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Design of Index-Coupled DFB Lasers with Reduced
Longitudinal Spatial Hole Burning

Geert Morthier and Roel Baets, Member, IEEE

Abstract—Methods for reducing or eliminating longitudinal
spatial hole burning in AR-coated, index-coupled DFB lasers
are discussed. It is shown that elimination of spatial hole burn-
ing in DFB lasers can be achieved by the introduction of well-
chosen variations of coupling strength and/or internal absorp-
tion in the longitudinal direction. Approximations for these
structures are modeled numerically and fabrication methods
for these approximate structures are suggested.

I. INTRODUCTION

PTICAL communication systems require dynamic

single-mode lasers with a narrow linewidth as trans-
mitters and DFB lasers seem to be the favorite candidate
among all laser types. Commonly used DFB lasers, when
properly designed, can exhibit a stable single-mode be-
havior up to high-power levels. Unfortunately, for such
lasers, which have a typical length of a few hundred mi-
crometers, a linewidth below 5 MHz is not easily
achieved. On the other hand, a lot of effort has been spent
to achieve laser-diode linewidths below 1 MHz {1}, which
would allow to increase the data transmission rates.

Two possible ways for reducing the linewidth of DFB
lasers are then the use of a larger coupling coefficient and
the introduction of longer lasers. However, it has been
found both experimentally [2] and theoretically [3] that
lasers with a large coupling coefficient and/or large lengths
often become multimode already at low or moderate power
levels. This deterioration in side-mode suppression is due
to longitudinal spatial hole burning (i.e., a nonuniform
carrier density resulting from a nonuniform power den-
sity) which causes a longitudinal variation of the Bragg
wavelength. This effect is generally more important in
lasers with a large coupling coefficient and/or a large
length. It can be noticed here that the presence of spatial
hole burning in DFB lasers also influences the FM-re-
sponse and may result in a less flat FM-response [4]. It
also results in intermodulation distortion [5] (an unwanted
effect in analog communication) and chirp. Furthermore,
longitudinal spatial hole burning sometimes results in an
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increase of the linewidth, even if side modes remain well
below threshold [6].

For this reason, special laser structures with reduced
spatial hole burning have been and are still intensively
investigated. Up to now, multiple-phase-shifted [7], 8]
or chirped-grating lasers [9] have been considered as the
best solution to this problem. It has also been shown re-
cently that the introduction of gain coupling may lead to
lasers with a high threshold gain difference and a reduced
spatial hole burning [10], but the fabrication of such la-
sers is very difficult. Index-coupled lasers with uniform
or nearly uniform optical power have been reported in [12]
and [13], where two very specific structures are dis-
cussed.

In this paper, we present a more general account of how
slow variations of the grating amplitude, the Bragg wave-
length and/or of the net gain allow to eliminate spatial
hole burning in index-coupled DFB lasers. In a first part,
it is outlined how the coupled-wave equations can be
transformed into equations from which structures with
perfectly uniform power can readily be derived. It is
shown that a theoretical laser structure with uniform power
can always be obtained by choosing two arbitrary func-
tions. A second part describes some of the more basic
solutions with uniform power. We end by presenting more
practical approximations of these structures, their numer-
ical modeling and some methods to fabricate them. New
structures with uniform power are added to the ones re-
ported in [12] and [13], while furthermore our analysis
allows interested readers to derive other structures with
uniform power.

II. THEORY

We restrict our analysis to index-coupled DFB lasers
with perfectly AR-coated facets in order to avoid compli-
cations arising from the uncertainty in the facet phases.
Our analysis can easily be extended to finite facet reflec-
tivities if the phases are known, but the uncertainty in the
phases makes it less interesting. Spatial hole burning ef-
fects are no longer present if the intracavity power is uni-
form in the longitudinat direction z. The intracavity field
can be expressed in this case as

