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We present an accurate and efficient method of modeling second-harmonic generation in two-dimensional
structures by use of eigenmode expansion. By using the undepleted-pump approximation we uncouple the cal-
culations for the fundamental and second harmonic. Expansion of the field in eigenmodes gives rise to a linear
matrix formalism. The method includes reflections and is especially suited for periodic structures. Several ex-
amples, including a two-dimensional photonic-crystal-cavity device, are studied. © 2005 Optical Society of

America
OCIS codes: 190.2620, 190.4420, 230.4320.

1. INTRODUCTION

In future all-optical wavelength-division multiplexing
networks, nonlinearities will necessarily play an impor-
tant role in switches or wavelength converters. One of the
simplest schemes for the latter is second-harmonic gen-
eration (SHG). To design efficient, integrated SHG compo-
nents new numerical tools are needed.

Many studies of SHG examine the plane-wave or one-
dimensional situation, where analytical insight can be
gained into the processes in periodic structures or devices
doped with a defect.? Most of the calculation methods
therefore focus on a single-mode approach. The situation
in two dimensions is less explored.>’ Here transverse ef-
fects need to be addressed. In high-contrast waveguides
with air slits, for example, radiation losses must be
controlled.? Interplay between different transverse modes
in parallel waveguides can increase SHG because of
phase matching.4 Photonic-crystal waveguide modes can
also be examined for SHG opportunities.5

The aim of this paper is to introduce an extension to
the eigenmode expansion method for SHG in two-
dimensional dielectric structures. The proposed method is
fully vectorial and can handle radiation losses. We apply
the undepleted-pump approximation to construct a linear
matrix formalism. With this formalism the second har-
monic is calculated in one run. The method is especially
efficient for periodic structures, because data can be re-
used.

We describe the simulation method in Section 2. After a
short overview of the linear eigenmode method, the intro-
duction of the SHG extension follows. Validation of the al-
gorithm is provided by a waveguide example in Section 3
and a transversely periodic structure in Section 4. A more
advanced photonic-crystal-cavity device is discussed in
Section 5.
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2. MODELING TECHNIQUE

A. Linear Mode Expansion

In the linear mode expansion method one chooses a main
propagation direction and divides the structure into sec-
tions invariant along this direction. An example of a
simple structure with three parts is shown in Fig. 1. The
forward propagating field in such an invariant section can
be described as a superposition of eigenmodes:

N
E(r) = D, Flexp(-jB2)E(ry) = >, FE(r),
i=1 i

H(r)= > Fiexp(-j2)H r) = X FHr), (1)

with r; the transverse component of r. N is the number of
modes included in the calculations. Similar expressions
can be derived for the backward-propagating field with
mode amplitudes B;. The mode profiles E; and H; and
their corresponding propagation constants j3; are deter-
mined from the transversal index profile. The eigenmodes
of a section are solutions of the following eigenvalue equa-
tion:

V’E + k’E = B°E, (2)
with V% the transverse Laplacian and & the wave number.

These solutions form an orthogonal set. They can be nor-
malized, and in our formalism this is expressed as

f (E; X H)) -u.dl = &, (3)
t

with u, the unit vector along z, &;; the Kronecker delta,
and integration along the transverse direction. We denote
this integral as (E;|H ), where we understand that only
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Fig. 1. Structure with three invariant sections along z. Mode
amplitude vectors at input and output are indicated.

the transverse components are needed. Finally, after cal-
culation of the modes, the field in a section can be reduced
to a vector of complex mode amplitudes [F,B].

To combine different sections the well-known mode-
matching technique is used. This technique imposes con-
tinuity of the tangential total field components to infer
transmission and reflection matrices for the mode ampli-
tudes on the interface between two sections. In the end
we combine these interface matrices with the propagation
constants to derive a scattering matrix S for the total
structure. The behavior of the structure in Fig. 1 is thus
described by

FZ Fl T12 R21 Fl
=S- = . 4
[BJ [BZ] [Rm sz [BJ’ @)

with [F;,Bs] the input and [Fy,B;] the output mode am-
plitude vectors. More information regarding the imple-

mentation of the linear mode expansion method can be
found in Ref. 8.

