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Abstract—The design of resonator-based Kerr-nonlinear func-
tionalities for all-optical signal processing is investigated based on
an analytical one-dimensional model. The influence of different
device parameters is analyzed and aspects of design optimization
are discussed. It is shown that important tradeoffs are to be made
in terms of power budget, device length, and signal bandwidth,
making these functionalities for the moment only feasible for
dense wavelength-division multiplexing systems. Several issues
concerning nonlinear integration in standard technologies are
highlighted.

Index Terms—Bistability, Kerr nonlinearity, limiting, phase
shifting, resonators, switching.

I. INTRODUCTION

NONLINEAR optics shows great possibilities for all-op-
tical signal processing, because of the ultrafast response

times involved. The practical use of phenomena like the Kerr
effect is, however, severely limited by the need for high input
powers or long device lengths, since these effects are typically
very small in common semiconductor systems

cm W .
A possible way to remove these constraints is to use struc-

tures which show resonant behavior. The electric field is en-
hanced and the pulse is slowed down, so the nonlinear response
is larger. A few examples of such structures are coupled cavity
waveguides, ring resonators, etc. It has been shown that these
components exhibit large improvements for the purpose of Kerr-
nonlinear phase shifting [1]–[5]. In addition, they also show
features which cannot be implemented with plain waveguides,
like all-optical limiting [6], all-optical switching, and bistability
[7]–[12].

A major issue, however, is which input powers and device
lengths are needed. Increasing the resonance effect will obvi-
ously result in lower power requirements, however, at the ex-
pense of the achievable signal bandwidth because increasing the
resonating effect will lead to a higher finesse. This means that
a tradeoff between input power, device length, and signal band-
width will be necessary.

Manuscript received December 16, 2003; revised May 14, 2004. This work
was supported in part by the Belgian DWTC IAP-PHOTON project. The work
of G. Priem and B. Maes is supported in part by doctoral fellowships from the
Flemish Fund for Scientific Research (FWO-Vlaanderen). The work of P. Bien-
stman is supported in part by a postdoctoral fellowship from the Flemish Fund
for Scientific Research (FWO-Vlaanderen).

The authors are with the Department of Information Technology, Ghent Uni-
versity, Ghent B9000, Belgium (e-mail: gino.priem@ugent.be).

Digital Object Identifier 10.1109/JSTQE.2004.835314

In [1], a detailed analysis of one-dimensional (1-D) coupled
resonators was performed by us to investigate this problem in
the case of Kerr-nonlinear phase shifting. A 1-D model allowed
us to make an analytical description of the nonlinear effects
inside the structure, based on which design optimization was
possible. Although this model essentially considers a nonlinear
Fabry–Pérot cavity [12], it is here used in the context of wave-
guide implemented devices. Special attention will be paid to the
limited index contrast which is typically possible in the cavity
mirrors of such structures and the effect of this on the nonlinear
behavior. General design aspects were obtained which are rep-
resentative for all three-dimensional (3-D) structures mentioned
above.

In this paper, this analysis will be extended to functionali-
ties which are typical for photonic bandgap structures, such as
all-optical limiting, switching, and bistability. All-optical lim-
iting is the phenomenon in which the output intensity monoton-
ically increases for increasing input power up to a limiting value
and then remains more or less constant. All-optical bistability is
the existence of two stable nonlinear solutions for a single input
power. All-optical switching in the strict sense used in this paper
is switching between zero and unity transmission by means of
nonlinear interaction (and is to be distinguished from all-optical
switching by means of nonlinear phase shifting in a interfero-
metric structure). Two situations are possible: total transmission
in the linear case and in the nonlinear case. These applications
will be discussed in the case that the data itself behaves either
linearly or nonlinearly (in contrast to pump-probe operation).

The organization of this paper is as follows. In Sections II
and III, the resonating structure that will be used and the general
theory from [1] will be reviewed. After that, the different non-
linear functionalities will be discussed one by one: all-optical
phase shifting in Section IV, all-optical limiting in Section V,
and all-optical switching and bistability in Section VI. Finally,
conclusions will be drawn in Section VII.

II. 1-D STRUCTURE

The resonator structure that was used in [1] and that will also
be used in this paper has the following period:

where and are two different materials, is the resonance
wavelength, and is an integer indicating the cavity length
(in units of ). The parameter will be used to indicate
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Fig. 1. Two-period resonator with in- and out-coupling layers. Refractive indices are indicated.

the total number of layers per period. The length of a single
resonator period is then

(1)

Quarter-wave mirrors were chosen here for analytical pur-
poses and because they have the largest reflectivity per unit
of length. The rightmost layer of one period combines with
the leftmost of the next period to create an uninterrupted dis-
tributed Bragg reflector (DBR) mirror. The homogeneous in-
and out-coupling layers of the resonator structure are assumed
to have refractive index .

