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Abstract—We present a detailed analysis of butt coupling
from conventional dielectric waveguides into photonic crystal
waveguides. Closed-form expressions for the reflection and trans-
mission matrices based on an eigenmode expansion technique are
derived and validated by means of simulations. We use them to
investigate butt-coupling losses in two kinds of photonic crystal
structures: one formed by rods with a higher refractive index
than the surrounding medium and the other formed by air holes
inserted in a high-refractive-index medium. The origin and
difference of coupling losses between the two photonic crystal
structures is analyzed and discussed. We show that, although the
coupling efficiency is much worse in the former structure, it can be
significantly improved by choosing the optimum interface position
that minimizes the mode impedance mismatch. Furthermore, the
dependence of coupling efficiency on frequency is also analyzed.
Finally, we also relate some traditionally used approximate
formulas to our rigorous expressions.

Index Terms—Electromagnetic scattering by periodic struc-
tures, optical propagation in nonhomogeneous media, periodic
structures.

1. INTRODUCTION

N RECENT years, all-optical networks have been the sub-

ject of a significant research effort in order to address the
increasing data traffic. Micro-scale photonic integrated circuits
are key components in these kinds of networks to avoid the
bottleneck introduced by current components performed in the
electronic domain. Photonic crystal circuits are expected to be
one of the main candidates for the realization of photonic in-
tegrated circuits because of their ability to control the flow of
light on a small scale [1]. Therefore, the interest in these circuits
has grown exponentially since they were initially proposed by
Yablonovitch and John in 1987 [2], [3].

Efficient coupling into photonic crystal circuits is a key step
for the definitive commercial deployment of this technology.
Coupling losses are due to the different features and guiding
mechanism in both waveguides. Waveguides in photonic crystal

Manuscript received November 14, 2003; revised January 26, 2004. This
work was supported in part by the Spanish Ministry of Science and Technology
under Grant TIC2002-01553. Parts of this work were also performed in the con-
text of the Belgian DWTC Project IAP-Photon. The work of P. Sanchis was
supported by the Spanish Ministry of Education, Culture and Sport. The work
of P. Bienstman was supported by the Flemish Fund for Scientific Research
(FWO-Vlaanderen) through a postdoctoral fellowship. The work of B. Luys-
saert was supported by the Flemish Institute for the Industrial Advancement of
Scientific and Technological Research (IWT) through a specialist grant.

P. Sanchis and J. Marti are with the Fiber-Radio Group, Nanophotonics
Technology Center, Universidad Politécnica de Valencia, 46022 Valencia,
Spain (e-mail: pabsanki@upvnet.upv.es).

P. Bienstman, B. Luyssaert, and R. Baets are with the Department of Infor-
mation Technology, Interuniversity Micro-Electronics Centre (IMEC), Ghent
University, B-9000 Gent, Belgium.

Digital Object Identifier 10.1109/JQE.2004.826428

circuits are usually formed by inserting line defects into the other-
wise periodic structure. Propagation in these kinds of waveguides
is characterized by Bloch modes. On the other hand, propagation
in conventional dielectric waveguides relies on index-contrast
guiding. A large variety of coupling techniques and structures
have recently been proposed for efficient interfacing fiber and
wide dielectric waveguides to the narrower photonic crystal
waveguide. Among all of them, photonic crystal tapers are
a promising approach due to the small coupling length and
high coupling efficiencies achieved in a broad frequency range
[4]-[9]. However, an efficient interfacing between dielectric and
photonic crystal waveguides with a similar width may also be
important if photonic crystal circuits have to be inserted on a chip
with other blocks relying on traditional index-contrast guiding.

Butt-coupling losses are rather different depending on the na-
ture of the photonic crystal considered. In rod photonic crystal
structures, where the photonic crystal is formed by rods with a
higher refractive index than the surrounding medium, the cou-
pling efficiency is in general poor [10], [11]. However, in hole
photonic crystal structures, where the photonic crystal is formed
by air holes inserted in a high refractive index medium, the cou-
pling efficiency is very high and transmission efficiencies near
100% can be achieved [12]-[15]. Coupling losses in both kinds
of photonic crystal structures have been studied by means of
simulations, but to the best of our knowledge there has not been
any systematic, all-encompassing analytic study at the moment.

