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Abstract. We present a fast and efficient method to find the vectorial eigenmodes
of waveguides with an arbitrary 2D cross-section. The method can deal with both
material losses and radiation losses (through Perfectly Matched Layer boundary
conditions). In the first stage of the method, a coarse estimate of the propagation
constants is found using a plane-wave method. In the second stage, these estimates
are refined using a mode-matching method.
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1. Introduction

Finding propagation constants and mode profiles of the vectorial eigen-
modes of waveguides with an arbitrary two-dimensional cross-section
is an important problem in integrated optics. Here, we present an
efficient method which combines the virtues of plane-wave expansion
methods and mode-matching methods. In a first stage, a plane-wave
method is used to construct a single eigenvalue problem which pro-
vides an estimate of the eigenmodes of the structure. These estimates
are subsequently refined in the second stage using a technique based
on vectorial eigenmode expansion. We opt for a vectorial eigenmode
expansion technique because evidence suggests that it can deal more
accurately with discontinuities and singularities which inevitably occur
in the field profiles of these eigenmodes (Sudbg, 1992).

The mode-matching method we present here is related to the one de-
scribed in (Sudbg, 1993a) and (Sudbg, 1993b), but uses a slightly differ-
ent set of basis functions (complex exponentials rather than geometric
functions) and a different approach to derive the dispersion relation. We
also generalise it to include Perfectly Matched Layer (PML) boundary
conditions. Additionally, the two-stage technique to efficiently locate
the eigenmodes in the complex plane has to our knowledge not been
described before.

The rest of this paper is organised as follows. In Section 2 we will
describe the basis functions used in the mode-matching model. These
will be used in Section 3 to perform a generalised mode matching and
to calculate scattering matrices. Section 4 builds on this to derive the
transcendental dispersion relation whose solutions give the eigenmodes
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Figure 1. Waveguide with a 2D cross-section

of the waveguide. In Section 5 we will outline how to efficiently find
the complex solutions of this function by using a two-stage method.
A non-trivial example of a lossy photonic wire in Silicon-on-Insulator
(SOI) with be given in Section 6.

2. Rotated basis functions

Suppose we want to calculate the eigenmodes of the waveguide shown
in Fig. 2.

The waveguide is enclosed in metal walls which can be coated with
a Perfectly Matched Layer (PML). The philosophy behind eigenmode
expansion is to divide the structure into a number of slices where the
index profile is invariant in one direction. In Fig. 2, this direction is the
z-direction, and three slices can be identified. Subsequently, the field in
each slice is expanded in a set of basis functions, and later we will apply
continuity equations to calculate the transition between two slices.

To derive this set of basis functions in each slice, we consider each
slice as a 1D waveguide (infinite in the z-direction) and calculate its
TE and TM eigenmodes (propagating in the z-direction) (Sztefka and
Nolting, 1993; Bienstman and Baets, 2001). These have the following
form for TE:
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Figure 2. Rotating the mode profile over an angle 6;

E.ite = 0
Eyire = 0
E.ire = E.;7150(y) - exp(—jBir) (1)

Hyire = Hyireo(y) - exp(—jfiz)
Hyire = Hy;re0(Yy) - exp (—jBiz)
H,;re = 0

For TM, we get:

(

eiTM = EgiTmo(y) - exp(—jpfiz)
Eyirm = Eyirmo(y)-exp(—jbix)

E,irm = 0
< Hyirm = 0 @)
Hy;,rm = 0

| Hyirm = Hyimmp (y) - exp (—jBiz)

In these equations, 7 is the index of the mode. The k-vector of these
slice eigenmodes lies entirely in the (z,y)-plane (no z-component),
which makes them unsuited to expand the field of an eigenmode of
the entire cross-section. Such a cross-section eigenmode has a k-vector
component along z which is constant across the cross-section. There-
fore, to expand its field, we will rotate all the slice eigenmodes around
the y-axis until their k-vector has a z-component equal to an arbitrary
but fixed value k, (see Fig. 2 for TE). (We will later discuss how to
determine the values of k, that give rise to eigenmodes of the cross-
section.) For each slice mode i, this means rotating the field profile with
an angle 6; given by

sinf; = % (3)

%
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This results in the following TE basis functions:

( Eyire = —sinb; - E,;1E0(y) - exp (—jBiz)
Eyite = 0
) Beire = cost; - E,;1ro (y) - exp (—jPix) (4)

Hyirg = cosb; - Hyirpo(y) - exp(—jfiz)
Hy;re Hy;reo(y) - exp (—j6ix)
| Hzire = sinb; - Hyirro (y) - exp (—j6ix)

For TM, this becomes:

((Epirm = c0s0;- Egirmp(y) - exp (—jBiz)
Eyitm = Ey ;1m0 (y) - exp (—jBix)

) E.itm = sin;-Ey;irmp(y) - exp (—jpiz) (5)
Hyirv = —sinb; - H, ;7m0 (y) - exp (—j6ix)
Hy;rm = 0

| Hyirm = cosb;- H, ;1o (y) - exp (—j6iz)