E(@@) = R+(Z)e~j50(:): + R‘(Z)ejﬂo(:): 1)

where B84(z) = 7/A(z) represents the Bragg number and
A(z) is the grating period, assumed to be slowly varying
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over one wavelength. The slowly varying amplitudes R*
and R~ of the forward and backward propagating waves
obey the coupled-wave equations [11]

drR* . " _
& + [jAB, — ABIR™ = k(DR (2 (2a)
dR” . - * +
d—z — [jAB, — ABIR™ = k()R (). (2b)

The Bragg deviation AB,(z) and the net amplitude gain
AB;(z) are also assumed to be slowly varying functions of
z. Such variations can take into account a possible varia-
tion of the grating period, a variation of the internal ab-
sorption or more generally any variation in the composi-
tion of the passive layers. The z dependence of the
coupling coefficients incorporates, e.g., a possible varia-
tion of the grating amplitude.

It can easily be shown that the coupled-wave equations,
which are usually derived for a longitudinally invariant
waveguide geometry and a perfectly periodic grating, still
hold for slowly varying functions AB,(z), AB;(z), and
krg(2). One can derive a few relations that have to be ful-
filled when a uniform power density is to be obtained. To
this end, we introduce amplitudes and phases for the com-
plex quantities kzg, R*, and R~

R™ = rtel?’ (3a)
R =r"e¥ (3b)
[97: 2 Kej%( (3C)

where r*, r™, 0%, ¢, k, and ¢, are all real functions of
Z. ¢,(2) can be assumed to be piecewise constant, with
changes in ¢, occurring only at points where a phase shift
in the grating is present. Furthermore, the perfect AR-
coating of the facets allows to take ¢, = O at z = 0.

The coupled-wave equations can be transformed into

dar
AT =l cos et et — 0T ()
dr— - + — +
_EZ_ + ABir~ = lk|rtcos (o, + ¢ — ") (4b)
de* roo. _
i TAB =kl osin (e, + oo —¢") (4¢)
Z r
de™ rt _
& AB, = —lk| —=sin (g, + ¢ — ¢"). (4d)
Z r

Complete elimination of spatial hole burning is possi-
ble only if a variable coupling constant and/or if a vari-
able gain/loss is allowed. This can easily be shown the-
oretically with the help of the coupled-wave equations.
Multiplication of (4a) with r™, of (4b) with r~ and ad-
dition of both resulting equations gives an equation for
the z variation of the optical power (r*) + (r~ »*, from
which it follows that a uniform power requires the follow-
ing relation:

r )y =@

20| cos (p, + ¢~ — @) = AB; P ®
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The denominator on the r.h.s. of (5) approaches infinity
if one or both facets are perfectly AR-coated. The require-
ment can then only be fulfilled if |« (z)| approaches infin-
ity as well or if AB;(z) vanishes at this facet. The case
with AB; (z) being identically zero is not really of interest
and nor is the case with |« (z)| being identically infinite.
Both cases actually correspond with lasers with zero effi-
ciency (i.e., no output power can be extracted).

Structures with uniform optical power can be derived
after transformation of the coupled-wave equations in the
following way. We first note that the perfect AR-coating
of the facets and the requirement of a uniform power can
be expressed by the following relations:

r+(0) =r (L) =0. (6a)
r'@lf +r @F =1 (6b)

The power is normalized here. A first useful equation can
now be derived by multiplication of (4a) with r*, multi-
plication of (4b) with r~, and subtraction of both equa-
tions:

dor*y der”)

- (r)Y? = = + 288,07 (T
& 2A8,(r™) & Br ). (D
Taking into account the relation (6b) readily gives
d(r+)2
— = Af; 8
& Bi @
and integration of this last equation gives
L
SO ABi(z) dz = 1. )

The power of forward and backward propagating waves
is then found to be
L

(r*y = SO AB@) dz's () = S AB(') dz'.
(10)

Substitution of these functions into (5) shows that the
right-hand side is completely determined. Equation (5) al-
lows to determine the required coupling coefficient, pro-
vided the phase difference is known. An equation for this
phase difference can be derived from (4c) and (4d)

dle~ —¢")

- 24
& B,

[1—=20r*)] _ N
TR igley + o ).