B. Extension for Second-Harmonic Generation

Here we derive how this matrix formalism changes if we
include SHG. Note that we have already extended eigen-
mode expansion for the Kerr nonlinearity,” which high-
lights the versatility of this scheme. The SHG method is
an extension of a plane-wave formalism combined with
the eigenmode method.’® We start from the adjusted
Hembholtz equations in the case of SHG:!

V2E, + k.E, = - o’ py2d yEs ., (5)

V2Ey,, + k3,Eo, = — (20)*uo€pdnE>, (6)

with E, and E,, the complex fields of the fundamental
and second harmonic, respectively. V2 is the total Laplac-
ian, and %k, and kg, denote the appropriate wave num-
bers.

In the undepleted-pump approximation we ignore the
right-hand side of Eq. (5). With this approximation we can
linearly solve the fundamental fields with the methods of
Subsection 2.A.'2 Note that a high pump depletion is sel-
dom reached in wavelength-scale integrated structures.

The formalism is presented here for generation from
TM to TM (one E component of which is out-of-plane) with
a single nonlinear polarization component along the out-
of-plane direction y. However, the adaptation to other po-
larizations is straightforward. Indeed, from the vectorial
Helmholtz equation
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VZEs, + k5, B, = — (20)*1oPy, (7

with P, the nonlinear polarization vector, we conclude
that Py, and Py, couple to the TE polarization, whereas
P, couples to the TM polarization. This means we have
to consider only scalar Helmholtz equations for the appro-
priate electric field components, as in Eq. (6). The polar-
izations remain independent. The exact expression for the
right-hand side of Eq. (6) depends on the polarization of
the fundamental and the nonlinearity tensor. Changing
these terms results only in different components being
used for the mode overlap integrals, which will become
clear below. We employ only one term on the righthand
side of Eq. (6) because extra terms are managed by means
of superposition of the individual contributions.

To solve Eq. (6) in an invariant section we write the
fields as a sum of eigenmodes:

E,= > Alexp(-jB,2)E.;,
i

Ep, = 2 C/(2)exp(=jBsu2)Esu; = 2 Ci@) B (8)

We assume that only copropagating modes interact non-
linearly, because of phase mismatch; therefore we can ig-
nore the modes propagating in the other direction for the
moment. Note the z dependence of the mode amplitudes
C/, which indicates the possibility of generation. In the
linear case these amplitudes are constant in a section.
The constant amplitudes A; are provided by the first lin-
ear calculation. Substituting Eqgs. (8) into Eq. (6) we get a
second-order differential equation. The derivatives of the
mode profiles can be eliminated with Eq. (2). We ignore
the second-order derivatives of the envelopes C;(z). The
resulting relation contains sums over modes. We can se-
lect one second-harmonic mode by using the orthonormal-
ity of Eq. (3). Performing this operation (.|Hy, ;) results in
the first-order differential equation

dc; exp(jABz)
- == 27k AP ———(d 4 Ha, )
d‘Z k 2w,1
. ., exp(ABy,2)
- 4.]kgz AlAm—W<dnle,le,m|H2w,i>’
L,m 2w,1

9)

with AﬂkizﬁZw,i_2Bm,k7 Aﬁlmi=ﬁ2w,i_ﬁw,l_ﬁw,m’ and kO
=w/c. With X;,, we indicate Eﬁ'llEN 1- We write the
overlap integrals as

m=Il+
Oy = <dnlE?u,k|H2w,i>, (10)

Olmi = <dnlEm,lEm,m|H2m,i>~ (1 1)

Equation (9) can be integrated to
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exp(jABz) - 1

Ci(2) = C/(0) - 2k* >, Af? ki
k

B2w,iABri
exp(jAB;,,;z) — 1
—4k D A] r’n—mlolmi' (12)
Lm B2, iABimi

The terms on the right side of this equation are physically
clear. The first term represents the linear propagation.
The second and third terms describe SHG from one fun-
damental mode to one second-harmonic mode and from
two fundamental modes to one second-harmonic mode, re-
spectively. The integrals weigh the overlap of the mode
profiles, whereas the factors with AB incorporate the
modal phase-matching. Note that in the case of perfect
phase-matching, or AB=0, Eq. (9) can still be solved.
However, these expressions are not necessary in practice.
If one includes dispersion, exact phase-matching is sel-
dom encountered.

