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Bloch modes and self-localized waveguides
in nonlinear photonic crystals
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We present a modeling technique that uses eigenmode expansion to simulate infinite periodic structures with
Kerr nonlinearity. Using a unit cell with Bloch boundary conditions, our iterative algorithm efficiently cal-
culates self-consistent two-dimensional Bloch modes. We show how it can be used to study the band structure
of nonlinear photonic crystals and to gain rapid insight in the operation of devices. Furthermore, we present
nonlinear transversely localized guided modes, which are kinds of gap solitons or intrinsic localized modes,
that induce their own waveguide through a photonic crystal without linear defects. © 2005 Optical Society of
America
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1. INTRODUCTION
Photonic crystals with nonlinear materials are subjects of
active research. The Kerr effect, for example, makes it
possible to dynamically tune the strong localization and
dispersion effects in these metamaterials. Moreover, not
only is it possible to adjust the linear properties but there
are also new effects, such as localized nonlinear modes
and gap solitons, to be studied.1–8

Along with theoretical and experimental progress,
there is a need for efficient numerical tools with which to
explore nonlinear devices and phenomena. We recently
expanded the mode expansion technique for two-
dimensional Kerr nonlinear structures of finite size.9

Here we show how this algorithm can be adapted to
model the self-consistent Bloch waves of infinite periodic
structures. In this way we can observe the shifting of
band structures with increasing amplitude. This ability
is useful for device design, for which it is important to de-
termine rapidly which frequencies and input intensities
can couple to a guided Bloch mode.

As an application of our method we demonstrate the ex-
istence of self-localized waveguides in a two-dimensional
photonic crystal without linear defects. These are Bloch
modes with frequency in the bandgap, which are confined
in the transverse direction because of the gap but propa-
gate longitudinally as they carve their own guides. The
self-localized waveguides can be seen as a variant of gap
solitons7,8 because they overcome the longitudinal band-
gap. But they can also be thought of as kinds of intrinsic
localized modes,1,2 which are localized structures in dis-
crete nonlinear lattices without defects, e.g. discrete
solitons in waveguide arrays.5,6

We describe our modeling technique in Section 2. Ap-
plications of band structure calculations are shown in
Section 3. In Section 4 we present self-localized
waveguides and discuss several of their properties.
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2. MODELING TECHNIQUE
In this section we give an overview of the simulation
method. We begin by introducing the linear mode expan-
sion technique, because this is the basis of the nonlinear
calculations. Then we proceed with the algorithm to de-
scribe Kerr nonlinear materials. This algorithm can be
used for both finite and periodic structures; therefore we
point out the differences between them.

A. Linear Mode Expansion
In the linear mode expansion method one chooses a main
propagation direction and divides the structure into sec-
tions that are invariant along this direction. An example
of a simple structure with three parts is shown in Fig. 1.
The forward-propagating field in such an invariant sec-
tion can be described as a superposition of eigenmodes:

E~r! 5 (
i

AiEi~rt!exp~2jb iz !, (1)

H~r! 5 (
i

AiHi~rt!exp~2jb iz !, (2)

where rt is the transverse component of r. Similar ex-
pressions can be derived for the backward field. Mode
profiles Ei and Hi and their corresponding propagation
constants b i are determined from the transversal index
profile. Therefore, after calculation of the modes, the
field in a section is reduced to a vector of complex mode
amplitudes Ai .

To combine different sections we used the well-known
mode-matching technique. This technique imposes con-
tinuity of the tangential total field components to infer
transmission and reflection matrices for the mode ampli-
tudes on the interface between two sections. At the end
we combine these interface matrices with the propagation
constants to derive a scattering matrix for the total struc-
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ture. From this data we can obtain the fields throughout
the entire structure by matrix manipulations. More in-
formation regarding the implementation of the linear
mode expansion method can be found in Ref. 10.