An example for two periods is given in Fig. 1.

III. THEORY

In this section, both linear and nonlinear properties are de-
rived for the case of resonator structures with one period and an
infinite number of periods (see [1] for further details). For the
general case of periods, the linear properties (complete trans-
mission and phase relation) can be derived analytically [13],
[14]. The complete nonlinear interaction for periods is much
tougher to describe; however, the limiting cases with one and an
infinite number of periods provide on average a good boundary,
especially around the resonance wavelength for which different
periods are only slightly coupled.

If the frequency dependence of the amplitude of the mirror
transmission and reflection coefficients and is ne-
glected and the frequency dependence of the phase is expanded
linearly, the linear intensity transmission and phase
relation for one resonator period can be written as

(2)

(3)

where the sign of depends on and

(4)

and represent the amplitudes of the mirror coeffi-
cients (which were assumed to be constant over the frequency)

(5)

(6)

In the case of an infinite number of periods, the linear disper-
sion relation is approximately given by

(7)

with the resonator bandwidth and the phase change
between the input and output over a single period, denoted as

in the case of a resonator with a single period. From this,
one can obtain

(8)

so finally

(9)

Note that (3) and (9) can be written around as

(10)

In the presence of Kerr-nonlinear effects, the incoming light
will build up inside the cavity and partially in the mirrors and,
thus, alter the refractive index of the complete structure. This
means that both the resonance peak can shift and resonance
bandwidth can change. This index change will also modify the
output phase relation . In the most general case, one has

. The resonance shift is then roughly determined by
the overall value of (a shift to higher frequencies occurs for

and vice versa), while the change of bandwidth is due
to the modulation of .

In [1], it was assumed that , which is a good ap-
proximation for most resonator types (especially for coupled
cavity waveguides). This means that the resonance bandwidth
can be considered to be constant (only in cases in which
and have opposite signs, the change of bandwidth really be-
comes important). A method to investigate the situation

was also described. In this paper, the same assumptions will
be used.
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The shift of the linear resonance frequency is then

(11)
in the case , which is always the case for resonators.
Note that this shift holds for any number of periods, because
when , each period is independent.

The frequency shift for the linear frequency will not
be equal to . In general, the field profile of one resonator
period for a certain frequency will scale more or less with a
factor compared to . And since the Kerr effect
scales with , the shift will now be

(12)

which means that the Kerr-nonlinear intensity transmission for
one period is approximately given by

(13)

with . In the same way, and since
the bandwidth was assumed to be constant, the phase relation
becomes

(14)

with

(15)

For all-optical phase shifting, the transmission must be close to
unity , so the phase shift will in this case be

(16)

For an infinite number of periods, these problems do not arise
and the transmission window simply shifts, so

(17)

In the bistable region, in fact, two phase relations exist: the
“transmissive” one is given here; the other one is simply

if and if . With this,
is equal to

(18)

In the general case of periods, the method used for a single
period (namely, ) cannot be repeated
because the linear field for is different in every cavity.
One could think of using an average over every cavity; however,
the equations obtained in this way are very complex and not
completely stable, so they provide no advantage over numerical
simulations. Nevertheless, conclusions for a single period will

also influence the design for structures with more periods. Only
the phase shift can more or less be approximated (in the case
high transmission is assumed) from (16) and (18) to be

(19)

which is in agreement with intuitive thinking.

IV. ALL-OPTICAL PHASE SHIFTING

In all-optical phase shifting, a certain phase shift (typically
) must be achieved at the device output between the case of

a high-power (Kerr-nonlinear behavior) and a low-power data
signal (linear behavior) for a certain data rate .

The resonance peaks in the linear and the nonlinear case do
not coincide, so the available signal bandwidth can be substan-
tially lower than the resonance bandwidth . In the ideal case,

will be equal to the bandwidth overlap between both cases,
thus

(20)

In case of a realistic, finite structure, the resonance window
will in fact not be completely transmissive. At the edges, trans-
mission peaks will appear (an increasing number for a higher
number of periods), between which the transmission can drop
even more than 50%, depending on the index contrast of the mir-
rors. Therefore, should be corrected with a factor ,
so the maximum signal bandwidth is

(21)

It was found that is a good estimate.
From (8), (11), (19), and (21), it is obvious that a tradeoff

between different design specifications will have to be made:
to minimize the device length , the phase shift per unit of
length must be maximized. This implies that the reso-
nance shift should be as high and the resonance bandwidth

as low as possible. However, these last two conditions also
result in a lower signal bandwidth . Furthermore, a restric-
tion to the resonance shift will be imposed by the achiev-
able input power.

