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Theoretical Investigation of the Second-Order
Harmonic Distortion in the AM Response
of 1.55 um F-P and DFB Lasers

Geert Morthier, Frank Libbrecht, Klaus David, Patrick Vankwikelberge, and Roel G. Baets, Member, IEEE

Abstract—Numerical calculations of the second-order har-
monic distortion in the amplitude modulation-response of Fa-
bry-Perot and distributed feedback lasers are presented and
the influence of several nonlinearities, such as longitudinal spa-
tial hole burning, gain suppression, and relaxation oscillations
is considered in detail. Our analysis is valid for modulation fre-
quencies ranging from a few megahertz to well beyond the res-
onance frequency of the relaxation oscillation. The numerical
calculation of the distortion is based on the laser model CLAD-
ISS [1] and consists of an extended small signal solution (up to
second-order) of the set of coupled wave equations and the local
carrier density rate equations.

The distortion is investigated for Fabry-Perot lasers for
which the effects of spontaneous emission and gain suppression
can be clearly illustrated and for DFB lasers where the empha-
sis is on the influence of spatial hole burning and its combina-
tion with other nonlinearities. Various effects are discussed,
e.g., the occurrence of a dip in the frequency dependence of the
distortion resulting from the combination of spatial hole burn-
ing and relaxation oscillation contributions in some cases and
the occurrence of a dip in the bias dependence when spatial hole
burning and gain suppression contributions cancel each other.

I. INTRODUCTION

ARMONIC and intermodulation distortion in the AM

response of laser diodes can have a detrimental in-
fluence on the performance of analog optical communi-
cation systems, for which DFB lasers are generally re-
garded as most desirable light sources [3], [4]. Such lasers
can operate in a stable, single longitudinal mode, which
results in a reduced intensity noise and a reduced chro-
matic fiber dispersion. One source of distortion, typical
for DFB lasers, is longitudinal spatial hole burning, i.e.,
the mode loss and gain are power dependent due to a lon-
gitudinal variation in the carrier density, caused by a lon-
gitudinal variation in the optical power density. Other
nonlinearities, which are present in all semiconductor la-
sers, have their origin in gain suppression, spontaneous
emission, and in the relaxation oscillations.
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Numerical simulations of the distortion, which allow to
assess the impact of several nonlinearities and the impor-
tance of different laser parameters in this, can eventually
lead to a substantial reduction of the distortion and are
therefore of prime interest. So far, the influence of only a
few nonlinearities on the distortion has been studied.
Subkjaer et al. [5] and Lau et al. [6] have reported the
effect of relaxation oscillations and spontaneous emission
on the distortion in Fabry-Perot lasers. Maeda et al. [7]
also included carrier diffusion in their analysis which,
however, was still restricted to F-P lasers and did not
include gain suppression. Gain suppression was first taken
into account by Darcie ef al. [8], who studied the damp-
ing of the relaxation oscillation in F-P as well as DFB
lasers. Recently, it has been shown by Takemoto et al.
[9] that the static distortion in DFB lasers, which is mainly
due to longitudinal spatial hole burning and can be cal-
culated from the static L-I relation, is minimum for kL
values around 1. Lin er al. [10], [11] found a dip in the
bias dependence of the distortion in DFB lasers, which
they explained as a result of leakage currents.

In the present analysis, we report calculations of the
distortion over the full range from low to high (in the vi-
cinity of the relaxation oscillation resonance frequency)
modulation frequencies. A multimode longitudinal laser
model, called CLADISS [1], [2], that solves the coupled
wave equations and the carrier density rate equations has
been used for this. This model can take into account gain
suppression, spatial hole burning, spontaneous emission,
side modes, and dynamic effects in a detailed way. Ther-
mal effects on the other hand are not taken into account,
which implies that only modulation frequencies above +1
MHz will be considered. We neither take into account
leakage currents and refer to [11] for this. Our analysis
confirms that the spatial hole burning induced static dis-
tortion in DFB lasers is minimum for L values around
1. It is furthermore found that the dip in the bias depen-
dence of the distortion can also be explained as resulting
from a compensation of the spatial hole burning induced
distortion by the gain suppression. In addition, a dip in
the frequency dependence, resulting from the compensa-
tion of the spatial hole burning induced distortion by the
relaxation oscillation, is sometimes found.

This paper is organized as follows. In the first section,
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the numerical model for the accurate calculation of the
distortion is shortly described. This model is first applied
to a simple Fabry—Perot laser in the second section. Since
spatial hole burning has almost no influence in these la-
sers, the influence of gain suppression, spontaneous emis-
sion, and relaxation oscillations can be clearly illustrated
for such lasers. Next, a few examples of DFB lasers are
considered to illustrate and discuss the effect of spatial
hole burning and its combination with other nonlineari-
ties. In most cases, our numerical results are compared
with analytical expressions obtained from simple rate
equations. In this way, the influence of certain parameters
becomes clear, while at the same time some restrictions
of the rate equations (i.e., discrepancies from the results
obtained with the longitudinal model) can be found. Such
a rate equation description is furthermore only possible
for a limited number of DFB laser structures. Finally, a
few conclusions on how to reduce the distortion are given.