The aim of this paper is to obtain analytic expressions for the
reflection and transmission matrices at an interface formed by
a dielectric waveguide butt coupled to a photonic crystal wave-
guide. Closed-form expressions are obtained based on an eigen-
mode expansion technique and a Bloch basis. The Bloch mode
basis has been used for engineering gratings, propagation in fi-
nite photonic crystal waveguides, or taper transitions in photonic
crystals [16]-[20]. In this paper, the coupling from a dielectric
waveguide into a semi-infinite photonic crystal waveguide is
considered. The usefulness of the classical approximate formula
employed to study fiber-coupling issues is also analyzed.

We use analytic expressions, validated by means of simula-
tions, to study coupling losses in both rod and hole photonic
crystal structures to get a qualitative insight in the origin of
coupling losses. As already mentioned, coupling losses in the
rod structure are much higher than in the hole structure. This dif-
ference is determined by the properties of the Bloch modes that
can be quite different depending on the features of the photonic
crystal. However, transmission efficiency can be significantly
improved by using the optimum interface between the dielectric
and photonic crystal waveguide. The optimum interface is
obtained among the different cuts that can be chosen within the
basic period of the photonic crystal. Furthermore, we show that
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Fig. 1. Interface between two media.

even choosing the optimum interface the maximum transmission
will be limited by the group velocity mismatch that exists be-
tween the dielectric and photonic crystal waveguide. However,
we obtain that the transmission efficiency can increase from
values lower than 5% to values near 70% for the rod structure
while efficiency near 100% can be achieved for the hole structure
in a broad frequency range by choosing the optimum interface.

The paper is structured as follows. In Section II, we briefly
review the procedure to derive the transmission and reflection
matrices at an interface between two dielectric waveguides. This
approach is generalized in Section II to derive the transmis-
sion and reflection matrices for an interface between a dielectric
and a photonic crystal waveguide. Two different approaches are
provided. Analytic results are then compared with simulations
in Section IV and the difference in coupling losses between a
rod and a hole photonic crystal structures are analyzed and dis-
cussed. Finally, conclusions are drawn in Section V.

II. INTERFACE BETWEEN TwO DIELECTRIC WAVEGUIDES

Fig. 1 shows the interface between two different media where
the z axis is oriented along the propagation direction. In this
case, we consider that both media are z-invariant. If the inter-
face is placed at z = 0 and a single mode with index p is incident
from medium I, this incident mode will give rise to a reflected
field in medium I and a transmitted field in medium II. The fol-
lowing derivation is based on the well-known mode-matching
technique [21], [22]. We expand the fields in terms of the eigen-
modes of each medium and impose the continuity of the tangen-
tial components of the total field

Y TiE] (1

El + Z R;,El =
J J
-2 RisHi =),
j j

where E/, H are the electric and magnetic tangential fields, re-
spectively, and T and R are the transmission and reflection co-
efficients, respectively. The minus sign of the reflected mag-
netic field is due to the symmetries for the backward propagating
modes. In order to calculate the unknown transmission and re-
flection coefficients, we take the right cross product of (1) with
H! and the left cross product of (2) with EI, which are the ex-
pansion fields of medium I. Here, ¢ is an arbitrary index. After
integrating over the cross section, we get
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Fig.2. Schematic of the analyzed structures where w is the width of the input
waveguide and « is the lattice constant.

where the scalar product is defined as the following

overlap integral:
/ / (E, x H,p)u,dS.