It must be noticed that, due to the AR-coating of the fac-
ets, only this phase difference has a physical meaning.
The phase ¢, (z) can be considered as a stepwise constant
function. Continuous changes in this phase can be in-
cluded in AQB,(z) since they can also be regarded as
changes in the grating period. In fact, phase jumps as in
phase-shifted lasers could also be included in AB,(z) as
Dirac functions.

= —AB (1)
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Several structures with a uniform power density can
now be derived from (8)-(11), just by choosing appropri-
ate functions for AB;(z2), k(z), and AB,(z). Two of these
functions, e.g., AB;(z) and AB,(z), can be chosen freely.
It can be seen however that (11) is easier to solve if A, (z)
is replaced by another function

f@

46 = s (o + ¢~ —¢7)’
y=sin(e, +¢ —¢) (12a)
yielding for (4.3.8)
dy -2
&z + ABi(2) ) y = 2f@. (12b)

The last equation is a first-order linear differential equa-
tion, which, for a given f, is easily solved. Hence, by
choosing functions for f (z) and AB;(z), one can determine
the fields and the phases. The required variations of x and
AB, then follow from (5) and (12a).

III. ExAcT SOLUTIONS
A. Solutions with Constant AB;
For this case, one readily finds from (9) and (10)
AB;i(z) = 1/L and
rt@) = vz/L, r (@ =1 - z/L.

The power of forward and backward propagating beams
varies linearly in the longitudinal direction. A simple so-
lution of (11) is then

(13)

tg(p, + ¢~ — @) = c, with ¢ an arbitrary real constant

(-2

AB,(2) = 7 o\ c.
4L7<1 - i>
L L

The « (z)-function can be derived from (5). It follows that
a phase shift of 7 is needed at z = L/2 in order to keep
|k(z)| positive and one finds for «(2)

=

K(z)=ﬁ-—-——
i,z
i(-3)

The variation of AB, can practically result from a varia-
tion in, e.g., the composition of the cladding layers (al-
though usually this also implies a small variation of «;,,)
or the grating period. An interesting special case rises
when c is chosen zero. Both AB; and AQ, are then constant
and the solution corresponds to a uniform waveguide ge-
ometry, where the amplitude of the grating varies in the
longitudinal direction [13]. Lasing occurs at the Bragg
wavelength in this case.

(14)

1+ & (15)
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A ABik

Fig. |. The functions AB; . AB,. and |«| for the structure described by (13)-
(15);forc =0,¢c=1,¢c=2,and c = 3.

The functions AB,(z), AB;(z), and |k (z)| are displayed
in Fig. 1 for different values of the parameter ¢. Both
AB,(z) and |k(2)| increase with increasing values of ¢,
which is not surprising since an increase of the Bragg de-
viation (or of the value of ¢) results in a weakening of the
distributed reflections and must be compensated by an in-
crease of the required coupling coefficient. The low value
of |k (z)| in the central region of the laser prevents a power
concentration in this region. There is little reflection in
this region and the longitudinal variation of the power of
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forward and backward propagating waves seems to have
its origin in stimulated emission there. This stimulated
emission would cause a power concentration near the fac-
ets (as in Fabry-Perot lasers), which, however, is pre-
vented by the growing reflection as |« (z)| increases.

B. Solutions With Variable AB;

To remove the singularity in the «(z) function, one can
try a solution of the form

AB@) ~ rT@r (. (16)
The solutions are
F @ = sin <(2n ﬂZLLl)‘lrz>;
r~(2) = cos (Q—";T”’E> (17a)
A8 = @n 2+L1)7r “in <(2n +Ll)7rz> (17b)

with n an integer. From (11), one can see that again a
solution with AB,(z) = O exists. Again, a phase shift of
mat z = L/2 is required to keep |k (z)| positive and one

finds
q Q2n + =z
— )

This structure with n = 0 has been reported also in liter-
ature [12]. It must be noticed once more that the variation
of AB; (which can be implemented as a variation of the
absorption or as a variation of the gain) will often be ac-
companied by a variation of A8, . This is the case when a
variable composition of the passive layers (i.e., a variable
loss in the passive layers) or a nonuniform injection is
applied. The variations of A8, should then be restricted
or compensated for (e.g., by an appropriate variation of
the grating period).