B. Nonlinear Extension
To simulate instantaneous Kerr materials we use an it-
erative approach in combination with a spatial grid.
Such nonlinearity means that the refractive index is de-
pendent on the local field intensity I 5 uEu2:

n~r! 5 n0 1 n2I~r!, (3)

where n0 is the linear index and n2 is the Kerr coefficient.
To model this index change we divide the nonlinear ma-
terial into small rectangles. An example of such a grid is
shown in Fig. 2. Each rectangle is assigned its index
during each iteration. We can start by using the linear
index, an estimate, or a previously calculated index dis-
tribution. By performing a linear eigenmode calculation
as described above, we get the intensities at the center of
each rectangle.11 This intensity distribution is used with
Eq. (3) to update the index distribution. With the new
index distribution we can calculate the fields again. This
information provides us with another intensity distribu-
tion with which to update the indices, which completes
another iteration cycle. If, after a number of iterations,
the new index distribution is equal to the previous index
distribution within a certain tolerance, we have con-
verged to a solution of the full nonlinear problem.

The method is efficient because typically tens of eigen-
modes are sufficient for accurate and rigorous modeling.
In contrast, plane-wave techniques need hundreds or
thousands of plane waves to simulate large index con-
trasts and field discontinuities. Finite-difference time-
domain methods, however, have to calculate the entire
evolution of a pulse-like excitation through the dis-

Fig. 1. Simple structure with three invariant sections along z.

Fig. 2. Example of spatial discretization. The middle section is
considered nonlinear.
cretized structure, leading to large time and memory re-
quirements. We immediately get continuous-wave solu-
tions, however, and only the nonlinear sections need to be
discretized with a grid. Moreover, the modes and scatter-
ing matrices for linear subsections can be reused during
each iteration because these data are indeed intensity in-
dependent. With reasonable parameters, convergence is
reached in approximately ten iterations. Therefore all
the simulations in this paper take seconds or minutes to
complete on a modest workstation. We note that the
method is rigorous, as there are no approximations to the
Maxwell equations. Thus, in the limit of a fine grid and
an infinite number of modes, the solutions are exact. A
thorough description and study of the modeling method
for finite structures are presented in Ref. 9.

C. Finite and Periodic Structures
Here we discuss the differences in applying the iterative
method described for finite and periodic structures. For
finite devices the input mode amplitude vector is constant
during the calculations. We follow the evolution of the
total scattering matrix, each time imposing the same in-
put boundary condition.

For infinite periodic structures we describe the scatter-
ing behavior of a unit cell with reflection and transmis-
sion matrices in the following way:

F2 5 T12F1 1 R21B2 ,

B1 5 R12F1 1 T21B2 , (4)

where F and B denote mode amplitude vectors of forward-
and backward-propagating fields, respectively. Sub-
scripts 1 and 2 indicate left and right boundaries, respec-
tively. Then we impose Bloch boundary conditions and
rewrite Eqs. (4) as a generalized eigenvalue problem:

FT12 R21

0 I G F F1

qB1
G 5 qF I 0

R12 T21
G F F1

qB1
G , (5)

where I is the unity matrix, q 5 exp(ikBp), kB is the Bloch
propagation constant, and p is the period.12 From the set
of resulting eigenvalues we select the mode of interest.
This is normally the lowest-order value, as we are inter-
ested in lossless Bloch modes. The process of solving the
eigenvalue problem as described above is performed at
each iteration. However, because the unit cell is often
small, the calculations are rapid. Simulating a finite
structure with tens of periods, however, can be time con-
suming.

In contrast with the finite case, there is no input vector
that we can keep constant during iteration. Another nor-
malization parameter is needed to keep the calculations
at each step self-consistent. To this end we use an exci-
tation strength of the Bloch mode, which we define below.
After fixing this strength at the start, we rescale the lin-
ear Bloch modes of the subsequent calculations.

There are different ways to define this excitation
strength. We can use the flux of the Poynting vector
through a boundary:

P 5
1

2
E ~E3H* ! • dS, (6)
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which we apply in Section 4 below for the waveguide
modes, as P immediately delivers a parameter of interest
for waveguides. If one tries to calculate band-edge
modes, the previous definition is not effective, because the
flux approaches zero. Therefore, in these cases we keep
the electrical energy in a period constant:

Ue 5
e0

2
E n2IdV. (7)

A drawback here is the need to calculate an integral over
the spatial period. We employ this normalization in Sec-
tion 3 below.