II. THE LONGITUDINAL MODEL

Our model solves the set of time dependent, coupled
traveling wave equations, which determine the optical
field inside the laser cavity and which can be derived from
Maxwell’s equations in the slowly varying amplitude ap-
proximation [12] and the approximations related to the
coupled mode theory [13]. The model is limited to index-
guided lasers and assumes that only the lowest order TE
mode is present. The forward (+) and backward (—)
propagating parts of the lateral electrical laser field. con-
sisting of several longitudinal modes, can then be written
as

E,;_tq(xv ¥, 2, 1)

= $(x, ) Re z; E£(z, 1) exp <jw,,r;m,.qz)}. ()

The transverse-lateral field distribution d(x, y) is as-
sumed to be independent of time and axial position and to
be the same for each longitudinal mode q. B, is a refer-
ence propagation constant, which is chosen as the Bragg
wavenumber mx /A when a grating of order m is pres-
ent. In the absence of a grating, B, is chosen as the prop-
agation constant at the reference frequency w, of the low-
est order TE mode of the unperturbed waveguide (i.e.,
the waveguide without carrier injection). The complex
amplitudes E} are slowly varying in time with respect to
w, (a reference frequency to be chosen close to the ex-
pected emission frequency) and can be transformed as [1]

Efz,n = ry(z, O exp [j(blf(z, n+j S Aw, (1) dT}
with ¢, (z = 0, 1) = 0. (2a)

Both r; and ¢ are real functions of z and ¢. The last
boundary condition of (2a) implies that the instantaneous
frequency of the laser @, (which hardly varies along the
laser cavity if the dynamic excitation is slow with respect
to the round-trip time) is defined as the instantaneous fre-

quency of the backward field at the left facet (z = 0). The
instantaneous frequency of the laser then becomes

d _
() = @, + —arg [E; @ = 0, 0]

= w, + Aw, ().

(2b)

The coupled wave equations, e.g., for the forward prop-
agating wave, can now be written as [1]

ory 10} Jo > .
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Similar equations hold for r, and ¢,. |x*| and ¢, are
amplitude and phase of « *, the coupling coefficient from
backward to forward propagating wave. AB,, and AB,,
are the real and imaginary part of the Bragg deviation,
i.e., the difference between the propagation constant of
the excited waveguide and the reference propagation con-
stant:

Wy
Aqu = Bq - qu + ? Anr.q

ABi, = 0.5(Tg, — ainy). C))

oip Tepresents the internal losses and g, the power gain in
the active region for mode g. The gain function, which
includes gain suppression, is of the form

8y = A(@,) (N = N, (,)
: {1 — 2ep(w,, @) (1)) + <r;)?)} (5a)
P

with A being the differential gain. An, expresses the
change in the real part of the refractive index, induced by
the carrier density N:

2w,/ _ _

An, = - ap(wg) A(w,) N(z, ). (5b)
ay,, is the linewidth enhancement factor. The functions &
and An, , are found by curve fitting on the results ob-
tained with the models of [14]. The J,,/(r})* term in (3)
represents the spontaneous emission that couples into the
mode [1]. For power normalized field intensities, Jyp can
be written as [1]

Jo = jwdByhw,BN? (5¢)

with B, being the spontaneous emission factor [15].
The carrier density varies with position and is deter-
mined by the equation
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The calculation of the distortion now proceeds in three
steps. First, a static solution for some bias current is found
through a Newton-Raphson iteration on the nonlinear
equations (3)-(6), in which the time derivative terms have
been dropped. In order to take into account longitudinal
spatial hole burning, the cavity is divided in small sec-
tions, in which a uniform carrier density can be assumed,
and the propagation is calculated by multiplication of the
propagator matrices for each small section.

A small sinusoidal modulation current J, with a mod-
ulation frequency @ /2 is then superimposed on the bias
current. All variables are now expanded as

ri@ ) =rk@ + Re {ri@ @) "

+rp@E Q) ey}

65z D =05k + Re {$fi(z, D /™
+ o5z, ) ¥}
Nz, 8) = N,(2) + Re {Ny(z, Q) /¥
+ Ny(z, Q) ¥}
AB, (1) = A, + Re {Aw, (Q) /¥
+ ABH(Q) ¥}
J@) = J, + Re {J,e/¥} 7

where the terms with subscript o refer to the static solu-
tion, the terms with subscript 1 to the linear small signal
modulation and the terms with subscript 2 to the second-
order harmonic distortion.

In a second step, (3)-(6) are linearized by substituting
only the static and the first-order terms (with subscript 1)
of (7) into (3)-(6). The derivatives with respect to z are
then replaced by finite differences (over the same sections
as in the static analysis), which results in a set of linear
algebraic equations. These equations are too extended to
write down here, but they can be solved by standard nu-
merical techniques. This step allows to determine the
small-signal AM and FM responses.

In the third step, the second-order harmonic distortion
is finally calculated by substituting the full expansions of
(7) in (3)-(6), and by considering only the terms with pul-
sation 2 @ in the resulting expressions. Since the terms
with subscripts o and 1 are now known quantities, this
results in a linear system in the second-order quantities
(with subscript 2). The excitation is thus no longer an ac
current, but consists of products of the first-order quan-
tities. It must be noticed that with this method, the dis-
tortion in the FM and the AM responses are calculated
simultaneously. In this paper, however, we will concen-
trate on the distortion in the AM response. In principle,
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Fig. 1. Time variation of the first (/;) and second-order (/) intensity and
definition of the phase of the second-order harmonic distortion.

o

this method can also be extended for a calculation of the
third-order harmonic distortion.

It should be remarked that the first- and second-order
quantities are complex and thus characterized by a phase.
Since both quantities vary with a different frequency, the
definition of the phase needs some clarification. To this
end, Fig. 1 shows the time variation of both the first- and
second-order output power, the latter one having a phase
¢. In the following, just as in Fig. 1, the time origin is
always chosen so that the first-order intensity varies as cos
(21). The phase of the second-order harmonic distortion
can be more exactly defined as the phase difference be-
tween the second order output power and the square of
the first order output power. At static modulation fre-
quencies, the phase of the distortion can also be derived
from the L-I relation. In this case, a phase 0 () results
when the efficiency in(de-)creases with bias level. How-
ever, as will become clear further, it is mainly the phase
difference between different contributions to the distortion
that is important.