3. Generalised mode matching

The next problem is to calculate the reflection and transmission matri-
ces of an interface between two different slices (named e.g. I and II),
once again for a given fixed value of k,. Since TE and TM components
will be coupled at the interface, we need to include both kinds of modes
in our basis set. We now develop a generalisation of the well-known
mode-matching technique (see e.g. (Sztefka and Nolting, 1993)). It
starts off by exciting the interface with only mode p from medium
I and by imposing the continuity of the tangential components of the
total field:

Eé,t + Z Rj,pE]I',t = Z TJ,pEH (6)
J
I I 11
H,, — > RjpHj, = ZTj,PHj,t (7)
J J
To calculate the unknown expansion coefficients R;, and T}, we

take the right cross product of Eq. 6 with Hf { and the left cross product

of Eq. 7 with EZI, .. Here, 7 is an arbitrary index. After integrating over
the cross-section, we get:

(BLH) 4 Y Ry (L) = Y1, (BLH) (9
J

J
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<Ez’ ; Hp> — 2 Rip <Ez ; Hj> = > Tjp <Ez ,H; > (9)
J J
where the scalar product is defined as the following overlap integral:

(Eun, H,) // (Ep x Ha) - ugdS (10)

If we decide to truncate the series expansion after N modes (which
includes both TE and TM modes), we have 2N unknowns: N reflection
coefficients and N transmission coefficients. Eq. 8 and 9 provide us with
exactly 2V equations, since we can write them for all ¢ in 1 — N.

The traditional mode matching algorithm then proceeds to simplify
this system of equations by invoking orthogonality relations between
the modes. In this case however, this is not possible because rotated
TE modes are not orthogonal to rotated TM modes under the scalar
product of Eq. 10.

We can repeat this procedure for every incident mode p in 1 —
N, which ultimately gives rise to the following system of equations to
calculate the R and T matrices:

OII II OI I | . [ T ] _ OI II (11)
OI,II OI,I R OI,I
Here, T' denotes transposition and the overlap matrices are defined
as

0.5 (i,j) = (B, HY) (12)

A and B are either I or 11. Calculating these matrices from Eq. 4 and
Eq. 5 is straightforward and involves overlap integrals of the following
form:

(BirE, ],TE) = —cost; [ E,;rr0Hy;TE0dY
(Bire,HjTm) = 0

(Birm,Hjrg) = sinb; [ Ey;rvoHy jreo0dy —sing; [ Ey;rvoHy 1804y
(Birn, Hjrm) = cos0; [ EyirmoH, jrmody

Here, the indices 7 and j refer to modes either from the same medium
or from different media. The 1D integrals over y are independent of k,
and therefore need to be calculated only once.

We also need to calculate the R and T matrices for incidence from
medium I7 instead of from medium I. Our choice of multiplying Eq. 6
with H/} rather than with the traditional H; ; ensures that the system
matrix for this new linear system can be chosen identical to the system
matrix in Eq. 11, which saves computation time.
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Figure 8. Splitting the waveguide in half

Once we have calculated these reflection and transmission matrices
for a single interface, we can proceed in a classical way to calculate
these matrices for an entire stack of slices by using the well-known S-
matrix scheme (Li, 1996). This method is numerically stable, even in
the presence of high-order evanescent modes.

4. Transcendental dispersion relation

We still need to address the problem of determining which values of
k, give rise to actual eigenmodes of the waveguide with the 2D cross-
section. For that purpose, we divide the cross-section at an arbitrary
position in two halves (Fig. 4). Using the techniques from the previous
sections, we can calculate for each value of k; the reflection matrix
R; (k,)of the left part as seen from the right, and similarly the reflection
matrix R, (k,)of the right part as seen from the left. In case the vector
A corresponds to the expansion of the forward propagating field of an
eigenmode at the cut, the following resonance relation will hold:

R (k) - Ry (k.)- A=A (13)

In other words, the round trip gain of the eigenmode should be
unity. In this way, the problem is reduced to finding the values of k, for
which the matrix R;-R, has an eigenvalue of unity. The corresponding
eigenvector then describes the field profile of that eigenmode.

Finally, we want to explain briefly how PML is incorporated in the
method. These boundary conditions are implemented by using complex
coordinate stretching (Chew et al., 1997), i.e. by letting the values of
the cladding thickness assume complex values. This can be done for the
cladding thickness in both the z and y-direction. Care should be taken
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not to choose this complex thickness excessively large, in order to avoid
numerical problems related to completeness issues (Bienstman, 2001).

5. Finding complex solutions of the dispersion relation

In general, the k, values which satisfy Eq. 13 will be located in the
complex plane away from the coordinate axes. This is true when the
materials in the waveguide are lossy, but is also true if we want to in-
corporate PML boundary conditions by giving the claddings a complex
thickness (Chew et al., 1997). Finding complex solutions of a transcen-
dental equation like Eq. 13 is a non-trivial problem, especially when
a single evaluation of this function takes a non-negligible amount of
computation time. It is therefore imperative to develop a method which
can find these solutions with a minimum of function evaluations. Also,
the method should be robust enough to be able to locate all eigenmodes
of the structure (including radiation modes) without skipping any.

