In the case of Bragg waveguide gratings, typically only a
single guided waveguide mode is considered which field dis-
tribution E(z, z) is expressed as an infinite summation of par-
tial waves dictated by the Bloch—Floquet theorem. Similarly, the
dielectric function is expanded into a Fourier series. Due to the
fact that only phase-matched terms are taken into account and
the other approximations involved in the derivation [5], there are
some restrictions in the applicability of (4), namely the condi-
tions |k|A < 1 and |[AB|A < 1 must hold [10]. These condi-
tions mean that the perturbation of the field due to the grating
has to be not too strong and that the wavelength of the field must
be close to the Bragg condition. Note, that the CMT leads to
multiple sets of equations, one for every Bragg order, but the
direct solution of Maxwell’s equations without recourse to the
Bloch—Floquet theorem yields in principle a simultaneous de-
scription of all Bragg orders.

The reflection coefficient defined as R = |p~(0)|?/]4+(0)|?
is given by

AB = + kL.

(&)

—1K sin ('YLDBR)
7y cos (yLppr) + iABsin (YLper)
and the transmission coefficient T = [+ (Lpgr)|?/|¥T(0)[?
by

(6)

= ‘ L )
v cos (yLppr) + 1ABsin (yLppr)
where
7=V (AB)? — K. ®)

The inhomogeneous differential equations for the partial
waves can be solved by different methods. In the original
paper [2], the variation of parameters method was used. This
approach was extended from four to multilayer waveguides in
[11]. In [5], the equations were solved by means of the Green’s
function method using the exact one-dimensional Green’s
function of a multilayer waveguide and in addition to index
gratings, gain and loss gratings were considered. Whereas in
[5] only radiation fields were taken into account, in [2] and [11]
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evanescent fields which should not have a big impact on the
results as revealed by this study were also included.

In [7], the Green’s function method was also employed.
However, the Green’s function of a homogeneous unbounded
medium was used. Furthermore, only second order gratings
(N = 2) were considered and some unnecessary simplifica-
tions were made. In the Appendix, this approach is extended to
higher Bragg orders and explicit expressions for the coupling
coefficients and radiation losses are given.

B. Bidirectional Mode Expansion

In bidirectional mode expansion methods such as used in the
tool CAMEFR [12], the field in each slab is expanded onto eigen-
modes in that slab. At the interfaces between the slabs, the tran-
sitions conditions give rise to reflection and transmission ma-
trices. The propagation from one interface of the slab to the other
interface results in diagonal propagation matrices.

For the determination of R and T of the entire structure, dif-
ferent algorithms can be used. A derivation and discussion of
the so-called T-, S-, and R-matrix algorithms and variants can
be found, e.g., in [13] and [14]. The T-matrix algorithm (also
known as transfer matrix method) is the mathematically sim-
plest algorithm. But it is numerically unstable due to the combi-
nation of falling and growing exponentials [13]. The derivation
of the S-matrix algorithm which relates the incoming fields and
the outgoing fields by means of scattering matrices is mathe-
matically more involved. However, this algorithm can be im-
plemented unconditionally stable. Similar holds for the R-ma-
trix algorithm, but its implementation requires special treatment
[14].

The advantage of mode expansion methods over FDTD and
MoL consists in the fact, that no spatial discretization is re-
quired, which gives rise to only a small number of unknowns and
therefore a fast model. One problem common to all methods is
the proper treatment of the boundaries of the computational do-
main. Open boundaries are difficult to handle, but closed bound-
aries realized by electric or magnetic walls, e.g., lead to parasitic
reflections. These reflections can be largely reduced by so-called
perfectly matched layers (PMLs) placed in front of the walls.
There exists different realizations of the PML boundary con-
dition based on splitted fields [15], anisotropic media [16], or
complex coordinate stretching [17].

In CAMFR, the S-matrix algorithm is used for the calculation
of R and T'. The structure is terminated by an electric wall on
top and bottom. The PML boundary condition is implemented
as proposed in [17]. For the simulation of the benchmark ex-
ample, 100 TE eigenmodes were used and the thicknesses of
the PMLs have been chosen to 2 pym with an imaginary part
equals —0.5 pm. These values establish a good compromise
between a sufficient damping of residual reflections from the
PMLs without influencing the fundamental guided mode too
much and ensure energy conservation, nearly.

IV. RESULTS

In this section, the reflectivity and the loss of the fundamental
guided TE mode obtained by the tool CAMFR [12] and by CMT
using the exact Green’s function of a multilayer waveguide [5]
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Fig. 2. Modal reflectivity (top) and corresponding modal loss (bottom)
at the reference wavelength versus duty cycle for first-order grating. Short
dashed (CAMFR 1): Mode expansion method with slab 1 enclosing the
Bragg waveguide grating. Dotted (CAMFR 2): Mode expansion method with
slab 2 enclosing the Bragg waveguide grating. Dash-dotted (CMT SL-GF):
Coupled-mode theory using slab Green’s function. Long dashed (CMT FS-GF):
Coupled-mode theory using free-space Green’s function.

as well as using the approximate free-space Green’s function
(see Appendix) are compared.