III. DiSTORTION IN FABRY-PEROT LASERS: NUMERICAL
RESULTS AND DiscussioN

The second-harmonic distortion in single longitudinal
mode Fabry-Perot lasers, as calculated with our model,
has its origin mainly in the gain suppression (which re-
sults in a power dependence of the gain), spontaneous
emission (only at small bias currents), and relaxation os-
cillations (at high modulation frequencies). The relative
importance of each of the effects can easily be estimated
from a small signal solution (up to second-order) of the
single mode rate equations.

dl

E-—(G—F)]%—R (8a)
dN J

I—“]—S(Sﬂ)— GI (8b)

in which I represents the number of photons and N the
number of electrons in the cavity. R is the spontaneous
emission rate (corresponding with the Jy, term of the lon-
gitudinal model), G is the modal gain, and T' is the loss.
J is the injected current and S represents the spontaneous
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carrier recombination (via traps, bimolecular and Auger
recombination):

N
S(N) = — + BN? + CN*. 9)
T

The gain can be approximated as

G=UAN-B (1 —€el) = Gy(N) (1 — eI) (10)

where the I dependence is caused by gain suppression.
The second-order harmonic distortion can be deter-
mined after use of the expansions:

J=1Jy + J /™ (11a)
I=1y + 1,e'!Y + LYY (11b)
N =N, + N/ + Ne¥¥ (11¢)

S = S(Np) + Sy(N — Np) + 3Sww(N — N)®
(11d)

in which J, represents the bias current and J, the sinuso-
idal modulation current. Substitution of these expressions
in the rate equations (8) yields, after some manipulations,
for the AM response and the second-harmonic distortion
of a Fabry-Perot laser:
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Fig. 2. Distortion of the Fabry-Perot laser FP1 with (2) and without (1)
spontaneous emission; the bias current is 15 mA and the modulation current
1 mA. Spectral hole burning is not included. ( ): amplitude, (---):
phase.

figures, as well as in the following ones, dashed curves
belong to the right axis. The laser (FP1) under consider-
ation has a length of 300 um and both facets have a re-
flectivity of 80%. This high facet reflectivity guarantees
a relative uniform longitudinal distribution of the optical
power and hence that spatial hole burning has a negligible

L _ A(1/9) (12a)
Iy  {(Q + Sy + Al (jQ + R/Iy + elyGy) + ALGy}

L _1Q2j2+ S0 (9 + R/ = €5Gy) = (Sww/24) (@ + R/l + 1 G)* |y (12b)
I 2 {(2jQ + Sy + AL) 2jQ + R/Iy + el,Gy) + AL,Gy} Iy

From (12b), it can immediately be seen that the static
(LF) distortion in Fabry-Perot lasers is strongly depen-
dent on the spontaneous carrier recombination via Sy and
Sun- Indeed, neither gain suppression nor spontaneous
emission alter the external quantum efficiency, which is
given by the ratio of the reflection losses and the total
losses. The only result of both nonlinearities is that the
carrier density and hence the effective threshold current
(determined by the spontaneous carrier recombination)
change because the effective gain (= Gy(1 — €ly) + R/1Iy)
has to compensate the loss. It can also be verified from
(12b) that the effect of different nonlinearities cannot sim-
ply be superposed. Nevertheless, in many situations, one
of the nonlinearities will be dominating and we will there-
fore often consider each nonlinearity separately. (An ex-
ception is made in (4a) where the simultaneous presence
of spatial and spectral hole burning is considered.)

Spontaneous emission only has an influence at low bias
levels and the gain suppression will dominate at power
levels of 1 mW or higher. The distortion caused by gain
suppression increases with increasing bias level for a con-
stant optical modulation depth (OMD = 1, /1). It always
has a phase 7 at low modulation frequencies, i.e., the
effective threshold current increases and the external ef-
ficiency decreases with increasing injection current.

Numerical calculations of the distortion in a F-P laser
are shown in Figs. 2 and 3 for different situations. In these

influence (as will be shown furtheron). The threshold cur-
rent is 10.8 mA. The material parameters are listed in
Table I. Fig. 2 shows the effect of spontaneous emission
at a bias current of 15 mA (corresponding with a static
output power of 0.2 mW) for a modulation current of 1
mA. Gain suppression has been neglected here and the
distortion induced by spontaneous emission at this rela-
tively low bias level is already extremely small. The re-
laxation oscillation dominates for modulation frequencies
above a few megahertz.

The contribution from the relaxation oscillation in-
creases with 20 dBc per decade and, near the resonance
peak with 40 dBc per decade. Two resonance peaks ap-
pear, but it must be noticed that the second peak is caused
by a resonance in the AM response and will not occur if
a constant OMD is considered. It can also be noticed that
the phase reaches zero just halfway the two resonance
peaks. Furthermore, it is also seen that spontaneous emis-
sion has no significant influence on the resonance fre-
quency f, and on the damping rate I' (of the first peak)
[16], which can be approximated as:

@rfy)’ = AL,G,
T = Al + Sy.

I

(13a)
(13b)

The influence of gain suppression is shown in Fig. 3
for different values of €(3, 6 and 11 W™"). The bias cur-
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TABLE 1

Typical
Parameter Value
w [ pm] 1.5 Stripe width
d [pm] 0.12 Active layer thickness
L [pm] 300 Laser length
7 0.3 Power confinement factor
A [pm] 0.2413 Grating period (for DFB lasers)
n, 3.25 Unperturbated effective refractive index
v, [um/s) 7.510" Group velocity
Qi [pm 1] 50 107* Internal waveguide loss
p 1074 Spontaneous emission factor
7[s] 510°° Carrier lifetime
B [pm?®/s] 100 Bimolecular recombination
C [um®/s] 75107 Auger recombination

rent is 30 mA and the modulation current is 1 mA. The
static distortion is almost bias-independent, as predicted
by (12b). The only small bias dependence is due to an
increase of Sy and Syy with increasing bias level. If the
OMD is kept constant however, the distortion will in-
crease with increasing bias level. Another result of the
gain suppression is that now the relaxation peaks are
strongly damped. The influence of the gain suppression
coeflicient € on this damping can be seen from the ana-
lytical expression for I' [13]:

F = AIO + SN + GI()G(). (14)
The increased damping for increasing gain suppression
can be seen on Fig. 3. From this figure, it can also be
verified that a doubling of € increases the static distortion
with 12 dBc, as is predicted by (12b).