Optimization is now done for a realistic example: an cou-
pled cavity photonic wire in silicon-on-insulator (SOI) is ap-
proximated by taking as effective indices and

, which corresponds to a index contrast of 10%. The
Kerr coefficient of silicon at 1.5 m is equal to

cm W (or cm V ) [15] and the cross-sec-
tion area . The input power corre-
sponding to a certain input field may be estimated from the
input intensity and the cross-section
area, so

(22)

The results are shown in Fig. 2: the expected minimal input
power is shown as a function of device length for several signal
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Fig. 2. Input power P required to obtain a nonlinear phase shift of � by
propagation through a resonator-based distance of L for several signal
bandwidths [(21), calculated from (19) and (22)].

Fig. 3. Input power P required to obtain a nonlinear phase shift of � by
propagation through a homogeneous distance of L .

Fig. 4. Influence of index contrast on the P �L tradeoff, shown in Fig. 2,
for the case of 40 GHz.

bandwidths. To give rise to smooth curves, the parameters
and were assumed to be continuous, which is a good approx-
imation, since both values are typically high. The situation of a
simple wire without resonating structures is drawn in Fig. 3 as
a comparison.

Comparing Fig. 2 and Fig. 3, it can be seen that improve-
ments for the device length in the order of 10 000 are possible,
depending on the signal bandwidth. The signal bandwidth is,
however, an important limiting factor, especially for very high
band rates. Note also that from a certain input power on, the
relative improvement of drops very steeply, so using even
higher powers in that situation is not sound.

In Fig. 4, the example above is recalculated with other index
contrasts for a signal bandwidth of 40 GHz. From this, it is clear
that high-index contrasts allow major improvements in the de-
vice length. This is due to two factors: first of all, the length

of mirrors with the same reflectivity substantially reduces for
higher contrast [see (1) and (6)]. In addition, the resonance shift
for a certain input power will also be larger for shorter mirrors
(11), because a smaller part of the nonlinear phase change in
the cavity will be used to compensate the phase shift in the mir-
rors, as discussed in [1]. The obtainable index contrast is, how-
ever, typically limited by scattering and radiation loss in actual
structures.

Another important remark is that for all situaties depicted in
Fig. 2 and Fig. 4, one has . From (8) and (4), it can
be seen that the resonance bandwidth reduces both with higher

and larger . However, only the mirror strength de-
termines the field strength inside the cavity. On the other hand,
a larger cavity improves the frequency shift, as can be seen from
the cavity dependence of (11). The result that is the
optimum solution now implies that increasing is more
efficient in terms of device length than increasing the cavity
length.

To determine the real optimum, only integer values of
and the period number must be taken into account. In most
situations, one will also choose to be even (this was im-
plicitely done in Section II). Otherwise layers must be
constructed at the in- and out-coupling sections, which require
more demanding feature sizes. Suppose one would like to min-
imize the device length for a signal bandwidth of 10 GHz and
input powers up to 30 mW are allowed. A method to find this
optimal solution was described in [1]. The best solution in this
case is

mW

m

Because of the discrete character of the solution space, is
not necessarily equal to one; it is possible that a higher
value lies closer to the continuous optimum than the situation

. As noted above, increasing is more efficient
to reduce the device length than increasing the cavity length.
However, for low cavity values, this difference in efficiency
is relatively low, because increasing the cavity length still im-
proves the frequency shift substantially. Large values ( 5)
on the other hand will rarely be the optimum, since the relative
improvement of will drop (as can be seen from (11)).

The results obtained above are now checked numerically in
Fig. 5. This was done by using a nonlinear extension [16] of the
CAvity Modeling FRamework (CAMFR) [17] based on spatial
index discretization.

From Fig. 5, it can be seen that the resonance shift is equal
to 0.19 nm, which is in good agreement with (11). The obtained
phase shift for m is

, which is close to . As can be seen, the phase
shift is almost constant over a large area ( 0.173 nm); how-
ever, for reasons of transmission, the usable wavelength range

is only nm, so the signal band-
width is approximately limited to 10 GHz, as expected.
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Fig. 5. Numerical calculation of the linear and nonlinear phase relation � (�)
and � (�). The parameters values used can be found in the text. The signal
bandwidth is indicated by vertical lines.