There are a number of possible approaches to tackle this problem. A
first approach is start by finding the eigenmodes of an identical struc-
ture, but where are all loss mechanisms (material and PML absorption)
are set to zero. In this way, the modes are located on the coordinate
axes, where they are more easily found. We can then gradually change
the losses from zero to their final value and track the modes as they
move through the complex plane (Bienstman et al., 2001). Although
this works fine to find modes in 1D slabs, it is not the best method for
modes in waveguides with a 2D cross-section. The reason is that this
method still requires a large number of function evaluations, especially
when two modes are nearly degenerate. Also, in 2D structures there can
exist even in the lossless case modes that are located in the complex
plane (for a description of these complex modes, see e.g. (Oliner et al.,
1981)).

A second approach to find zeros of a complex function is based on
contour integration. There exist a number of variants of this method (Delves
and Lynnes, 1967; Anemogiannis et al., 1994), but they basically all
involve evaluating a number of complex contour integrals, from which
a polynomial is constructed which has the same zeros as the complex
function inside the contour. Problem with these methods is that they
still require a large number of function evaluations, they need special
attention when zeros are located close to the contours, and they mostly
do not cope well with branch point singularities.

We therefore propose to use a hybrid method, in which a first stage
give us a coarse estimate of the eigenmodes. In a second stage, these
estimates are used as initial guesses to a Newton-like method which will
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converge in a few seconds to the exact solutions using only a handful
of iterations.

To construct the initial estimates, we use the plane-wave like method
which we described in (Bienstman and Baets, 2003) and which is based
on the method proposed in (Omar and Schiinenmann, 1987). It in-
volves expanding the eigenmodes into the eigenmodes of a uniform
homogeneous waveguide (which are essentially plane waves in the 2D
Cartesian case). These uniform waveguide modes are denoted by tildes
in the following formula:

Etrans = Z AiEi,trans,TE 'f: Z BiEi,trans,TM

Ez = . E CiEi,z,TM - (14)
Hirans = E DiHi,trans,TE ‘l: Z EiHi,trans,TM
Hz = E EHi,z,TE

After some manipulations, we can derive an eigenproblem of the
following form:

A-x=kx (15)

Important to note is that k, appears here in the eigenvalues, and not
as a parameter of the matrix like in Eq. 13. So, for N terms retained in
the series expansion, we get an estimate for the first NV modes, which
can subsequently be refined in the second stage.

This method is well-suited to handle degenerate or closely-clustered
modes. Their presence is readily detected from the first stage, such
that appropriate numerical precautions can be taken in the second
stage. These precautions take the form of deflating each refined zero of
the cluster before attempting to refine the next zero estimate from the
cluster.

Finally, we wish to illustrate why the first stage only yields a coarse
estimate. The reason is that the expansion functions in stage 1 are plane
waves and therefore continuous across the entire waveguide. Since the
mode profile of the eigenmode will be continuous across some interfaces
and discontinuous across others, it is clear that such basis functions are
ill-suited to expand the eigenmode. In stage 2 however, we use the set of
rotated slice modes as basis set. Within each slice, these modes already
obey the different interface boundary conditions, and across slices, a
different basis set is used. Such a representation is therefore inherently
more suited to accurately describe the field. This is shown in Fig. 5,
where the £y component of the (lower left quarter of the) fundamental
mode of a square waveguide is plotted, both for a stage 1 expansion
with 500 terms, and a stage 2 expansion with 40 terms. The waveguide
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Figure 4. E, component of fundamental mode of square waveguide (only lower left
quarter of waveguide plotted)

Figure 5. Field profile in a photonic wire

is a square with side of 1\, with refractive index n = 1.5 and embedded
in air.

6. Example: SOI photonic wire

As a less trivial example, we calculate the radiation loss at A = 1.55 ym
of the fundamental mode of a photonic wire waveguide, consisting of
a Si (n = 3.5) core with width W and height 220 nm, separated by
an oxide (n = 1.45) buffer of height D from a Si substrate. For thin
buffers, light will leak from the central core to the bottom substrate,
as is shown in the plot of F; in Fig. 6 for W = .4 um and D = .2 ym.
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Propagation losses for 400 nm buffer

03 04 05

Wire width (micron)

Figure 6. Propagation losses in a photonic wire

From the imaginary part of the propagation constant we can easily
derive the propagation loss in dB/mm. In Fig. 6,we plot this propaga-
tion loss as a function of W for D = .4 um. As the wire gets narrower,
the mode loses confinement, which results in increased propagation
losses.

7. Conclusions

We presented an efficient algorithm to calculate the eigenmodes of
lossy waveguides with an arbitrary 2D Cartesian cross-section. In a
first stage, a coarse estimate of the propagation constants of the first
N eigenmodes is constructed using a plane-wave method. These esti-
mates are subsequently refined in a second stage, where the fields are
expanded in the rotated eigenmodes of each slice which makes up the
waveguide.
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