The laser, considered before, has relatively high facet
reflectivities and the optical power is rather uniform in the
longitudinal direction. In Fabry-Perot lasers with a less
uniform power distribution, an additional distortion in the
AM response can result from the spatial hole burning. The
nonlinearity caused by spatial hole burning is explained
in more detail in Appendix A where it is shown that, in
general, the output power is a nonlinear function of the
average photon density. The rate equations must be mod-
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Fig. 4. Influence of spatial hole burning on the distortion of FP2 for a
modulation current of 1 mA and for different bias levels: (1) / = 20 mA,
P =1mW,2)I=25mA, P, = 1.8mW,(3)/=30mA, P, =2.7
mW. Spectral hold burning and spontaneous emission are not included. (—
——): amplitude, (---): phase.

ified as
dI
5 =G =)0 — D +R (15a)
‘11! = J —- S(N) — GI(I — e (15b)
dt ¢

with e, being a decreasing function of power level (see
Appendix A) and, in fact, also of modulation frequency.
At static frequencies, the distortion can now easily be cal-
culated from the expression (12b) by substituting I by /(1
— €pnl). In calculating the distortion in the output power,
one must of course also take into account the nonlinear
relation between the output power and / (see Appendix
A):

Pout - {(AN - B) (1

This spatial hole burning effect is illustrated in Fig. 4
for a 300 pm long F-P laser with cleaved (R = 30%)
facets (FP2). The threshold current is now 14.3 mA. The
modulation current is again 1 mA and all other static non-
linearities have been neglected in the calculation of the
distortion. As can be seen, the distortion caused by the
spatial hole burning in Fabry-Perot lasers has a phase =,
which agrees with the following simple expression that
can be derived from (15) and (16):

— epnl)] — iV 1}, (16)

Pou|,2 — —‘aimLEsPhll (17)
Pout.l In 1
R\R,

The value of e, is strongly dependent on the facet re-
flectivities. Table II gives values of ey, (calculated at
threshold) for a 300 um long Fabry-Perot laser as a func-
tion of R = R, = R,. From these values, it follows that
the spatial hole burning induced distortion in laser FP1 is
about 40 dB lower than that of laser FP2. For cleaved or
HR-coated facets, the distortion caused by this spatial hole
burning nonlinearity will be much weaker than the one
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TABLE II
Facet Power Gain Suppression
Reflectivity €ann (W'
0.05 19.015
0.1 8.578
0.2 2.585
0.3 0.915
0.4 0.3325
0.5 0.11536
0.6 0.03558
0.7 8.762 107°
0.8 1.38210°°
0.9 7107°
1 0

~40
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~1004
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Fig. 5. Influence of the internal absorption on the spatial hole burning in-
duced distortion of FP2: (1) Qi = 50cm™', (2) a;, = 25 cm™!, and 3)
Qo = 0 cm ™', The static output power is | mW and the optical modulation
depth (OMD) is 20%. Spectral hole burning and spontaneous emission are
not included. ( ): amplitude, (---): phase.

caused by the gain suppression, but the effect can become
important for lower facet reflectivities.

The spatial hole burning induced distortion is also
strongly dependent on the internal absorption. This is il-
lustrated in Fig. 5 where the distortion for several values
of the internal absorption is depicted. The distortion is
however not proportional to the internal absorption since
€spn 1S also dependent on the carrier lifetime, which gen-
erally increases with decreasing absorption.

We conclude this section by mentioning that gain
suppression, spontaneous emission, and relaxation oscil-
lations have similar effects on Fabry-Perot and DFB la-
sers. From the previous results, it follows that sponta-
neous emission can be neglected already at low power
levels and that the distortion caused by gain suppression
and/or relaxation oscillations can be well described by the
analytical formula (12b) and has a phase .

IV. DiSTORTION IN DFB LASERS

The effect of spontaneous emission, gain suppression,
and relaxation oscillations on the distortion in DFB laser
is very similar to the case of Fabry-Perot lasers. Longi-
tudinal spatial hole burning, however, is far more impor-
tant in DFB lasers and therefore we will concentrate on

1995
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Fig. 6. Variation of the loss suppression (e, ;) and the gain suppression

(€.1), caused by spatial hole burning in A /4-shifted DFB-lasers, as a func-

tion of kL (L = 300 pm).

the distortion caused by this spatial hole burning and its
combination with other nonlinearities. We only consider
DFB lasers that are single mode up to high power levels.

First, an analytical approach is given for an important
class of DFB lasers, namely AR-coated DFB lasers which
emit at the Bragg wavelength and where the power is sym-
metric with respect to z = L /2. The spatial hole burning
in such lasers can easily be approximated in an analytical
way. However, such an analytical approach is very hard
(if not impossible) for other DFB lasers. We therefore also
include modeling results for a DFB laser with one cleaved
and one AR-coated facet.

A. DFB Lasers Emitting at the Bragg Wavelength

For lasers where the main mode lases at the Bragg
wavelength and is symmetric with respect to z = L /2,
such as A /4-shifted lasers, the effect of spatial hole burn-
ing on the distortion is mainly due to the longitudinal non-
uniformity of the gain. The nonuniformity of the refrac-
tive index is of little importance in such lasers. The gain
and loss that must then be used in the rate equation can,
according to Appendixes A and B be written as

G

I

AN - B (1 — ¢,,]) (18a)

'=r,+T,=T,,0 —¢,0)+T, (18b)

with T,, being the power dependent mirror losses and r,
the constant absorption losses. ¢, ; and €52 represent the
gain and loss suppression (Fig. 6) due to spatial hole
burning and ¢, has the same definition as €spn for Fabry-
Perot lasers. Both ¢, ; and €2 decrease with increasing
power level and ¢, , can be either positive or negative.