In summary, by inspecting the guided Bloch waves we
can derive a band structure that depends on the power
flux or on the electrical energy of the corresponding mode.
With the method just described it is thus possible for us to
study efficiently in Section 3 below the tuning properties
of devices.

3. APPLICATIONS
A. Nonlinear Photonic Crystal
Figure 3 shows results for a square lattice of square rods
along the GX direction. The simulations in this paper

Fig. 3. Nonlinear photonic crystal. (a) Geometry: The rectan-
gular box shows the unit cell that was used, exploiting symmetry.
(b) Band structure: The solid curves show linear bands and
dashed curves present nonlinearly adjusted bands.
are for TM polarization, with the electric field parallel to
the rods, but the method can also handle TE polarization.
The rods have index 3.4, and n2 5 1 3 1025 m2/V2 in an
air background. The ratio of the sides of the rods to the
crystal period is 2r/a 5 0.25. The linear photonic crys-
tal has a TE gap at a/l 5 0.347–0.477. Figure 3 shows
the typical downshifting of the bands for positive n2 with
increasing energy Ue ; see Eq. (7). Similar calculations
have been performed.13–15 Applications of these band
shifts are reported, e.g., in Ref. 15.

B. Coupled-Cavity Waveguide
In this subsection we calculate the dispersion relation of
coupled-cavity waveguides in nonlinear photonic
crystals.16 These waveguides are formed by evanescent
coupling between neighboring resonator modes. In our
case we form the monopole modes by lowering the diam-
eter of a rod to 0.1a; see Fig. 4(a). The resonator spacing
is 3a, and the same crystal lattice and polarization are
used as previously. We consider that only the defect rod
is nonlinear, with n2 5 1 3 1025 m2/V2. This is a good
approximation, because the field in the resonator is stron-
gest in the center.

The dispersion relationship for a linear coupled-cavity
waveguide has a cosine form:

v 5 v0 1 Dv cos~kzp !, (8)

Fig. 4. Coupled-cavity waveguide. (a) Geometry: The rectan-
gular box shows the unit cell used. Period p 5 3a. (b) Band
structure: curves, linear bands with defect rod index nIcen;
filled circles and crosses, nonlinearly adjusted bands.
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where p is the period; here p 5 3a.16 v0 and Dv are de-
termined by the resonance frequency of the mode and the
nearest-neighbor overlap integrals. We retrieve this co-
sine form, as shown in Fig. 4(b). For the nonlinear bands
there is again a downward shift. As a reference we also
plot linear bands, determined with the mean nonlinear
index of the central rod for a fixed Ue . Indeed, the non-
linear calculations should overlap these linear results.

C. Limiter Device
Many periodic nonlinear devices are based on shifting
propagating modes in and out of the bandgap for various
intensities. To gain insight into these devices, studying
the infinite structure can rapidly provide information on
geometry, operational frequencies or intensities, without
the need for time-consuming simulations on a finite long
structure. We illustrate this shortest procedure by mod-
eling a recently proposed waveguide photonic crystal
limiter.17 Its geometry and results are shown in Fig. 5.
The same lattice as above is used but with a defect wave-
guide and larger nonlinear rods (D 5 0.4a, n2 5 1 3
3 1025 m2/V2) alongside every two subperiods.

Fig. 5. Photonic crystal limiter. (a) Geometry: defect wave-
guide with larger nonlinear rods alongside. The rectangular box
shows the unit cell used. (b) Waveguide bands: solid curves,
linear bands; dashed curves, nonlinearly adjusted bands. The
upper bands overlap. Period p 5 2a.
The band structure shows two waveguide bands within
the bandgap. Increasing the intensity shifts the lowest
defect band downward. The upper defect band is quite
insensitive to the nonlinearity. Field plots show indeed
that the fields in this band are concentrated in the
smaller linear rods along the waveguide, whereas in the
lower band the fields are strongest in the large nonlinear
rods. Thus, if we operate on top of the lowest waveguide
band, low amplitudes will give a high transmission. But,
as we increase the amplitude, our simulations indicate
that the guided Bloch mode disappears below the working
frequency, so we get limiting action.