The previous analysis allows us to construct a matrix
formalism with the inclusion of modes propagating in
both directions. Note that we work here with the
unprimed mode amplitudes; see Eq. (8). For this conven-
tion Eq. (12) can easily be adapted with C/(z)
=C;(2)exp(jBo.i2). By inspecting Eq. (12) we can write the
bidirectional propagation of modes in an invariant section
as:

N

_{diag[exp(—jﬁmL)] 0 ] Fl}

B 0 diaglexp(-jBs,L)]| | B,
Ny

+ [wa}, (13)

with diag indicating a diagonal matrix and L the length
of the section. In the following we denote diag[exp(
—JB2s,)] as P(L). Positions of the vectors are the same as
in Fig 1, with the difference that Eq. (13) describes a
structure without interfaces. Ng, and Ny, are calculated
by Eq. (12) with input from the forward and backward
fundamental mode amplitudes, respectively.

We now have to implement interfaces in the algorithm.
For this purpose we divide the structure into pieces con-
sisting of an interface followed by a certain length of an
invariant section; see Fig. 2. The interface can be de-
scribed by a scatter matrix of the same form as in Eq. (4),
and the section by Eq. (13). Combining these two we eas-
ily get

F, | F, F,
—|— —
Bl B2 B3
«—|—— -«—

112 3

Fig. 2. Interface followed by an invariant section.
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P(L)Ty, P(L)R21P<L>} . {Fl]
R12 T21P(L) B3

[P(L)Rmewa}
+ .
T21wa

F;
B,

(14)

Note that the generated second harmonic is scattered by
the interfaces. In the same way as for the previous equa-
tion different chunks can be concatenated, which after
some algebra results in the same form for an entire struc-

ture:
F F,, Niot fiv
|: out:|=s‘|: :|+|: tot,f:|. (15)
Bout Bin Ntot,bw

The scatter matrix S is the same as in the linear case. The
N vectors immediately give the generated output if there
is no external second-harmonic input.

C. Discussion

The proposed algorithm has several characteristics of ef-
ficiency. First one evaluation of the analytical Eq. (12) is
enough to calculate the generation in an invariant section
of arbitrary length. There is no need to discretize in the
propagation direction, in contrast to the finite-difference-
time-domain or beam-propagation methods. One of the
main advantages of the linear mode expansion method is
thus conserved. Furthermore, for the overlap integrals
only the nonlinear sections have to be included. Often this
means integration has to be done over a limited transver-
sal part. Nowadays periodic structures are heavily inves-
tigated, and our method is especially suited for these de-
vices. Data such as mode profiles, propagation constants,
scatter matrices, and overlap integrals can be reused ef-
fectively.

Another characteristic is the flexibility of the coupling
scheme. It is possible to choose the subsets of fundamen-
tal and second-harmonic modes that couple nonlinearly.
This happens simply by neglecting the nonlinear terms in
Eq. (12) for the excluded modes. Because of phase mis-
match, low overlap, or the excitation specifics, many
structures can be modeled with only the lower modes con-
tributing nonlinearly. However, higher-order modes are
still included in the linear scattering to simulate rigor-
ously effects such as radiation losses.