Since the output power can be written as
Poux -~ [(] - 6_v,2]) =P (19)

it is convenient to transform the rate equations. In the ab-
sence of spontaneous emission and gain suppression and
for low modulation frequencies one finds

(AN — B) (1 — AeP) = Tho + T,(1 + ¢,P) (20a)
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Fig. 7. Distortion in the case ¢ = 0 for a A /4-shifted laser with kL = 1,
L = 300 pm and for an OMD of 20%: (1) I = 25 mA, (2) I = 30 mA, (3)

I'=40mA, 4)1 = 50mA. (

): amplitude, (- --): phase.

~

—=S8(N) + (AN — B) P(1 — AeP) (20b)

£

with Ae = ¢, | — ¢, ,. In the case that also gain suppres-
sion (characterized by ¢) is included, one has Ae = ¢,
— €., t €. Fig. 7 shows the variation of ¢, | and ¢,
(calculated at threshold) for 300 um long, \/4-shifted
DFB lasers as a function of «L. ¢ ; and ¢, , take a mini-
mum value for kL = 1.25, a value which is known to
give minimum spatial hole burning in \ /4-shifted lasers
[17]. It can also be remarked that ¢, | and ¢, , can be cal-
culated by a laser model in which spatial hole burning is
not taken into account.

From a small signal solution of the equations in (20),
one finds for the low frequency second-hamonic distortion
in the AM response

P out,2 1

S
AT a0y + Swbelife 2T, + AeGy) + T Ii(ecaTu + AcGo)’ p
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Fig. 8. Distortion in the case ¢ = 0 for a A/4-shifted laser with kL = 2,
L = 300 um and for an OMD of 20%: (1) I = 16 mA, (2) I = 20 mA, (3)
1 =30mA, (4) I =50 mA. ( ): amplitude, (---): phase.

(o
o
o
S

474 W 'ande, , = —18.9 W ! for kL = 2. Also ac-
cording to expression (21), the amplitude of the static dis-
tortion increases with the bias level for a constant optical
modulation depth. In Figs. 7 and 8, this behavior is seen
only at low bias levels and at high bias levels the spatial
hole burning induced distortion decreases monotonically
with bias level. This discrepancy can be attributed to our
small signal approximation (as given in Appendix B) of
spatial hole burning, which does not produce the exact
bias dependence of ¢ ;.

The level of distortion depends not only on the spatial
hole burning (expressed by ¢, ,) and on the bias level, but
also on the ratio of internal (absorption) loss and external
(mirror) loss. More specific, the amplitude of the distor-
tion decreases with increasing external loss (i.e., decreas-

out. |

@n

AGyly + (Sy +

€21, and Ae Gy are of the same order of magnitude in
this expression, while AeSy << A and ¢, ,SynT, <<
A®. The first term in the denominator of (21) is therefore
dominant at low power levels, except for kL values in the
neighborhood of 1.25. It must further be noted that e, ,
and ¢, , have been considered as power independent in the
derivation of formula (21). The actual power dependence
of ¢, | and ¢, , can not easily be calculated above thresh-
old, but this power dependence will certainly result in ad-
ditional distortion.

The spatial hole burning effect is illustrated in Fig. 7,
resp. Fig. 8 for 300 um long, A /4-shifted DFB-lasers with
kL =1 (and a threshold current of 22.5 mA), resp. kL =
2 (and a threshold current of 15 mA). These results are
obtained with the longitudinal model, but they agree very
well with the analytical results. As can be seen, the low
frequency AM distortion has a phase 7 for kL = 1 and a
phase 0 for kL = 2, which agrees with expression (21).
Indeed, in the limit of low power levels, one finds ¢, | =
835W 'and e, = 19.4 W' forkl = land ¢, , =

- ——

AIO)EJ.ZFaIO + AEG()SNIO

Poul,O

ing kL-value). It can furthermore be noticed that for de-
creasing xL values a smaller number of photons in the
cavity corresponds to a certain output power level. As a
result, lower kL values will in general result in less dis-
tortion, as far as the kL dependence of ¢, , is not consid-
ered. For example, the magnitude of ¢, , is almost the
same for kL = 1 and kL = 2, but the distortion level is
approximately 10 dBc lower for kL = 1, due to the larger
mirror loss (or threshold gain). Equivalently, a reduction
of the absorption losses could bring about a similar re-
duction in the static distortion. This can also easily be
seen after substitution of the gain, which equals the total
loss, in the static carrier rate equation:

J

; =SON) +T,,0 —¢,NI+ T, (22)
For small absorption losses and since the mirror loss is
proportional to the output power, the only nonlinearity is
due to a power dependence of the carrier density (and
hence of S).
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Fig. 9. Distortion when e = 11 W™' for a A /4-shifted laser with kL = 1,

L = 300 pm and for an OMD of 20%: (1) I = 25 mA, (2) I = 30 mA. (3)
I=40mA, 4)] =50 mA. ( ): amplitude. (- --): phase.

At modulation frequencies of 100 MHz or more, a re-
laxation oscillation contribution (consisting of a term with
phase 7 /2 and a term with phase 7) interferes with the
spatial hole burning contribution. At the same time, the
spatial hole burning contribution starts to roll off. De-
structive interference with a spatial hole burning contri-
bution with phase O can then result in the occurrence of a
dip as in Fig. 8. With increasing bias level, this dip occurs
at higher modulation frequencies since the relaxation os-
cillation and the roll-off of the spatial hole burning start
at higher frequencies. Obviously, such a dip is more or
less desirable, since it keeps or makes the distortion low
at high modulation frequencies.