The functions AB,(z), AB;(z), and |k (z)| are depicted
in Fig. 2 forn = 0 and n = 1. For the case n = 0, we
can again argue that the low |«|-value near z = L/2 pre-
vents a power concentration in the center of the laser. The
concentration of power near the facets on the other hand
is now anticipated by both the increase of |« (z)| and the
decrease of AB;(z) (i.e., the net stimulated emission rate
is reduced and the reflections become stronger).

Other structures, for which the variation of AB; and of
r* and r~ is nonetheless again given by (17), can be de-
rived after substitution of fin (12b) by

k
fo) = C[Sin <M>] cos (M) (19)

_ 2n + D«

*@) 2L

(13)

L L

with ¢ being an arbitrary real constant and k an arbitrary
integer. The solution of (12b) for this choice of f(z) be-
comes

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 9, NO. 10, OCTOBER 1991

5+ ABL

z /L
19 api
54
0
-5
-t T T T T T ) T T T 1
0 1 2 3 4 S 8 ? 8 9 1
z /L
S IxiL

T T T T
{ 2 3 & S 3 ? 8 3 1

z /L

Fig. 2. The functions AB3;, AB,, and |«| for the structure described by (17b)
and (18); forn = 0and n = 1.

, { C/(@n + Dnz J“‘
Cisin | — 4“L

on + Dk + /L o

y(@) =

2cL

o r Dkt r ! 20)

The last requirement thereby follows from (12a) (the co-
sine must have an amplitude below 1). From y and f, the
Bragg deviation can be determined via (12a). It is, how-
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ever, not possible to determine the sign of cos (¢, + ¢
— %) from (20). Both the + and — sign, as well as
changes of the sign along the longitudinal axis are prin-
cipally allowed. It must nevertheless be assured that the
value of |« (z)| remains positive (e.g., by including phase
shifts ¢,). For the case @ = 1 and n = 0, one finds the

k() and AB,(2)
.
w0 (%))

AB(2) = £ ; =
\[1 + {sin <E>} . [sin <7_r§>j|
L L
(21a)
T 1 .
Ix(z)| - ﬂ 2 2%
1+ I:sin <E>} + -+ {sin (Eﬂ
'\j L L
(21b)

The cases with k = 0 and k = 1 are of most interest. For
k = 0, one finds a uniform «(= w /2 L) and lasing at the
average Bragg wavelength if AB,(z) is chosen as

AB.(2) =% for 0<z=<1L/2

and

AB(2) = —% forL/2<z=<L 22)
and if a \/4 phase shift is introduced at z = L/2. For k
= 1, one finds that AB, and AB; vary in a similar way
along the longitudinal axis, while the variation of « is

rather small.

AB () = 2200 (23a)
1+ {sin ("—Zﬂ
L/
1
|k(2)| = i (23b)

[ (B

It must be emphasized that the previous solutions are
not necessarily the modes with the lowest threshold gain
(current), nor has it been proven that the special structures
are single mode. Only when the uniform power solution
is the main and only mode will there be an absence of
spatial hole burning effects in the laser behavior. This can
be expected for the solutions lasing at the average Bragg
wavelength. The solutions with variable AS;, especially
the cases where n # 0, seem to be higher order modes
which might not be the main mode.

The variations of |«|, AS;, and AB, are shown in Fig.
3, respectively, Fig. 4 for the solutions (22), respectively
(23). For these solutions, the values of {«(z)] are less small
near z = L /2, but the distributed reflections there are sup-
pressed by the large Bragg deviation. The Bragg deviation
decreases near the facets for the solution (23). This results
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Fig. 3. The functions AB;, AB,, and |« for the structure described by (17b)
with n = 0 and (22).

in increased reflections, which, together with the reduc-
tion of the net stimulated emission, once more prevent the
power from concentrating near the facets.