V. ALL-OPTICAL LIMITING

All-optical limiting is the phenomenon in which the incoming
power is limited to a certain value which is constant for a
large range of input powers . This can be achieved by
decreasing the total transmission with higher by means of
shifting the resonance frequency.

In general, the output power will not
be completely constant over the range . This can be ex-
pressed by the flatness of the output power defined as

(23)

is nothing more than the output power fluctuation relative to
the average output power. To obtain a steep climb to the lim-
iting value, the signal bandwidth should be chosen around
because there one has for low . In addition, to
ensure a low pulse shape distortion, the output power should be
approximately constant over the signal bandwidth . If the
frequency variation for the input power
is defined as

(24)

a typical limit to avoid pulse distortion is given by
%– %.

Suppose now one would like to construct a limitor for in-
coming powers between 60 and 180 mW by using the same
refractive indices as in Section IV. For , the obtain-
able output values were calculated using (13), (23), and (24) and
plotted as a function of the minimal flatness for several signal
bandwidths in Fig. 6 in the case of a single resonator. was
again assumed to be continuous.

An upper and lower bound for can be seen for each ob-
tainable . The upper bound is equal to all and is only
determined by . The lower bound is the result of ,
which led to the fact that only GHz appears in Fig. 6. A
relaxation of the allowed frequency variation up to is
required to allow GHz to appear into the figure. The
influence of the index contrast on the obtainable output power
is very small.

Optimization is now performed for the limit mW
and GHz. To do this, the flatness is plotted as a func-
tion of and in Fig. 7. Also a line is drawn for which

Fig. 6. Upper and lower bound for the obtainable output power limit
P ((P + P )=2) as a function of the flatness of the output power curve
F for several signal bandwidths, obtained from (13), (23), and (24). The
parameter values used are indicated in the text. The frequency variation V is
lower than 10%.

Fig. 7. Output power flatness F obtainable with N and N for a signal
bandwidth of �� = 2 GHz. The dotted line corresponds to P = 10 mW.
The optimum value is indicated by a circle.

mW. The best parameter choice is
denoted with a circle.

It can be seen that is almost constant along the line
mW . The value can generally be used to

tune the output power exactly to the desired limit.
These results are now numerically checked in Fig. 8. Note that

the scale of both axes is different. The obtained output power
fluctuation is 3.72 mW, which corresponds to . This
is in excellent agreement with the minimal flatness from Fig. 6.

Note that for the same output power, the minimal flatness and
frequency variation will relax strongly for higher and .
This improvement can already be seen in Fig. 8: the limiting is
still improving for higher input powers. But in practice, one will
not want to limit the output power to more than 10%–20% of its
original value. The importance of this remark, however, lies in
the fact that increasing is equivalent to higher values. The
higher the Kerr-nonlinear coefficient, the better the limiting will
be.

Another remark concerns the number of periods which is to
be used. In the example above, only one period was used. Nev-
ertheless, this is the best choice, because the limiting range as
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Fig. 8. Numerical calculation of output power P versus input power P
for parameter values discussed in the text. The case of linear transmission is
shown as a reference.

well as the frequency variation will deteriorate for higher . In-
deed, in the extreme case of an infinite number of periods, the
only possible output power with an acceptable value for is

. This will also become more clear in Section VI-A.

VI. ALL-OPTICAL SWITCHING

As mentioned in the introduction, two possible situations
of all-optical switching exist: linear-high and nonlinear-low
transmission on the one hand and linear-low and nonlinear-high
transmission on the other. The former case is related to all-op-
tical limiting, in the sense that both make use of a reduced
transmission with increasing input intensity. However, while
limiting is used for a extensive range of large input powers,
all-optical switching will operate based on the fact that the
incoming data signal is either low power or high power. The
latter case is more related to bistability, however, trying to avoid
the bistable region itself to ensure a single solution.

A. Linear-High and Nonlinear-Low Switching

To obtain a high transmission in the linear case, the signal
bandwidth must be centered on the linear resonance frequency

. In the nonlinear situation, the high-power data signal will
shift the resonance frequency and the nonlinear transmission
will become low. This transmission will be lower for higher
input power. The minimal transmission contrast will be given
by

(25)

with and
for .