4. SELF-LOCALIZED WAVEGUIDES
Waves with frequency within the bandgap are exponen-
tially dampened in a linear photonic crystal without de-
fects. However, with Kerr materials there are new ef-
fects to be studied, such as localized modes and gap
solitons. Many of these nonlinear phenomena can be de-
scribed from a linear point of view. For example, a spa-
tial soliton in a bulk medium is the linear guided mode of
the waveguide that it induces.18 From this idea we set
out to find self-localized waveguides in a nonlinear photo-
nic crystal, starting from a linear waveguide mode.

Figure 6 illustrates the waveguide modes. These are
confined in one direction by bandgap effects but propa-
gate in the other direction because the beam itself creates
a defect waveguide. The same lattice as above is used
but with a negative Kerr nonlinearity n2 5 21 m2/V2.
Note that we applied e(r) 5 e0 1 n2I(r) instead of Eq. (3)
for the calculations. These structures are a generaliza-
tion of the localized modes presented in Ref. 4 and belong
to the family of gap solitons. To our knowledge this is the
first presentation of rigorous data on these self-localized
waveguides. Modes confined in two directions have been
theoretically studied.3,7,8 However, in the research pre-
sented in Ref. 7 a low-index contrast method was used to
characterize moving or stationary gap solitons, whereas
in Ref. 3 stationary modes in high-index contrast were
considered. There is also a clear analogy with localized
entities in waveguide arrays, such as Bragg solitons or
discrete solitons, especially with the strongly localized
discrete solitons that involve only a few coupled
waveguides.6 However, an important difference is that
self-localized waveguides have to overcome a bandgap in
the longitudinal direction.

To model these modes we use the technique of Section 2
but start with a seed. We lower the index of a center rod
to create a linear defect waveguide. The linear calcula-
tion with this index gives an estimate of the needed flux
and a starting index distribution. If we iterate from this
distribution, with constant flux, and converge to a guided
Bloch mode, we have reached a self-localized waveguide.
After finding one mode we can change the frequency or
the flux slightly to iterate to new modes quickly and map
their properties.

In Fig. 6(a) the mode has one maximum on the rod in
the center; therefore we call these modes on site modes.
However we also found another type with two maxima of
opposite sign on adjacent rods; these are intersite modes.
A typical field profile of the intersite type is shown in Fig.
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6(b). These profiles are reminiscent of the types of local-
ized mode reported in other situations. Thus the exis-
tence of similar modes in other propagation directions or
geometries, e.g., airholes in material, is suggested.
Moreover, in analogy with discrete solitons, modes with
other topologies, e.g., flat-topped solitons, can be consid-
ered.

With our method it is possible to make the following ar-
guments about the stability of self-localized waveguides.
Because the method is iterative, it is possible to calculate
only modes that are stable to small perturbations. How-
ever, the boundary condition along the lower edge of the
unit cell (enclosed by unbroken rectangles in Fig. 6) de-
termines the symmetry of the solutions and of the pertur-
bations. From this we conclude that the on-site (inter-
site) modes are stable against symmetric (asymmetric) or
even (odd) perturbations. We can test stability against
other perturbations by applying Peierls–Nabarro poten-
tial ideas.2 According to this concept, intersite and on-
site modes with the same topology can be seen as con-
stituents of the same soliton. Assuming equal intensity,
the component with the highest energy will be unstable
and evolve into the stable component with the lowest en-

Fig. 6. Examples of the electric fields of two types of staggered
self-localized waveguide. The smaller rectangular boxes show
the unit cell that we used to find the mode. The larger rectan-
gular (dashed) boxes are used for the study of stability. The
mode is linearly propagated through a crystal with a refractive-
index distribution derived from the nonlinear calculation, which
is limited to the small rectangular box. Insets, electric-field pro-
files in a transversal cut through the rod centers. (a) On-site
mode with a/l 5 0.38 and P 5 1.2 3 10210 W/m. (b) Intersite
mode with a/l 5 0.41 and P 5 9 3 10210 W/m.
ergy. This qualitative picture gives insight not only into
stability but also into mobility and switching opportuni-
ties. If the soliton wants to move in the transversal di-
rection, it has to change between the on-site and the in-
tersite modes. The difference in energy determines the
Peierls–Nabarro barrier that has to be overcome to
change from one stable mode to the next via the unstable
intermediate mode. Thus if the energies are the same
the modes are expected to be mobile in the transverse di-
rection. Note that there is always propagation in the lon-
gitudinal direction.