Many other solutions could still be found by choosing
appropriate functions for f(z) and AB;(z). For the case of
a uniform AB;, e.g., one can also find solutions of (12b)
if f(z) is chosen as

o= (=550 -2

« a positive real number. 24)
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Fig. 4. The function AB;, AB,. and |«| for the structure described by (17b)
with n = 0 and (23).

For AB;(z), one can take other functions which vanish at
z = 0 and z = L (so that the singularities in x(z) disap-

pear), e.g.,
o= (- (3]

A further exploration of possible structures with uni-
form power is left to the creativity of the interested reader.
It is indeed not excluded that more interesting solutions
exist. We also note that other solutions may be more dif-

(25)
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ficult to obtain from a mathematical point of view, but
may be easier to fabricate. However, we also believe that
most other solutions will be based on a reduction of the
distributed feedback (e.g., a large Bragg deviation or a
small coupling coefficient) in the central part of the laser
and a reduction of the net stimulated emission or an en-
hancement of the distributed feedback near the laser fac-
ets. For example, for the choice (25), one can derive so-
lutions that are similar (but with rational instead of
trigonometric functions) to the solutions corresponding
with (17b).

IV. APPROXIMATIONS AND SIMULATIONS

The previous exact solutions are probably very hard to
realize in practice. We therefore carried out numerical
simulations of some approximate structures that can be
derived from the exact solutions. The numerical simula-
tions are carried out with the help of the laser-diode sim-
ulator CLADISS, a laser model that can handle the anal-
ysis of most types of multisection lasers.

A. Solutions with Constant A,

For ¢ = 0, one finds a laser with a grating, the ampli-
tude of which varies in the longitudinal direction [13].
The «(z) variation can then, e.g., be approximated by a
linear, a cosine or a stepwise constant function. As a mat-
ter of fact, the function can be approximated to any degree
if gratings are written by e-beam lithography. One can
either vary the actual grating amplitude or the duty cycle
of the grating [13]. A stepwise constant approximation
has been analyzed in [13]. The approximation described
there already results in an extremely uniform optical
power, with variations that are restricted to 5%. For the
threshold gain difference AgL, one finds the value 0.17
and therefore, a stable single-mode behavior should be
observed for this structure.

A second approximation can be formed by the double
exposure of a photoresist to form two holographic inter-
ference patterns of slightly different periods A, and A,
({14], [15]). This results in a cosine variation of k. How-
ever, the variation of the coupling coefficient will in gen-
eral be accompanied by a variation of the effective refrac-
tive index (and of the Bragg deviation) if the last method
is used [13]. The relation between the variation of the
coupling coefficient and that of the refractive index de-
pends on the lithography and etching process. We have
shown before [13] that the variation of the optical power
is still restricted to about 10% and that a good mode re-
jection can still be expected even if a realistic longitudinal
variation of the refractive index is present.

A last approximation, worthwhile mentioning, is a
stepwise constant approximation with « being constant in
the outer sections and zero (i.e., no grating) in the central
section. One must thereby assure that the w-phase shift
between both gratings near the facets is still present. One
possibility is to fabricate a A /4-shifted grating and to re-
move the central part of it afterwards.
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B. Solutions With Variable AB;

The structures for which A@; varies in the longitudinal
direction, but where AB, must remain constant seem to be
of purely theoretical interest. Indeed, it is not possible to
produce variations in the gain or the absorption without
having an additional variation in the effective refractive
index, while, on the other hand, the compensation of such
AB, variations with the help of grating period variations
complicates the fabrication to a large degree.

For the structure described by (17) and (18) with n =
0 however, one could speculate that the variation of « (if
produced by means of the double exposure technique) and
the variation of AB; will each be accompanied by A8, vari-
ations that cancel each other. The variation of the power
for a stepwise constant approximation of (17) and (18)
(with eight sections of 37.5 um) is shown in Fig. 5 for a
300-um-long laser. We further remark that this structure
(i.e., the stepwise constant approximation) exhibits a high
AgL-value of +0.46.