This contrast is optimized in function of the nonlinear input
power for the same parameter values used above and for dif-
ferent signal bandwidths in Fig. 9, by means of (13) and (25).
A structure with a single period was used. Again was as-
sumed to be continuous.

From the discussion above, it is already clear that a tradeoff
between the achievable contrast and the input power of the non-
linear data signal is to be made. Fig. 9, however, shows that
rather high powers are required to achieve reasonable transmis-
sion contrasts. And what is more, these requirements increase
enormously with increasing signal bandwidth. Fig. 10 shows the
high influence of the index contrast on the obtainable transmis-
sion contrast for a constant bandwidth. This is a consequence of

Fig. 9. Input power P required to obtain a transmission contrast C for
various signal bandwidths, as predicted by (13) and (25).

Fig. 10. Influence of index contrast on the P �C tradeoff, shown in Fig. 9,
for a signal bandwidth of 10 GHz.

Fig. 11. Obtainable transmission contrast C as a function of N and N
for an input power of P = 100 mW and a signal bandwidth of �� =

10 GHz. The optimum value is indicated by a circle.

the index dependence of the resonance shift (11), which was
already discussed in Section IV. The optimal cavity value in
Figs. 9 and 10 is again based on the same princi-
ples as discussed in Section IV.

Optimization is now carried out for the case in which a non-
linear input power of mW is allowed and for a signal
bandwidth of 10 GHz. The obtained transmission contrast for

mW as a function of and is plotted in
Fig. 11.

Note that mW will always result in a lower trans-
mission contrast for the same value of and because
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Fig. 12. Numerical calculation of the linear and nonlinear transmission
jt (�)j for a resonator structure consisting of one and two periods. The
parameters values used can be found in the text. The signal bandwidth is
indicated by vertical lines.

a lower corresponds to lower resonance shift, so only the
case mW must be taken into account. The highest
contrast is obtained for

m

which is very close to the value obtained from Fig. 9.
This is again checked numerically in Fig. 12. The linear and

nonlinear transmission is plotted here and the signal bandwidth
is indicated. A transmission contrast of is obtained,
which is in very good agreement with the analytical result

.
Until now, only one period was taken into account. It is, how-

ever, clear that the contrast will be increased for exactly the same
parameters by simply using more resonator periods: the linear
transmission will be higher and the nonlinear trans-
mission lower, because the resonance peak becomes
more confined for higher . This is also shown in Fig. 12: by
using the same parameters and two periods instead of one, the
transmission contrast is already improved to . In the
extreme case of periods, a contrast of unity is achieved if

. In the ex-
ample discussed above, an input power of only mW
would be needed for this.

However, in this discussion one aspect has not been men-
tioned yet: the output power is not , but . And
since this type of switching is used in the same frequency range
as all-optical limiting ,
all-optical limiting is actually what really happens. This means
that the linear-high transmission state will have a lower output
power than the nonlinear-low transmission state (compare with
Fig. 8). All-optical linear-high/nonlinear-low switching can
nevertheless still be used by simply changing the data pro-
cessing. In the case of one period, the output power of Fig. 12
for mW is mW. If, e.g., the nonlinear
off-state is defined at the detector side as 10–15 mW, the non-
linear on-state as 80–110 mW, the linear off-state as 0–1 mW
and the linear on-state as 4–7 mW, linear-high/nonlinear-low
switching is perfectly possible.

Note that this is also the reason why the number of periods
must not be too high. Based on Section V and Fig. 12, one can
see that for high , the nonlinear off-state will come close to

Fig. 13. Input power P required to obtain a transmission contrast C for
various signal bandwidths, as calculated from (13) and (26).

Fig. 14. Influence of index contrast on the P �C tradeoff, shown in Fig. 13,
for a signal bandwidth of 10 GHz.

the linear on-state and the difference will become unclear. This
also means that in fact very high contrast (thus, low )
is not wanted. must only be low enough to be able to
distinguish the nonlinear on- and off-state.

B. Low-Linear and High-Nonlinear Switching and Bistability

This type of switching is in many aspects the opposite of the
previous type. Since the nonlinear transmission must in this case
be as high as possible, the signal bandwidth will be centered on
the nonlinear resonance frequency . The minimal trans-
mission contrast is now defined as

(26)

with and
for .

Just like in Section VI-A, this contrast will be larger for higher
input powers and the optimization of the tradeoff between con-
trast and input power for the same parameters as for the other
functionalities is shown in Fig. 13 for the case of a single period.

was assumed to be continuous. Fig. 14 shows the influence
of the refractive index contrast.