By invoking the orthogonality relation and after some algebraic
manipulations, we obtain

(B, H,,)

21, (B, 1) = Y13, (B D) + (BLEDY] 5)
J
1
Fup = Sty 30 T (20 ) = (ELEES)
’ j

(6)

If the series expansion is truncated after N terms, the transmis-
sion coefficient will be calculated by solving an N x N linear
system, and then the reflection coefficients will be obtained by
a simple matrix multiplication. Although these coefficients are
obtained upon incidence of a mode with index p, the whole pro-
cedure can be repeated using all modes pin 1 — N. Thereby, we
will obtain the transmission and reflection matrices that com-
pletely characterize the scattering that occurs at the interface.

III. INTERFACE BETWEEN DIELECTRIC AND PHOTONIC
CRYSTAL WAVEGUIDES

A. First Approach

Fig. 2(a) shows the structure under study that is formed by
a dielectric waveguide butt coupled to a single-line defect pho-
tonic crystal waveguide. In this case, medium II shown in Fig. 1
is not a z-invariant medium but a periodic medium, which con-
sists of an infinitive number of repetitions of the same basic pe-
riod in the z direction. Propagation in the periodic medium is
determined by Bloch modes [23]. Mode properties can change
significantly within the basic period. Therefore, the coupling ef-
ficiency will depend on the interface chosen among all of the
possible cuts within the basic period.

In order to calculate the transmission and reflection matrices
of the structure shown in Fig. 2(a), we expand the fields of
medium II in terms of the Bloch modes and use (5) and (6).
These equations are still valid because the orthogonality relation
is invoked by using the field expansions of the dielectric wave-
guide, which is a z-invariant medium. It is worth mentioning
that the orthogonality of Bloch modes is only true at the high
symmetry points. On the other hand, only forward-propagating
Bloch modes are used in the series expansion because a semi-in-
finite photonic crystal waveguide is considered. In order to dis-
tinguish the forward-propagating Bloch modes from the back-
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ward-propagating Bloch modes, we look at the power flux for
the guided mode and at the imaginary part of the wave vector
for the evanescent modes [24].

In eigenmode expansion, the structure is sliced up into layers
where the index profile does not change in the propagation di-
rection. In each of these individual layers, we can write the field
as a sum of the eigenmodes. In the case of Bloch modes, the
field in each layer is composed of forward and backward com-
ponents. Equations (5) and (6) can be simplified by expressing
the Bloch modes in terms of their forward and backward com-
ponents so that we obtain

(B H) = Z (FJ +BJ) : <EkH}> %)
(BL, 1}l = Z (F¢ - BL)- (BL 11, ) ®)
k

where Ej and Hy are the eigenmodes of the individual layer
that depend on the chosen cut position within the basic period.
Adding and subtracting (7) and (8) results in

SWRCKRCEN)
5 () - a1

ZFJ ((Bmt) - (BL 1))
N ;Bi (B mt) + (BL L)),

(10)
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<EH I> HH

Substituting (9) and (10) into (5) and (6), we obtain the transmis-
sion and reflection matrices for the structure shown in Fig. 2(a),
which can be expressed by the following matrix equations:

T=F~' (I+T2ReTh' BFY) "1y (1)
R= (RixTy,'F+Ty,'B) T (12)

where the transmission matrix can be simplified to
T=F"'(I-RLBF ) Ty (13)

It can be shown that Tj; and Rj; are the transmission and re-
flection matrices of the structure shown in Fig. 2(b), which are
calculated using (5) and (6). In Fig. 2(b), the medium I-II is the
individual layer corresponding to the interface chosen within the
basic period of the photonic crystal. Therefore, it can be deduced
that the problem shown in Fig. 2(a) can be decomposed in the
two subproblems shown in Fig. 2(b) and (c) and a similar deriva-
tion can be followed to obtain the scattering matrices.

B. Second Approach

In this subsection, we demonstrate that another approach
to calculate the scattering matrices of the structure shown in
Fig. 2(a) is to separate the basic structure into two structures,
shown in Fig. 2(b) and (c), and then combine the transmission
and reflection matrices of each structure. Mediums I and I-II
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are z-invariant media so that we expand the fields in terms of
the eigenmodes of each medium. On the other hand, medium
II is a periodic medium so that we expand the fields in terms
of the Bloch modes.