To determine how many modes are necessary one needs
to increase the number of nonlinearly included modes un-
til convergence is reached. There is no general rule, and
the same method is used for linear mode expansion calcu-
lations. Note that we can drastically reduce the total
number of modes included in the eigenmode expansion by
employing perfectly-matched layer boundary conditions.®

Finally many devices can be understood by way of their
underlying modal behavior. Because the proposed method
has immediate acces to these data, it is very suitable for
interpretation of the structures. This is in contrast with
other methods that manipulate only the total fields.

3. WAVEGUIDE

We have checked the technique in the plane-wave limit
and found good agreement with previously reported re-
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Fig. 3. Geometry of the waveguide example.
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Fig. 4. Generated electric field in the center at the end of the
waveguide section, versus half the waveguide width. The light
curve is the result with one mode, the heavy curve, with multiple
modes.

sults in a layer structure.'® Because the method is an ex-
tension of a known plane-wave method, we focus instead
on a structure that shows the necessity of a multimode
approach to obtain more exact results. The proposed ex-
ample is a waveguide; see Fig. 3. The core indices are 3.0
and 3.1 for fundamental and second harmonic, respec-
tively, whereas the background is air. The waveguide has
length 1 um and we operate at A=1.55 um. We assume
nonlinear generation from TM to TM with coefficient d
=400 pm/V. The structure is excited with the fundamen-
tal ground mode, such that the electric field in the center
is 10° V/m.

We now vary the waveguide width and examine the
second-harmonic field at the center of the output position.
The calculations are done for one second-harmonic mode
and for multiple modes. A maximum of 40 modes is used.
Because of the short length the contributions of some ra-
diation modes are needed. Results are shown in Fig. 4.
Until a width of 0.132 um both curves agree, and this is
precisely where the waveguide becomes multimodal. At
0.8 um there are already seven guided modes, and the
field with multiple modes converges toward the plane-
wave value of 2.54 V/m.

One might expect that the single-mode calculation also
converges to the plane-wave case in the limit of broad
waveguides. However, in this limit all the modes become
plane-wavelike in the center, and their contributions are
governed by the overlap integral with the (square of the)
fundamental ground mode. An analysis with modes of a
waveguide with hard walls (zero field on the boundaries)
shows that the overlap integrals of the consecutive modes
behave as Ogg,0¢¢/5,-0¢o/35, .... Thus about five modes
are enough for accurate results. Clearly this example
shows that the interference of the many generated modes
has to be taken into account.
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4. TRANSVERSE GRATING

In this section we simulate a structure proposed in Ref. 4
and depicted in Fig. 5. It consists of a transversely peri-
odic array of waveguides with length d in air excited by a
TM plane wave. Because of the finite length d, reflections
and modes propagating in both directions have to be
taken into account.

The grating has a period A=0.65\ and the waveguides
have width w=0.09A with indices n,=3.346 and n,,
=3.539. We have to include only the box in dotted lines in
Fig. 5 for the calculations. Indeed, because of the TM ex-
citation and the symmetry of the structure we can use
perfect magnetic walls (dE/dx=0) for the upper and lower
boundaries. Furthermore, because the areas to the left
and right of the box are invariant along z, we may end the
calculations just outside the interfaces.

We compare the forward SHG of this device with the
case of bulk nonlinear material of the same thickness d in
Fig. 6. These results are comparable with Fig. 2 of Ref. 4,
where another method was used. The SHG curve is a re-
sult of the interplay among Fabry—Perot reflections,
phase matching, and modal field profiles. As already men-
tioned we have immediate acces to these modal data.
Moreover because there are, respectively, one and two
guided modes for fundamental and second harmonic, the
use of ten modes already provides accurate results. To
conclude this section we note that for the sweep over the
length d we have to calculate the overlap integrals only
once.