Figs. 9 and 10 show the second-harmonic distortion for
both A /4-shifted lasers when gain suppression is also
taken into account. As has already been mentioned, this
gain suppression can be accounted for by including the
gain suppression coefficient ¢y in Ae. Comparison of a
typical value ¢y = 11 W' with ¢, | and ¢, , shows that
the gain suppression will often be less important than the
spatial hole burning, at least at low bias levels. However,
the spatial hole burning induced distortion decreases rap-
idly at higher bias levels, while the gain suppression con-
tribution (which always has a phase =) increases with bias
level (¢g is practically independent of the bias level). In
Fig. 9, this dominance of gain suppression at high bias
levels can be seen as an increase in distortion amplitude
with bias level for bias currents of 50 mA or more.

A more pronounced effect of the combination of spatial
hole burning and gain suppression can be seen in Fig. 10.
For kL = 2, both contributions (with phases 0, resp. )
will interfere destructively and at a certain bias level
where they have equal amplitude, they can cancel each
other. This gives rise to a dip in the bias dependence of
the static distortion. Beyond the dip, the gain suppression
becomes dominant, the phase equals 7 and the distortion
increases with bias level. At this point, €, , and ¢, , are
becoming less important and the distortion is determined
by the terms in Ae” (which itself is determined by ¢g) in
formula (21). The dip in the frequency dependence of the
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Fig. 10. Distortion caused when ¢ = 11 W' for a 300 » long X\ /4-shifted

laser with kL = 2 and for an OMD of 20%: (1) I = 20 mA, (2) I = 40
mA, (3) / = 60 mA, (4) [ = 80 mA. ( ): amplitude, (---): phase.

distortion then also disappears. In Fig. 9, the dip occurs
at relatively high bias level due to the strong spatial hole
burning for « L values of 2 or more. For kL values closer
to 1.25, the dip can be expected to occur at lower bias
levels.

B. Other DFB-Lasers

Most DFB lasers are not of the former type, e.g., lasers
without phase shifts and with one or two partly reflecting
facets. Such lasers do not emit at the Bragg wavelength
and in general the optical power distribution will not be
symmetric. The effect of longitudinal spatial hole burning
can then no longer be calculated in a similar, easy way as
described in Appendix B for A\ /4-shifted lasers. More-
over, the effect is not solely due to the nonuniform gain.
The nonuniformity of the refractive index (and hence of
the real part of the Bragg deviation) may be equally or
more important. An analytical treatment of the spatial hole
burning effect seems to be very complicated. Therefore,
we will only give a brief overview of the modelling results
that were found for other laser types.

For all the lasers we investigated so far, the spatial hole
burning induced distortion decreases with bias level at
moderate and high bias levels. This behavior is quite gen-
eral. The spatial hole burning induced distortion gain can
have either a phase 0 or a phase =, depending on the «L
value and on the lasertype. Still, a phase O (x) will rather
result for high (low) «L values. A dip in the frequency
dependence and in the bias dependence of the distortion
can be observed if the spatial hole burning induced dis-
tortion has a phase 0. Hence, in general the same effects
as in A /4-shifted lasers occur, despite the fact that the
spatial hole burning mechanism is more complex.

In theory, the influence of spatial hole burning in such
lasers can still be represented by a power dependence of
gain and loss. A formula such as (22) will still be valid
and it can be expected that the distortion decreases with
decreasing internal absorption. A roll-off of the spatial
hole burning always occurs around 1 GHz and therefore
spatial hole burning has only a minor influence on the re-
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laxation oscillation peak. The damping of this peak is
mainly due to gain suppression and is not different from
Fabry-Perot lasers.

IV. CoNcLusiON

Detailed calculations of the second-harmonic distortion
in the AM response of Fabry—Perot and DFB lasers have
been discussed. Modulation frequencies ranging from 1
MHz to more than 10 GHz have been considered and sev-
eral nonlinearities such as spatial hole burning, gain
suppression, spontaneous emission, and relaxation oscil-
lations have been taken into account. A few effects such
as the presence of leakage currents and the fact that the
absorption generally depends on the carrier density have
been ignored in this study. Since the values of the distor-
tion found in this study and of the leakage-current induced
distortion [11] may seem a little low as compared to ex-
perimental values, it follows that both the effects consid-
ered here and the leakage currents [11] should be taken
into account to obtain better agreement between theoret-
ical and experimental values. In this paper we mainly tried
to clarify the influence of gain suppression and spatial hole
burning.

The main reason for the investigation of Fabry-Perot
lasers is that, when the facet reflectivities are not too
small, spatial hole burning has no significant influence in
this case and therefore the relative importance of gain
suppression, spontaneous emission, and relaxation oscil-
lations can be easily determined. However, DFB lasers
are far more important from a practical point of view and
their nonlinear behavior forms the main subject of this
paper.

In particular the spatial hole burning induced distortion
in DFB lasers has been clarified. It was shown that this
distortion can either have a phase 0 or a phase 7, depend-
ing on the lasertype. A distortion with phase 0, which is
generally the case for kL more than 1-1.5, interferes de-
structively with the distortion caused by the relaxation os-
cillation, resulting in a dip (and hence a low distortion) at
a modulation frequency around 1 GHz. For AR-coated
lasers which emit at the Bragg wavelength (e.g., A/4-
shifted lasers), an analytical formula is given which al-
lows to calculate the spatial hole burning induced distor-
tion from the longitudinal variation of the power (calcu-
lated, e.g., without taking spatial hole burning into
account). Our analytical treatment, however, cannot ex-
plain the decrease of the spatial hole burning induced dis-
tortion at higher bias levels. It can not be extended to
DFB lasers with a more complex behavior, for which the
longitudinal model had to be used.

The distortion caused by gain suppression always has a
phase w and increases with the bias level. If the spatial
hole burning induced distortion, which decreases with bias
level (except at low bias levels), has a phase O then the
two contributions can cancel each other at some specific
bias level, giving rise to a dip in the bias dependence of
the static distortion. The distortion caused by gain

— ~—

suppression strongly depends on the electron lifetime and
on the gain suppression coeflicient.