In the first structure, shown in Fig. 2(b), the forward and back-
ward propagating modes are related by a transfer matrix

Fi_n =TioF1+ Ryt Br11
By = RipF1 + 191 Bi—1r

(14)
(15)
where Tj; and Rj; are the transmission and reflection matrices
calculated using (5) and (6). On the other hand, in the second

structure, shown in Fig. 2(c), there are no backward-propagating
Bloch modes in medium II, so that

I =ThsFi 11
Br_11 = Ra3Fi-11.

(16)
a7

In this case, T35 and Ry3 can also be simplified by expressing
the Bloch modes in terms of forward and backward components.
Moreover, it can be seen that, as the interface layer of medium
II is the same as that of medium I-II, the eigenmodes expansion
will be the same in both media allowing us to take advantage of
the orthogonality relation. Therefore, it can be shown that

(B El-1Y = (F] +BJ) : <E1,ﬁ1> (18)
(BT HYY = (F] B{) : <E1,ﬁ1> . (19)
Thus, inserting (18) and (19) into (5) and (6), we obtain
Thy = F~1 (20)
Ry3 = BF L. (21

These results are in agreement with those reported in [19] and
[24] where a plane-wave expansion was used to describe the
input field as well as the Bloch modes.

The transmission and reflection matrices of the full structure
can be easily calculated by relating (14)—(17) and inserting (20)
and (21) which yields

T =F' (I - RyBF )™
R = R12 + TngT.

T2 (22)

(23)

It can be seen that the transmission matrices given by (13) and
(22) are the same because B2, = Rs; due to reciprocity. Fur-
thermore, the reflection matrices given by (14) and (23) are also
identical as is demonstrated in Appendix Al.

The transmission and reflection matrices involve the scat-
tering properties of both guided, radiation, and evanescent
modes. Thus, the power transmission and reflection efficiency
from the fundamental mode of the dielectric waveguide into
the fundamental guided propagating Bloch mode and assuming
that the modes are normalized is given by

(24)
(25)

nr = |Tool*
nr = |Ro ol

where Ty is the first element of (22) while Ry ¢ is the first
element of (23).
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TABLE 1
DESCRIPTION OF THE MAIN PARAMETERS OF THE TWO PHOTONIC CRYSTAL STRUCTURES CONSIDERED. N qefects AND N medium ARE THE REFRACTIVE INDEX
OF THE DEFECTS (RODS OR HOLES) AND THE SURROUNDING MEDIUM RESPECTIVELY, R IS THE DEFECT RADIUS AND f,, IS THE
NORMALIZED FREQUENCY EMPLOYED TO CALCULATE THE LATTICE CONSTANT a

Structure | Ngefects | Nmedium R fa (/L) a @ A=1.55um | Polarization
Rod 3.4 1.45 0.2a 0.3 465 nm ™
Hole 1 34 0.3a 0.235 364.2 nm TE

IV. RESULTS AND DISCUSSION

A. Description of the Simulation Tools Employed and
Structures Analyzed

The analytic results were obtained with a frequency-domain
model based on a vectorial eigenmode expansion technique and
a staircase approximation of the index profile [25]. This mod-
eling tool CAMEFR is freely available from the Internet [26]. For
the photonic crystal waveguide, the Bloch modes were calcu-
lated from the eigenstates of the scattering matrix associated to
the basic period. Afterwards, the field profiles and the forward
and backward components of the Bloch modes were obtained
at the chosen cut position within the basic period in order to
calculate analytic expressions. Analytic results have been com-
pared with simulation results. The simulated structure consists
of an input dielectric waveguide butt-coupled to a semi-infinite
photonic crystal waveguide, as shown in Fig. 2(a). Simulations
were performed with CAMFR as well as with a finite-difference
time-domain (FDTD) code [27].