A
v

| | $0.007

Fig. 5. Transverse grating structure. Only the section in dotted
line is needed in the simulation because of symmetry.
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Fig. 6. Grating SHG intensity in the forward direction versus
length d, normalized with the fundamental wavelength \.
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5. PHOTONIC-CRYSTAL CAVITY

Now we study the photonic-crystal cavity device depicted
in Fig. 7. In combination with the third-order Kerr non-
linearity this structure gives rise to bistable switching.14
Here we exploit the cavity effects for SHG. The device
consists of a resonator mode in the center formed of a
larger rod evanescently coupled to two waveguides. The
left waveguide is used for input of the fundamental power.
On resonance the cavity is strongly excited, and all the
power is transmitted to the waveguide on the right. Off
resonance the power is reflected back to the left with neg-
ligible excitation of the defect mode. In Fig. 7 the upper
half shows the fundamental resonance, whereas the lower
half shows the second-harmonic field on resonance.

For this device to work in a SHG setting there are con-
ditions that have to be fulfilled for both the fundamental
and second harmonic: First a bandgap and a (preferably
single-mode) waveguide are necessary. Second if we de-
mand efficient cavity SHG, there have to be resonator
modes at both frequencies, preferably with good mode
profile overlap. We designed such a structure, although it
will prove difficult to find parameters in a real material
system.

The photonic crystal used is a square lattice of square
rods in air with period a and diameter d=0.5a. With in-
dices n,=3.5 and n,,=2.95 we can work in the first gap
for the fundamental, between 0.235 and 0.314(2mc/a),
and the second gap for the second harmonic, between
0.497 and 0.569(2mc/a).'® By decreasing the diameter of a
line of rods to 0.3a we create a single-mode waveguide for
both frequencies, with normalized fundamental frequency
in [0.265, 0.283]. A second-harmonic resonance mode at
g =0.55535(27c/a) is produced by a larger central rod
of diameter 0.7a. We tune a (broader) fundamental reso-
nance to 0.5w;° with a central rod index of 3.5743. Both
Lorentzian transmission profiles 7', and Ty, are shown in
Fig. 8 with

,y2

T(w) = (w_ wreS)2 + ,y2

(16)

They correspond to @ values of, respectively, @ ,=301 and
®2,=3239, with @=w"/2Yy.

For the SHG calculations we assume that only the
larger central rod is nonlinear, a good approximation as
the field is strongest there. Because the second-harmonic
defect mode is excited by the fundamental, and this mode

I A O I B A I I B A W A
1 T | T ™ 0
& & = ClaF i 1= ® [ ] M
-B—E—B——E—B—E]—E-Q-E—E—B—-B—B—E—E—
580 1 15 1 6 e 0
N o I 0 A A
N A 6 A

Fig. 7. Photonic crystal device geometry. The upper (lower) half
shows the electric field of the fundamental (second harmonic) at
resonance. Dipole and quadrupole modes are clear. Because of
high Q the field in the lower waveguide is barely visible.
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Fig. 8. Photonic crystal device results. The transmission of fun-
damental T, and second harmonic T, are shown, together with
the generated second-harmonic power P,,,, by curves. P,, is nor-
malized and all curves are plotted versus the fundamental w.
Values for T2T,,, are indicated by circles.

is equally coupled to both waveguides, the generated out-
going power to the left and the right is the same. This
power is plotted in Fig. 8. Because the outgoing power is
proportional to the energy of the second-harmonic mode
and the second harmonic is excited by the square of the
fundamental field, it results that the generation at reso-
nance is proportional to QiQM and the normalized SHG
power profile follows TszQw; see Fig 8. For these calcula-
tions, only 30 modes were used for both frequencies.
Moreover, if we allow the lowest ten of these modes to
couple nonlinearly, we already obtain accurate results.

6. CONCLUSIONS

We extended the eigenmode expansion method for rigor-
ous and efficient calculation of SHG in two-dimensional
structures. By use of the undepleted-pump approximation
we can describe the nonlinear sections with a linear ma-
trix formalism. As such no grid is required in the propa-
gation direction. A flexible coupling scheme, advanced
boundary conditions, and reuse of data in periodic struc-
tures enhance the efficiency. Simulations of a photonic-
crystal-cavity device demonstrate its facility for modeling
complex, wavelength-scale structures. In further work we
plan to examine the inclusion of pump depletion.
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