Exactly the same conclusion can be drawn as in the case of
“high-linear and low-nonlinear” switching. One can, however,
see by comparing Fig. 9 with Fig. 13 that here much higher
contrast can be achieved with the same power level.

The optimization is now done for the same situation as in
Section VI-A, i.e., mW and GHz. The
obtained transmission contrast as function of and is
plotted in Fig. 15.

Again mW will result in a lower transmission
contrast for the same value of and because a lower

corresponds to lower resonance shift, so only the case
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Fig. 15. Obtainable transmission contrast C as a function of N and N
for an input power of P = 100 mW and a signal bandwidth of �� =
10 GHz. The optimum value is indicated by a circle.

mW is to be taken into account. One obtains the highest
contrast for

m

The numerical check is shown in Fig. 16. The linear and non-
linear transmission is plotted and the signal bandwidth is indi-
cated. A transmission contrast of is achieved, in
excellent agreement with the analytical prediction.

However, this figure also shows that in the region of interest,
actually two stable solutions exist. This can also be seen analyt-
ically from (12) and (13): the shift of the top of the resonance
peak is much larger that the shift of frequencies at the side of
the peak. The major problem now is that the solution that will
be excited is the one with the lowest transmission

, because one is coming from 0 mW.
One could wonder if it is not possible to achieve this type of

switching without bistability. The answer is yes, but only for
very low signal bandwidth ( 2 GHz) and with very low trans-
mission contrasts ( 0.65). A possible way, however, to over-
come this obstacle is using pulses which have a very high power
density at the beginning and then drop down to their regular
value. In this way, the upper branch is excited and the pulse
energy should still be modest. Because of the bistability, the
“linear” and nonlinear pulses can now have the same power for
the off-state as well as for the on-state. The difference between
the linear and nonlinear regimes is simply due to the power peak
at the start of the pulse. In this way, there is also no difference
anymore between and .

Until now only one period was considered. Like in Sec-
tion VI-A, the contrast will raise with increasing . This is
also shown in Fig. 16. A contrast of one can again be obtained
for in the case of periods. How-
ever, increasing will also increase the power density required
at the start of the pulse in order to switch to the upper branch, so

Fig. 16. Numerical calculation of the linear and nonlinear transmission
jt (�)j for a resonator structure consisting of one and two periods. The
parameters values which are used, are given in the text. The signal bandwidth
is indicated by vertical lines.

the number of periods should be kept small. Furthermore, one
can see in Fig. 13 that the achievable contrast with a single pe-
riod is already very high, so the relative improvement obtained
by increasing the number of periods will be very small.

VII. CONCLUSION

In this paper, the designs of the most common all-optical
functionalities—all-optical phase shifting, limiting, switching,
and bistability—have been investigated in case the data signal
is responsible for nonlinear operation. The influence of the
different parameters has been analyzed and general aspects to
which one should pay attention during the design have been
discussed.

In particular, it was shown that in order to make an efficient
design, it is of the utmost importance to obtain a refractive index
contrast in the mirrors which is as high as possible. A higher
contrast does not only reduce the device length (because the
mirror will be smaller for the same reflectivity), but it also sub-
stantially reduces the required input power. Furthermore, the
cavity length must be kept small, although not necessarily a
half-wavelength. Only in the case of all-optical limiting, the
cavity length is of less importance and can be used for tuning
the power output. Except for all-optical phase shifting, a small
number of resonator periods is generally sufficient for a reason-
able nonlinear operation.

Special attention must, however, be paid to the signal band-
width that one would like to use. All nonlinear functionalities
discussed in this paper can be achieved for reasonable input
powers ( 100 mW) and device lengths 250 m under
the condition that the signal bandwidth is limited ( 10 GHz).
Higher band rates require substantially more optical power or
much longer device lengths. This means that for the moment
application of nonlinear devices will typically be restricted to
dense wavelength-division multiplexing systems. This restric-
tion can only be lifted by searching for materials with higher
Kerr nonlinearities.

In addition to this, it was also brought to attention that inser-
tion of nonlinear applications into standard technologies cannot
be done in a straightforward manner. In general, two different
power levels will have to be taken into account (a linear and a
nonlinear one), so the data processing will become more compli-
cated. Also the used pulse shapes can be different from common
practice.
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To conclude, one can say that resonating structures allow the
implemention of all-optical ultrafast functionalities within rea-
sonable power budgets and device lengths, but not without limi-
tations. The usable bandwidth is limited and the data processing
will generally be more complex.
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