Two different structures have been analyzed. The first,
hereafter named rod structure, consists of a 0.5-um-wide
dielectric waveguide with a core of silica (SiO2) and a cladding
of air. The photonic crystal structure considered is a two-di-
mensional (2-D) triangular lattice of dielectric rods of silicon
(Si) surrounded by a homogeneous dielectric medium of
silica. The second, hereafter named hole structure, consists of
a 0.5-pm-wide dielectric waveguide with a core of Si and a
cladding of air. The photonic crystal structure in this case is a
2-D triangular lattice of air holes surrounded by a homogeneous
dielectric medium of Si. The main parameters of both photonic
crystal structures are summarized in Table I.

Fig. 3 shows the dispersion relations of the rod and hole pho-
tonic crystal waveguides and of the dielectric waveguides con-
sidered in each case. The dispersion relations have been ob-
tained with the plane-wave expansion (PWE) method for the
photonic crystal waveguides [28] and with CAMFR for the di-
electric waveguides. For the rod structure, it can be seen that
both the dielectric and the photonic crystal waveguide are single
mode. The lattice constant has been calculated to get transmis-
sion at A = 1.55 pm for the central normalized frequency of
the guided mode. For the hole structure, it can be seen that the
dielectric waveguide is single mode while two guided modes,
with odd and even symmetries in the transversal direction, ap-
pear for the photonic crystal waveguide. The lattice constant has
been calculated to get transmission at A = 1.55 pm for a nor-
malized frequency where only the even mode exists. However,
as the dielectric waveguide mode has even symmetry, only the
even mode will be excited in the photonic crystal waveguide.

N
< 035 _
o = = Waveguide mode
— — PhC mode
>
2
b3 0.3
=
o
&
0.25 '/"/L_\'
[ 1 1 1
0 0.1 0.2 0.3 0.4 0.5
Wave vector(ka/2x)
03} (b)
N
<
©
-
T 025k R
C  besggeeT N e,
o ettt Ny e
g‘ - = Waveguide mode
& — PhC even mode N
L 2L " PhC odd mode i
1 L 1 '}
0 0.1 0.2 0.3 0.4 0.5

Wave vector(ka/2x)

Fig. 3. Dispersion relations for the dielectric and photonic crystal waveguides
in the (a) rod and (b) hole structures.

B. Coupling Efficiency Dependence on Cut Position

Coupling losses between conventional dielectric and pho-
tonic crystal waveguides are caused by the different guiding
mechanism in both waveguides, which gives rise to a mode
impedance mismatch. Modal properties in dielectric waveg-
uides are unaltered along the propagation direction but, in
photonic crystals, they change within the basic period that char-
acterizes the photonic crystal. Therefore, the mode impedance
mismatch between both waveguides will depend on the chosen
cut position within the basic period.

Figs. 4(a) and 5(a) show the transmission efficiency as a func-
tion of the chosen cut position within the basic period normal-
ized by the lattice constant (z/a) for the rod and hole struc-
ture, respectively. The frequency of operation is that shown in
Table I. The inset of Fig. 4(a) shows the basic period considered
where the propagation direction is along the z axis. It should be
noticed that the cut position is only varied along the I' K direc-
tion. Results are shown for CAMFR, FDTD, and the analytic ex-
pressions derived in Section III. It can be seen that analytic and
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Fig. 4. (a) Transmission and (b) reflection efficiency as a function of the

chosen cut position within the basic period normalized by the lattice constant
(z/a) for the rod structure. The inset shows the basic period used, the
propagation direction is in the z axis.

simulation results show an excellent agreement especially with
CAMER as the parameters in both simulations and analytic cal-
culations are the same. Reflection has also been calculated and
it is shown in Figs. 4(b) and 5(b) for the rod and hole structure,
respectively. It can be seen that analytic and simulation results
are also in agreement. However, FDTD results are something
different for the rod structure. This is because, in this case, the
reflection was calculated by integrating the power only along
the width of the input waveguide. However, in the rod structure,
as the index contrast of the dielectric waveguide is lower, the
mode will be less confined and it will expand into the cladding.
Therefore, the power calculation is underestimated but the shape
remains unaltered.