Fig. 2 depicts the results for the reflection coefficient and the
corresponding values for the loss coefficient versus duty cycle of
a first-order grating (N = 1) computed at the reference wave-
length A = Ay = 980 nm. The CMT yields vanishing loss for
first-order gratings because there are no radiating fields. How-
ever, there is an insertion loss which is maximum for duty cycle
D = 0 if the Bragg grating is surrounded by slab 1 and for
duty cycle D = 1 if the Bragg grating is surrounded by slab 2.
The maximum insertion loss is almost twice the insertion loss
of a single interface between the slabs (L = 0.07). The small
differences in the losses for D = 0 and D = 1 are caused by
residual reflections from the PMLs. The reflectivities obtained
with CAMFR and CMT differ from those cases where the in-
sertion loss is large. There is a good mutual agreement for small
duty cycles and surrounding slab 2 as well as large duty cycles
and surrounding slab 1.

In order to obtain the radiation loss with CAMEFR, in the
following figures, the insertion loss depicted in Fig. 2 is sub-
tracted from the total loss obtained with CAMEFR for the higher
order gratings. Fig. 3 depicts the modal reflectivity and loss for
a second order grating and Fig. 4 the results for a third order
grating. The dependence of the reflection coefficient versus duty
cycle, e.g., the position and values of maxima and minima is
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Fig. 3. (top) Modal reflectivity and (bottom) corresponding modal loss at the

reference wavelength versus duty cycle for second order grating. The insertion
loss from Fig. 2 was subtracted. Same lines as in Fig. 2.

well reproduced by all models. The increase of the reflection co-
efficient with duty cycle is also predicted by all models. There
are larger deviations between CAMFR and CMT occurring for
D < 0.5 and surrounding slab 1 as well as for D > 0.5 and
surrounding slab 2 which are partially caused by the insertion
losses.

There is also a surprisingly good correspondence in the ra-
diation losses between CAMFR and CMT as well as between
the two CMT models. The position of the maxima and minima
of the loss coefficient is again well reproduced by all models.
The small deviations between CAMFR and the CMT models
are possibly caused partially by residual reflections, partially by
the approximations inherent to the CMT models. The approx-
imation of the Green’s function by that of a homogeneous un-
bounded medium leads to a slight exaggeration of the radiation
loss.

Figs. 5 and 6 depict exemplary spectra of the modal reflec-
tivity and loss for a second order grating (N = 2) and duty
cycles D = 0.25 and D = 0.50, respectively. The reflectivity
spectra obtained with the different models agree very well for
both duty cycles. Note, that the maximum of the reflectivity is
not reached at the reference wavelength Ay = 980 nm, but at a
different wavelength due to the influence of the radiation fields,
i.e., due to the occurrence of £ in (5). However, the deviation
is very small (JAA| < 0.1 nm).

For D = 0.25, there is also a good agreement between the
loss spectra in the vicinity of the maximum of the reflectivity
and at longer wavelengths if the Bragg grating is surrounded
by slab 2 because of the small insertion loss. However, there

67

1.0
N=3
L s
I o \
— N "l‘ ‘-“
= 4 )
R 3 %
b= p
o p
g 05 ‘-%
st 1
©
9 -
=
o
0.0 . )
= C
o s 23
o F X
= 0.2 RN
© + PN
g8 I N 7E N
° 730 7E N
L DEENNN 4 \
3 . '/5:7 \\,\\\‘ =7 W
- L 2 Ny o= ,4 "\
5 C £ S W
= 0.1 r £ A
c V' .24 RN
5 4 R
© 3 Q S\
= r o BN
E K
- /’ h
r / N
0.0 '/ L ' ' 1 L N 1 LN,
0.0 0.5 1.0
duty cycle
Fig. 4. (top) Modal reflectivity and (bottom) corresponding modal loss at the

reference wavelength versus duty cycle for third order grating. The insertion
loss from Fig. 2 was subtracted. Same lines as in Fig. 2.
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is a large deviation between CAMFR and the CMT models at
shorter wavelengths which is possibly caused by the appearance
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Fig. 6. (top) Modal reflectivity and (bottom) modal loss versus wavelength for

second order grating and duty cycle 0.50. Same lines as in Fig. 2.

of leaky Bloch—Floquet modes similarly as discussed in [3]. The
different loss spectra for D = 0.50 behave very similar, al-
though the loss obtained with the CMT models is again slightly
underestimated due to the insertion loss, at least partially (please
note the scale of the ordinate).