A few guidelines for reduction of the distortion can be
derived from our study. The spatial hole burning induced
distortion can be minimized by using a kL value between
1 and 1.5 (depending on the laser structure), but also by
increasing the efficiency (i.e., decreasing the absorption
or increasing the mirror loss). Furthermore, a spatial hole
burning induced distortion with a phase 0 must be pur-
sued. The destructive interference with the relaxation os-
cillation contribution then keeps the distortion low for
modulation frequencies up to about 1 GHz, while the de-
structive interference with the gain suppression contribu-
tion also results in reduced static distortion for small range
of bias levels. A spatial hole burning contribution with a
phase 0 can for most laser structures be obtained by using
a kL value in the neighborhood of 1.5 rather than a kL
value in the neighborhood of 1.

The presented study is currently being extended to the
third-order harmonic distortion, for which a similar nu-
merical approach can be used.

APPENDIX A
LoNGITUDINAL SPATIAL HOLE BURNING IN FABRY-
PEROT LASERS

The implications of a longitudinally nonuniform power
(or photon density) follow, for a Fabry-Perot laser from
the carrier rate equation. We assume that the photon den-
sity P(z) can be written as

P(z) = Po(1 + f(2)) (AD)

with f being a function that is smaller than unity and for
which

L
So f(@)dz=0. (A2)

The resulting nonuniform carrier density N(z, ) can be
expanded to first order in f as

Nz, 1) = No(t) + N,\(0) f(2). (A3)

N, can be assumed to be much smaller than N, (at least at
moderate power levels). Substitution of (A1) and (A3) in
the carrier density rate equation:

N
a——i—N—BNZ——CNZ—(AN—B)P(z)

= A4
o qd 7 (A%

allows to determine both N, and N,. After linearization,
one finds the following equation for N:

ot
= —(ANg — B)Py

1
— + N, {— + 2BN, + 3CN3 + APOK
T

(A5)

for static frequencies, it follows immediately:
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N, = (ANy — B)Py _ _(ANy — B)Py
1= - - - .
1 1
-~ + 2BN, + 3CN} + AP, — + AP,
T T
(A6)

The rate equation for Nj can then be tranformed into

J N
~ =224 BN} + CN} + (AN, — B)P,
qd T

1 L
)7 aen
|- —— (A7)

1
— + AP,
.

Spatial hole burning thus results in a gain reduction.

A different approach must be used for the photon rate
equation. We will show that in the absence of gain
suppression (e.g., spectral hole burning) and spontaneous
emission and for a Fabry—Perot laser, Nj is still clamped
(and determined by the constant loss), but that the output
power P [proportional with P* (L) or P~ (0)] is a nonlin-
ear function of the average photon density P,. We start
from the amplitude rate equations (formula 3, Section II),
which can be transformed into the equations for the pho-
ton densities P and P~ of forward and backward prop-
agating waves:

P+ P+ .
7 + 2 —az— = (G — aimvg)P (A8a)
P" aP" .
—37 - I}g a—z' = (G - Otiml/'g)P . (ASb)

For low frequencies, one can derive the longitudinal vari-
ation of P* and P~ from these equations, giving

2

P () = PT(0) exp {SO (g — ain) dZ] (A92)

L

P~ (z) = P (L) exp Lg (8 — o) dz} (A9b)
with ¢ = G/v,. Substitution of (A9) in the boundary con-
ditions, P+ (0) = R,P~(0) and P~ (L) = R,P* (L), re-
sults in the oscillation condition, from which the clamp-
ing of N follows:

) v,
ANy — B — oy = = .
0 Vg Oty L In <R1R2> (A10)

Since N, determines the FM response, it follows already
that this nonlinearity does not give a contribution to the
FM. The sum of forward and backward propagating pho-

ton densities can be expressed as (with a = A/ v, and
b =B/v,)

1 -
P@R) = P+(0) \:e(aNO'h'Olml): + E e‘(aN()*h—mnl)A.i\
1

i e~(aN0—b—<xmt):}

+(0 (aNo—b —ain)2 _
+ P7( ){e R,

- aMN, gofdz. (A1)

In deriving this expression, it has been assumed that N,
is small and hence

exp {aN, g;fdz} =1+ aN, S;fdz. (Al12)

Equation (Al1), with the left-hand side being equal to
Py(1 + f), is an integral equation for fand can in theory
be solved by well-known perturbation methods. Integra-
tion of (A11) gives an expression for Py:

P+(0) e—(aNo—b—otim)L -1+ .1_
aNo -b - Qint !

_ _1_ e‘(aNo—h-aim)L
R

LP() =

L
_ MS f e+(aNo—b—otim)z
aN() -b - Qg Y0

+ L e_(aNg—b—am():] dz. (A13)

R

It must now be noticed that the part of the integrand be-
tween brackets can be approximated, from (A11), as Po(1
+ f)/P*(0). When the threshold condition (A10) is also
taken into account, one finds the following relation be-
tween Py and P (0):

1 L

2
- fod
APO L SO Z

(AN — B | 1 —

1 — Qi Vg Py
T

{

[(ANy — B) (1 — emPo) — Qi Vgl Po

L
R,

which proves that the output power [ proportional with
P* (0)] is a nonlinear function of the average photon den-
sity Py or of the total photon number / = PyL. € as
defined in (A14) has the dimension (cm). Naturally, it is
also possible to use the average power level inside the
cavity instead or the photon number, in which case egp
has the dimension [W '] or, in the second case, is di-
mensionless.

The nonlinearity expressed by (A7) and (A17) causes
additional distortion in the AM response of F-P lasers. It
must be noticed that the nonlinear relation between P, and

_PTOy |1 - VR R;]

L R,

(A14)
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P " (0) also implies that the gain and mirror losses, to be
used in a rate equation for Py, become power dependent.