From Figs. 4 and 5, it can be seen that the transmission re-
sponse is asymmetric in both structures although the absolute
value of the total field is symmetric within the basic period. This
behavior can be interpreted from the transmission expression
[see (22)] in which the forward and backward components of
the Bloch modes are responsible for the asymmetric response as
they have different values depending on the chosen cut position.
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Fig. 5. (a) Transmission and (b) reflection efficiency as a function of the
chosen cut position within the basic period normalized by the lattice constant
(z/a) for the hole structure.

It is also interesting to notice that the transmission expression is
similar to the Airy formula [29] but without any propagation
terms as medium I-II has zero length. On the other hand, it can
be seen that the reflection is proportional to the backward com-
ponents multiplied by the transmission [see (23)]. In the hole
structure, the transmission is very high while the reflection is
maintained very low. Therefore, the low reflection implies that
the backward components should be very low in order to coun-
teract the high transmission.

On the other hand, a good mode profile matching is expected
at the optimum cut position due to the coupling efficiency im-
provement. In order to show this effect, the field diagrams have
been calculated at different cut positions. Fig. 6(a) and (b) shows
the electric field diagrams in the rod structure for z/a = 0.3 and
z/a = 0.0, respectively, which correspond to the maximum and
minimum transmission efficiency shown in Fig. 4(a). Fig. 6(c)
and (d) show the magnetic field diagram in the hole structure
for z/a = 0.3 and z/a = 0.66, respectively, which again corre-
sponds to the maximum and minimum transmission efficiency
shown in Fig. 5(a). It can be seen that at the optimum cut po-
sition a high coupling efficiency is achieved which reflects in a
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Fig. 6. Electric field diagram in the rod structure (a) z/a = 0.3 and
(b) z/a = 0.0 and magnetic field diagram in the hole structure (¢) z/a = 0.3
and (d) z/a = 0.66.

good mode profile matching. However, at the nonoptimum cut
position, the reflection increases and the coupling efficiency de-
creases, which reflects in a poor mode profile matching. It is
also interesting to point out that the higher reflection in the rod
structure can be attributed to the fact that the waveguide mode
is less confined because of the smaller index contrast which in-
creases the mode profile mismatch. However, the reflection is
also highly dependent on the modal properties of the photonic
crystal waveguide, as it can be deduced from the results shown
in Fig. 4, so that it cannot be stated that a more confined wave-
guide mode will always reduce the reflection.

C. Coupling Efficiency Dependence on Frequency

In the last section, we have seen that the transmission effi-
ciency can be significantly improved at a fixed frequency by
choosing the optimum interface. Now, we will study the de-
pendence of transmission efficiency with frequency which is
mainly determined due to the difference in the dispersion re-
lations between the dielectric and photonic crystal waveguides.
In Fig. 3(b), it can be seen that for the hole structure the disper-
sion relation of the dielectric and photonic crystal waveguide
are very similar. This will result in an efficient coupling and
high transmission will be achieved over the whole bandwidth of
the photonic crystal mode. On the other hand, in the rod struc-
ture the dispersion relations of both waveguides differ more and
therefore the frequency response will be worse.

Figs. 7 and 8 show the transmission spectra for the hole and
rod structure, respectively, with z/a = 0.3 in both cases that
corresponds to the optimum interface which give rise to the
maximum transmission. Analytic results are compared with
CAMEFR and FDTD simulations, showing a good agreement.
However, it can be seen that FDTD results are slightly shifted to
higher frequencies especially in the rod structure. We attribute
this shifting to an artifact of FDTD as the results obtained
with CAMFR are also in agreement with the band diagrams
shown in Fig. 3, which were calculated with the PWE method.
On the other hand, the dash—dotted results shown in Figs. 7
and 8 have been calculated with the scalar Fresnel equation
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the hole structure with z/a = 0.3.

but involving the group indexes of the dielectric and photonic
crystal waveguide and are given by

Tng = 4n5hcn;"g/(nghc + n;"g)2 (26)
where nghc and ny® are the group index of the photonic crystal
and dielectric waveguides, respectively. The group index is in-
versely related to the group velocity and the group velocity
is determined by the variation of the frequency with respect
to the wave vector, i.e., the slope of the dispersion relation.
Therefore, the group indexes can be easily calculated from the
dispersion curves.

