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We present a numerical method to simulate the third order Kerr effect in wavelength scale
dielectric structures. This is done by extending the recently introduced complex Jacobi It-
eration method. This method solves the Helmholtz equation in a discrete finite simulation
space by an iterative proces. This technique refines the field values during each itera-
tion step, until a desired accuracy is achieved. Adjustment of the discrete field operators
allows the use of the total field/scattered field formalism and PMLs as absorbing bound-
aries. Extending the iterative process with an extra calculation step allows simulating
materials with the non-linear third order Kerr effect.

1 Introduction
The instantaneous Kerr non-linear effect shows a large potential to achieve all-optical
signal processing. It can be modelled as an intensity dependent refractive index change
which typically requires high intensities. These high intensities can be achieved by the
increased confinement of light in advanced dielectric structures, e.g. photonic crystals and
photonic wires. Modelling of these non-linear devices requires an accurate integration of
the Helmholtz equation.
The complex Jacobi method ([1]) integrates the Helmholtz equation. The found ampli-
tudes - in the frequency domain- are invariant in time, save a phase factor.
Our extensions to this method include the total field/scattered field (TFSF), perfectly
matched layers (PML) and Kerr based materials. PML ([4]) allows good absorption at
the boundaries. Injecting a field profile in the simulation area is achieved by an adjusted
TFSF. ([2]) Although the basic complex Jacobi method is a fully vectorial solver in 3
dimensions, the proposed extensions have only been tested for the scalar 2D Helmholtz
equation.

2 Linear complex Jacobi Method

(a) Simulation box with ’total field/scattered field’ as field
source and PMLs as absorbing boundary conditions.

(b) Interface at indexi′ between
scattered field - total field.

Figure 1: Simulation setup.



The basic complex Jacobi method [1] is an iterative method which only calculates the
fields at equidistant points. The derivatives in the Helmholtz equation are replaced by
central differences:

∂
∂x

ei, j ≡
ei+1, j −ei−1, j

2∆x

The fieldei, j is located at the point (i∆x, j∆y), i and j are integers,∆x is the discretization
step in x and y directions.
The complex Jacobi method refines the field-amplitudes with the following update equa-
tion until a desired accuracy for the Helmholtz equation has been achieved:
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The superscript n is the iteration step. The wavelength in free space isλ, ni, j is the position
dependent refractive index. The iteration process consists of repeatedly updating the fields
with this equation, firstly withα1, then withα2, until a desired accuracy is achieved.
Usingexp(− jωt) as convention for the time dependent phase factor of the invariant field
amplitudes results in the following optimal constants:α1 =

√
3− 1 j and α2 = −α∗

1.
Derivation of these optimal values forα1 andα2 can be found in the original paper [1].

3 Linear extensions: total field/scattered field formalism and PML
TFSF injects a desired wave in the simulation space, Fig.1(a). In the scattered field
region only the scattered field, i.e. the total field without the exciting field is calculated.
The calculation of an amplitude at the interface (locationi′, Fig. 1(b)) uses:
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Amplitudese(i′−1, j),source ande(i′, j),source are the amplitudes of the exciting wave at re-
spective positions (i′−1, j) and (i′, j). Substituting equation 2 in the update equation 1 in
order to calculateen

(i′−1, j),scatt anden
(i′, j),tot gives the required update equations.

With these adjusted update formulae it becomes possible to inject any desired field.
PML eliminates reflections at the boundaries of a finite simulation box.We use a PML
based on complex coordinate stretching [4].

δ2
xe =

1
sx

(
∂
∂x

1
sx

)
∂
∂x

e+
1
s2
x

∂2

∂x2e

=
1

sx,i

( 1
sx,i+1

− 1
sx,i−1

2∆x

)(
ei+1−ei−1

2∆x

)
+

1

s2
x,i

ei+1 +ei−1−2ei

∆x2

Forsx = 1.0 the previous formulae reduce to the classical Helmholtz equation. A complex
function sy for δy results in absorption in the y-direction. In our experience, optimal
absorption was achieved with linearly increasing PML fromsx = 1.0 to sx = 1.0+0.25j
over 30 grid-points.



(a) Two Bragg mirrors encapsulate a cavity. (λresonance= 1.56µm,na =
2.6, nb = 2.36. da = λresonance/4na, db = λresonance/4nband dcavity =
λresonance/2nb)

(b) Power Tranmission and Reflection for
the linear structure

(c) Comparison between EME en Complex
Jacobi, both linear as non-linear case.

Figure 2: Power Transmission and Reflection of 2(a)

4 Extending the iterative proces to simulate Kerr non-linearities
The implementation for the Kerr effect uses an extra update-step for the refractive index
after each iteration step. The instantaneous Kerr effect, modelled byn = nlin + n2|E|2,
results in: This results in:
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5 Comparison with non-linear eigenmode expansion
Comparison with eigenmode expansion (EME) has been done by simulating the one-
dimensional structure of figure 2(a). This structure basically is a cavity encapsulated by
two Bragg mirrors.
The central cavity causes a resonance peak in the middle of the bandgap. (Fig. 2(b))
A non-linear material in the central cavity causes a shift of the central resonance wave-
length to a higher wavelength. Figure 2(c) illustrates a good agreement between non-
linear eigenmode expansion (EME, [3]) and the non-linear complex Jacobi method (CJ).
The incoming plane wave has an amplitudee = 1V

m. The non-linear cavity usesn2 =
5×10−3m2

V2 , n2 as defined in formule 3.
EME uses an iterative proces for the non-linear sections. The recalculation of eigenmodes
in the non-linear sections quickly becomes a bottleneck for a large amount of non-linear
sections. CJ is very well suited for structures where the non-linearity is present in a large
portion of the simulation domain.



Figure 3: Injection of a gaussian field profile in a linear and non-linear medium. ( (a):
diffraction in linear medium, (b): soliton in non-linear medium)

6 Soliton in a non-linear Kerr-material
We have validated our extensions by simulating a soliton in non-linear space. In linear
space, the injection of a gaussian field profile by the total field/scattered field formalism
results in a diffraction pattern. Both effects can be seen in figure 3. The gaussian field

profile is described bye= 1.0e
x2

2∗0.252 V
µm. The material is described by the refractive index

n = 3.6 andn2 = 0.2m2

V2 .

7 Conclusion
Our extensions to the recently introduced complex Jacobi method allow the simulation
of 2D-components with Kerr-based materials in the frequency domain. Our proposed
extension to the complex Jacobi method is very well suited for structures where the non-
linearity is present in a large portion of the simulation domain.
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