ApPENDIX B
SpaTIAL HOLE BURNING IN N /4-SHIFTED DFB-LASERS

For DFB lasers, it can also be shown that the output
power is a nonlinear function of the average photon den-
sity due to a longitudinal variation in the gain. We will
neglect the longitudinal variation of the refractive index,
which means that phase variations caused by the spatial
hole burning are not taken into account in the amplitude
equations. This approach is correct for lasermodes at the
Bragg wavelength (as in A /4-shifted lasers), in other cases
it means that only part of the spatial hole burning effect
is considered. Again we assume that the photon density
P (z) can be written as

P(z) = Pyl + f(2)).

The rate equation for the carrier density N, is then iden-
tical to the one of Appendix A and a similar gain reduc-
tion can be used.

The nonlinear relation between average photon density
and output power can be derived from the static amplitude
rate equations, which are

(BI)

art _ - +
" ABirt = krcos(p, + ¢7 — ¢T) (B2a)
or” + - +

—a-z —ABir~ = —«kr7 cos (¢, + ¢~ — ¢7). (B2b)

The nonuniform carrier density implies that AS3; can be
written as

AB; = ABy + ABySf (B3)
with
AN
ABy = 5. (B4)
Ug

From the coupled wave equations (B2), the following
wave equation for r * and r ~ can be derived:

a’
s (Aﬁ,ow cos’ (¢, + ¢~ — ¢7)

az* (B5)

a

+ 248,A8.f £ ABy 5{),3:

We now decompose the fields r* and r~, corresponding

with the nonuniform Bragg deviation as
rt =rg(1 + F%) (B6)

with r§ (z) being the fields corresponding with A ;. Sub-
stitution of (B6) in (BS) allows to determine F* and one
finds

aF*
0z

2k
+A6,1[f(z) ey S dz’ f@')roro

- cos (¢, + ¢~ = ¢*)]

2k
Iy 6(z)}

After integration of (B7), the fields can be determined.
Assumption of the boundary conditions r* (L) = rg (L)
and r~ (0) = rq (0), gives

I

48, [f(z) (B7)

+ ) ’ r . ’ B(Z )
F7 = AB; Sof(z ) dz 2kA By g re @ ))
(B8a)
- : Cap @)
F~ = AB,‘] S f(Z )dZ + 2KA6,| S (ro (Z ))
(B8b)

For the photon density P(z) one finds, after appropriate
normalization of rg,

P@) = () + (rg)” + 2AB841(rg) = (r0)’]
. S dz' f(z')
0
L ’
+ 4m6n[(f&)2 5 d 280 4 ey 3 ’}
z ("o ) (ro
(B9)
Calculation of the average photon density gives
1t _ 1 ("
Po= 7 SO [(rg)* + (ro)1 dz — 288 7 SO
©dz f(2) go [(rd) = ()1 dz
Ay S 2 SL ,8(2)
+ 4k I Odz [(ro) . dz (r&')z
L8
+ B10
(ro) S ("0) } (B10)

The last term of the right-hand side of (B10) can, after
partial integration, be transformed to

_A..&]_ SL 1 Sl t et )2
4k L dz 8(2) LI’J @) do dz' (rq @'))

1 SZ o
——— \ & (@) | (B11)
ro@ ™ 7
For A\ /4-shifted lasers, it follows from numerical calcu-
lations that this term can be neglected with respect to the
other terms in (B10). We shall therefore leave it out here,

although it must be noticed that this term is still easily
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Fig. 11. The functions f, g _, and the integral of g_ (in microns) fora X\ /4-
shifted DFB laser with kL = 1.

calculated numerically from a threshold solution. It can
also be remarked that, as a result of the assumed boundary
conditions, the output power [ proportional with P~ (0) or
P *(L)] is determined by r& only, and one can write

(re) + (e =P (0) 2.2
ré? = (e =P (0 g-@

with g, and g_ being independent of the power level. g
and g_ can be obtained from the longitudinal power vari-
ation in the absence of spatial hole burning (e.g., calcu-
lated at threshold). Equation (B10) can now be trans-
formed into

(B12a)

(B12b)

1 (* 1(*
Py = P(0) [Z SO 8+(2) dz — 248, L SO

" dz f(2) So g-@) dz'} (B13)

After substitution of the expression for AS3;, [using (A6)
and (B4)], one finally finds

1 L
I SO g+(@ dz P (0)

Po

L z
(AN, — B) AP, SO dz f(2) SO dz’ g_(Z')

) 3
v, <; + AP0> So 8+(@) dz

Py(1 — €2Pp)

1+

(B14)

with the second expression being a quadratic approxima-
tion of the first. Again, ¢, , as defined here has the di-
mension (cm), but when the average power level or the
total number of photons inside the cavity is used, the di-
mension changes as in Appendix A. This formula is valid
for all AR-coated lasers which emit at the Bragg wave-
length and where the power distribution is symmetric,
e.g., also for some multiple phase shifted lasers. The
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‘. Integral of g
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Fig. 12. The functions f, g_. and the integral of g _ (in microns) for a A4
shifted DFB laser with kL = 2.

Longitudinal coordinate ( micrometer )
Fig. 13. Product of f and the integral of g_ (in microns) for X /4-shifted

DFB lasers with kL = | ( Yand kL = 2 (---).

functions f, g,, and g_ can, for a given DFB laser, be
calculated analytically or numerically. They are depicted
in Figs. 11-13 for two AR-coated \ /4-shifted DFB lasers
with kL = 1 and kL = 2. Fig. 11 shows the functions f,
g_, and the integral of g_ for the case kL = 1 and Fig.
12 for the case kL = 2. Fig. 13 shows the product of f
and the integral of g_ for both cases. From this last figure,
it can be concluded that the losses will increase, resp.
decrease with increasing power level for kL = 1, resp.
kL = 2.

Again, the gain and loss, to be used in a rate equation
for P, become power dependent due to this spatial hole
burning. However, the power dependence of gain and loss
is no longer the same, as is the case in F-P lasers.
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