From the results presented in Figs. 7 and 8, it can be seen
that the transmission spectrum presents a parabolic shape in the
rod structure while it is relatively flat in the hole structure. In
both cases, it is very remarkable to notice that, even though
the optimum cut position has been obtained for a fixed fre-
quency, the transmission spectrum shape is similar to the one
obtained with (26), indicating that the transmission efficiency
dependence with frequency mainly stems from the difference in
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Fig. 10. Transmission efficiency as a function of the chosen cut position within
the basic period normalized by the lattice constant (z/a) for the hole structure
and for different normalized frequencies.

group velocity or, in other words, due to the group index mis-
match. However, the influence of the frequency on the cut posi-
tion has also been analyzed.

Figs. 9 and 10 show the transmission efficiency as a function of
the cut position for the rod and hole structures, respectively, and
considering different frequencies. Results have only been calcu-
lated with the analytic expression showing the advantages of the
developed formulation as the calculation time was significantly
reduced. In both structures, it can be seen that the transmission
response does not change significantly with frequency and the
optimum cut position is only slightly shifted. It is interesting to
notice that the maximum transmission efficiency in all cases is
similar to that predicted with (26). On the other hand, it can be
seen that the transmission efficiency variation with the chosen cut
position in the hole structure increases as the frequency is close to
the band edge. In the next section, we will show that this be-
havior can be partly explained by looking at the forward and
backward components of the fundamental guided Bloch mode.
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D. Differences Between Rod and Hole Structures

‘We have seen in the last subsections that the coupling is much
better for the hole structure rather than for the rod structure. As
already mentioned, coupling losses between dielectric and pho-
tonic crystal waveguides are derived from the different guiding
mechanism in the two waveguides. In the dielectric waveguide,
the guiding mechanism relies only on the index-contrast ef-
fect. On the other hand, the guiding mechanism in the photonic
crystal is determined by the propagation of Bloch modes. In
principle, the properties of the guided Bloch mode are due to
distributed Bragg reflections, but they can also be affected by
the total internal reflection effect depending on the features of
the photonic crystal [30], [31]. In the hole structure, the core re-
fractive index of the photonic crystal waveguide is higher than
the surrounding medium. In this case, the properties of the Bloch
mode will be affected by the total internal reflection effect so
that the modal properties in the dielectric and photonic crystal
waveguides will be more similar, yielding a highly efficient cou-
pling. This explains the similarity of the dispersion relations
shown in Fig. 3(b). On the other hand, the photonic crystal wave-
guide in the rod structure has a core refractive index smaller
than the surrounding medium. In this case, the guided mode
is considered to be a pure Bloch mode because only the pho-
tonic bandgap (PBG) effect is present and modal properties in
the dielectric and photonic crystal waveguides will differ more,
yielding a worse coupling. However, we have seen that the trans-
mission efficiency in the rod structure is highly dependent on the
chosen cut position with values that go from lower than 5% to
near 70%. On the other hand, the transmission efficiency vari-
ation with the chosen cut position in the hole structure is very
low with values near 100%, although it increases if frequencies
close to the band edge are considered. In order to give an ex-
planation of this behavior, we have analyzed the forward and
backward components of the fundamental guided Bloch mode.