The solution, described by (22), consists of a variable
AB;, two different grating periods and a constant «. The
variation of the optical power for a stepwise constant ap-
proximation (again with eight sections of 37.5 um) for the
absorption is shown in Fig. 6 for a 300-um-long laser.
The grating periods have been chosen as A; = 241.3 nm
and A, = 240.9 nm. The value of AgL now is given by
0.74. One can remark that the power variations in both
Figs. 5 and 6 are restricted to 5%.

Two simple structures can further be obtained from ap-
proximations of (22), respectively (23). For the case (22),
e.g., one can approximate Af;(z) by a constant and divide
the laser into two halfs with different grating periods, and
separated by a \ /4-shift. We have modeled such a 300-
pm-long laser with grating periods A; = 241.3 nm and
A, = 240.9 nm. For the uniform AB;, one finds an opti-
mum kL-value of 1.75 (instead of = /2). Fig. 7 depicts
the longitudinal variation of the power. A value of 0.66
was found for AgL.

The solution (23) can be fabricated by introducing a
stepwise (or other) variation of AS;, which is accom-
panied by a AB,(z) ~ +3AB;(z) and by approximating
x(z) by a constant. In practice, variations in the absorp-
tion (or in the composition of the cladding layers) are in-
deed accompanied by variations of the refractive index of
this order of magnitude. If the variation of A@; is imple-
mented as, e.g., a nonuniform injection, one has AB,(2)
= —adAB;(z), with o being the linewidth enhancement
factor. By using proper materials and/or by applying de-
tuning, a value of +3 can be achieved for a. Another
method of achieving the required variations in both A,
and AB, is by varying the width and/or the thickness of
the active layer or the stripe width. Fig. 8 shows simu-
lation results for a 300-um-long structure, that is a step-
wise constant approximation (with five steps) of the re-
quired ApB;-function (implemented as an absorption
variation) and for which A3, = —3Ag;. The uniform
value of L has been optimized and is thus different from
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7/2. The optimum value was found to be kL = 1.455.
The power variations are again restricted to 5% and a AgL
value of 0.22 is achieved.

Similar solutions can be found fora =4, 5, -+ - ; e.g.,
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the variations of x and AB; have been neglected (kL = 1.6).

starting from the functions (21) with k = 2, 3,
However, the z dependence of the denominator in (21)
becomes more important in this case and if a constant |«|
were applied, the power would be less uniform. Further-
more, by neglecting also the longitudinal variation of AS;,
one arrives at chirped grating lasers. The variations of the
optical power are now larger then for the previous struc-
tures, but they are still smaller than for ordinary or phase-
shifted DFB lasers. Fig. 9 shows the longitudinal varia-
tion of the power for a 300-um-long laser where AS,(2)
is a stepwise constant approximation (with five steps) of
the function (23a), while k and Af; are constant along the
laser axis. The optimum value of «L is found to be 1.6,
yielding power variations that are restricted to 10% and a
AgL-value of 0.25.

V. CONCLUSION

A number of new DFB-laser structures with both re-
duced longitudinal spatial hole burning and a large thresh-
old gain difference have been discussed. It has been shown
that spatial hole burning can be completely eliminated by
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the introduction of a longitudinally variable coupling coef-
ficient and/or net gain. Several realistic devices, which
can be relatively easily fabricated and in which the spatial
hole burning is relatively small, have been modeled nu-
merically.

The reduction of spatial hole burning often requires that
the distributed feedback is weak and that the stimulated
emission is large in the central laser region and that strong
feedback and small stimulated emission exist near the fac-
ets. As the distributed feedback increases with increasing
coupling coefficient and with decreasing Bragg deviation,
the above described variations of x, AG;, and A@, are eas-
ily understood. With these arguments, one can also un-
derstand why nonuniform injection or grating period vari-
ations are capable of eliminating spatial hole burning
effects to some extent.
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