We have calculated the energy of both types of self-
localized waveguide for frequencies throughout the gap.
Note that the two types have the same topology, that both
are staggered, and thus that the previous Peierls–
Nabarro ideas can be applied. For each wavelength we
simulated modes with kza/p ranging from ;0.4 (large P)
to 0.9 (small P), with the extra condition that the refrac-
tive indices remain larger than 1. These seem the most
stable modes numerically. Results are shown in Fig. 7.
We can see that, near the lower-frequency band edge, the
difference between the energies is negligible, which sug-
gests mobile modes. As the frequency increases, the en-
ergy difference becomes larger. Assuming a constant
power P, the on-site modes have the lowest energy, so
they are stable, whereas the intersite component is un-
stable. We numerically confirmed the previous state-
ment by performing calculations on the complete modes,
using the dashed rectangles in Fig. 6. In this rectangu-
lar box we can slightly perturb the indices of a rod and
start the iteration. This procedure injects the soliton
with eigenmodes of the symmetry that are not present in
the half-box simulations. For a frequency away from the
lower band edge, even a small change of 0.1% in the indi-
ces of an intersite center rod is enough to push the itera-
tion toward convergence on an on-site mode. The on-site
modes, however, are extremely robust.

Next we study the transverse width of the modes by
calculating the following simple deviation:

s 5 S (
i

di
2Ei

max/(
j

Ej
maxD 1/2

, (9)

Fig. 7. Energy Ue versus power P for self-localized waveguides
of different wavelengths. For values of a/l, o and i mean on-site
and intersite, respectively.
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where di is the distance from the center and Ei
max is the

maximum electric-field absolute value of rod i. This de-
viation versus maximum refractive-index change for the
on-site modes is shown in Fig. 8. For the intersite
waveguides the curves are parallel. At the low-frequency
gap edge we can see a strong broadening of the modes as
we decrease the power. Although the nonlinear index
change is lowest here, below 0.05 these modes lose the
strong discrete localization and instead get a more con-
tinuous character. In the gap, decreasing the wave-
length or the refractive-index change (or power P) leads to
narrower waveguides. However, these trends no longer
apply on the upper-frequency edge of the gap. We re-
mark that the modes in the gap have a deviation smaller
than 1.6, so these are indeed strongly localized modes. If
s is less than 1, the waveguides will appear tightly bound
on one center rod, as illustrated by the insets in Fig. 8.

The broad modes at the low bandgap edge are analo-
gous to the fundamental solitons in bulk nonlinear
materials.19 However, there are important differences.
First, the bandgap structure makes it possible to support
waveguides with a low refractive-index core. Solitons in
bulk material are guided in a self-induced high refractive-
index core by total internal reflection. Next, because of
the anisotropic and discrete lattice the stability and dy-
namic behavior will be different from those in the con-
tinuous counterpart, especially for modes localized about
a few periods. We have provided some insight into modal
stability; however, a full analysis and a dynamic treat-
ment are beyond the scope of the modeling method. We
note that the minimum nonlinear index change for the so-
lutions in the gap is theoretically high, near 0.3. How-
ever, it is clear that there are possibilities for optimiza-
tion.

5. CONCLUSIONS
We have presented an efficient method with which to
model band structures of two-dimensional devices with
Kerr nonlinear materials. The influence of nonlinearity
on guided Bloch waves has been shown in a perfect pho-
tonic crystal, in a coupled-cavity waveguide, and in a lim-
iting device. Efficiency stems from rapid convergence to
a solution and from the fact that only the nonlinear sec-
tions have to be discretized. Moreover, a few tens of
eigenmodes are sufficient for accurate modeling of these

Fig. 8. Width s versus maximum refractive-index change Dnmax
for on-site modes of various wavelengths a/l. Insets, electric-
field profiles for the three indicated points.
wavelength-scale high-index contrast structures. With
this technique we presented two types of self-localized
Bloch mode, which are variants of gap solitons, and stud-
ied properties such as stability and width. The two-
dimensional photonic crystal and the simulation method
can thus be used as a test case and a tool with which to
analyze new kinds of intrinsic localized modes.
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