V. CONCLUSION

The modal reflectivity and loss of lamellar diffraction grat-
ings typically used in DFB and DBR lasers were computed
using two CMT models and the tool CAMFR based on bidirec-
tional mode expansion modeling. The good mutual agreement
indicates the validity of the CMT as well as the capability of
CAMER to treat these Bragg waveguide gratings. The loss ob-
tained with CAMFR includes additional insertion loss due to
the mismatch between the field distributions in the grating and
in the enclosing waveguides. This loss reduces also the reflec-
tivity in certain cases.

The PML boundary condition as implemented in CAMFR
models correctly the radiation fields. In one of the two CMT
models the exact slab Green’s function needed to compute the
contribution due to the excited radiation fields for gratings with
N > 1 is approximated by that of a homogeneous unbounded
medium. It turned out, that this approximation works very well.

APPENDIX
FREE-SPACE GREEN’S FUNCTION APPROXIMATION

In this Appendix, explicit expressions for the coupling coef-
ficients are given using the free space Green’s function. We use
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partially the terminology of [5] and consider only TE modes.
Hence, the main component of the electric field strength is £,.
The total coupling coefficient can be written as the sum of two
terms

K= KN + kg, (A1)

The first term & is due to the direct Nth order diffraction and
is given by

o 2Neft

KN (A2)

/ dazén () F%(x)
where ko = 27/ is the reference wave number of free space
and F'(x) is the normalized profile of the considered guided
mode of the reference waveguide. Here and in the following the
integration extends from —oo to 400 if not otherwise indicated.
The mutual-radiation coupling coefficient

N—-1

ro_ § : T
Km = K(n,N—n)

n=1

(A3)

arises from the indirect interaction via diffraction orders less
than N. This interaction gives also rise to radiation loss

a' = —2Re (kL) (A4)
where
N-1
kg = K (n,—n) (A5)
n=1

is the self-radiation coupling coefficient included in A of (4).
In (A3) and (A5)

ik3
Kl = 3y = / dz / da' &, ()b (') F () F (') G (1, 2').
(A6)
In (A2) and (A6)
En(z) = Ae(x)w (A7)

nm

is the product of the perturbation Ae of the dielectric function
due to the grating and the nth Fourier coefficient of the grating.
Note, that for a rectangular grating as considered in this paper
a(xz) =constant and for the benchmark example furthermore
Ae(xz) =constant inside and Ae(z) = 0 outside the grating
layer 6 hold.

The Green’s function G is a solution of the equation [5]

0?G o (z,2)
0z

(N —2n)2n?

+ E(I)k(z)— e

Go(z, 2" ) =6(z—2a").
(A8)

In [5], (A8) was exactly solved by means of a transfer ma-
trix method. Alternatively, the profile of the real valued dielec-
tric function e(z) of the reference waveguide can be replaced
by some average value £, for example by the effective index
squared n’g of the reference waveguide. This approximation



WENZEL et al.: A COMPARATIVE STUDY OF HIGHER ORDER BRAGG GRATINGS

was firstly presented in [7] for second order gratings (N = 2)
and later used for higher order gratings with any Bragg angle
[18]. Here, the solution of (A8) is given by the outgoing Green’s
function of a homogeneous unbounded medium

1 —iT, (z—a) /
Gu(z,a/)=———q¢ " = 27 A9
(ll?/«T ) %1, {6_27—11(1: —) < (A9)
where
N — 2n)272
= ke~ W 220 (A10)

K22

Note, that the temporal variation of the field is given by
exp (+ikoct). The Bragg period in (A10) can be expressed in
terms of n.g and N according to (1). If we insert (A9) into
(A6) and split the exponential function into sinus and cosinus
terms, we obtain

ko

4neff’7"n/|

y { / 0’ € (oY F (a') c0s (e (& — )
i / " e (&) () sim (e (o — x))} .
(A11)

r —
Blnnr) =

/ dz&, (x)F(z)

da' & () F (") sin (71, (2" — 2))

Note, that in contrast what was stated in [7], the sinus terms
do not cancel, which was already recognized in [19]. Actually,
only by keeping these terms '{Enm') possesses an imaginary part.
Equation (A11) can be transformed to

ko

4neﬂ‘7—|n/|

X /d:vfn/ (x)F(z) cos (Tjn/x)

Klnnr) = {/ dx&n () F () cos (T 1))
+ / dx&y (2) F () sin (7,7)
X / dz&, (z)F(x)sin (T|n/|$)}
ik
mﬁ_lnll {/ dz&,(z)F(x) cos (T v)
X / dz& () F () sin (T}, 2)
- / dx&y (2) F () sin (7),,0)7))
X / da&p (x) F(2) cos (7)1 2)
-2 / dz&, () F(x) cos (), 7)
X /j da' & (") F (") sin (1),0)2")
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+2 [ da&,(z) F(x)sin (1),7))
X /_x dz' &, (') F (2') cos (Tn/|$/>} (A12)

more suitable for a numerical evaluation. Note, that if &, (z) is
constant it can be drawn out of the integrals and mfn n) Can be
evaluated analytically.
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