The following factor for the forward component has
been defined:

_ (Erw, Hiw)l
W = " "
(Erw, Hiw) | + (Esw, Hiw)l

where the subscripts FW and BW denote the forward and
backward components of the total field, respectively. A similar
expression has been used for the backward component. Fig. 11
shows the factor values as a function of the chosen cut position
within the basic period normalized by the lattice constant for the
rod and hole structures. Results are only shown for the frequency
of operation shown in Table I for the sake of simplicity. A strong
interaction between forward and backward components can
be seen in the rod structure that gives rise to a large difference
between the Bloch mode and the waveguide mode. Thereby, the
mode profiles in the dielectric and photonic crystal waveguide
are rather different, as it is shown in Fig. 6(a), so that a higher
mode mismatch exists which increases reflection and scattering.
The results shown in Fig. 11(a) are only related with the funda-
mental Bloch mode. However, the increase of scattering means
that coupling losses are also determined due to interaction with
higher order modes. Therefore, clear correspondence between
the results shown in Figs. 11(a) and 4 cannot be seen. On the other
hand, it can be seen that the Bloch mode in the hole structure
is mainly determined by the forward component. Furthermore,

27)
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Fig. 11. Influence of forward and backward components as a function of the
cut position within the basic period normalized by the lattice constant (z/a) for
the (a) rod and (b) hole structures.

the ypw and ypw values are mainly constant along different
cut positions within the basic period, which explains the low
dependence of the transmission efficiency with the chosen cut
position shown in Fig. 5(a). We attribute this behavior to the total
internal reflection effect that results in a large similarity between
the Bloch mode and the waveguide mode. This similarity can
also be shown in the mode profiles shown in Fig. 6(c) and
explains the results reported in [31], where it was shown that
the properties of the photonic crystal waveguide can be similar
to those obtained from an effective corrugated waveguide.

For different frequencies, we obtained similar curves for both
rod and hole structures. In the latter, we observed that, for fre-
quencies close to the band edge, the reduction of the transmis-
sion efficiency as well as the higher variation with the chosen cut
position, shown in Fig. 10, was associated with an increase of
the backward components, indicating a higher mode mismatch.
However, we noticed that the reflection was maintained at a very
low value, indicating that coupling losses mainly arose due to
scattering. Therefore, the steep dip, shown in Fig. 10 and accen-
tuated for frequencies close to the band edge, can be attributed
to the complex interplay between mode mismatch and interac-
tion with higher order modes.
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E. Relation to Approximate Formulas

Finally, we also studied the usefulness of the classical approx-
imate formula employed to study fiber-coupling issues (see, e.g,
[32]) for interfaces involving photonic crystal structures. The
general expression of this formula is given by

)= Re{ (L1, Hyy) (B, Hy ) /(Ew, Hiy) }
Re{(Er, Hf)}

where Re denotes the real part.

First, it is important to point out that this formula was suc-
cessfully used to study radiation losses of a structure formed
between a dielectric waveguide and a semi-infinite Bragg mirror
[18]. In this case, the nonpropagating fundamental Bloch mode
operating in the bandgap was considered and it was obtained that
the reflection of the structure could be calculated as n? but using
the forward field of Bloch mode instead of the total field. The
proof of this assessment is beyond the scope of this paper, how-
ever, the fact of using only the forward field to calculate 72 can
be understood from (20) that shows that the transmission only
involves the forward components when the input waveguide has
the same index profile as the first layer of the photonic crystal
waveguide, as occurs in [18].

In our case, we have analyzed the usefulness of (28) in order
to calculate the transmission efficiency in the rod and hole struc-
tures. Unlike the work in [18], the transmission in this case re-
lies on the fundamental guided propagating Bloch mode. In Ap-
pendix A2, it is demonstrated how (28) can also be obtained fol-
lowing the derivation presented in Section II when mediums I
and II are z-invariant. In principle, this derivation is not valid
when medium II is a photonic crystal because the orthogonality
relation is not true if the cross product is taken with the for-
ward field of the Bloch mode. This implies that the coupling to
higher order Bloch modes in addition to the backward compo-
nents of the fundamental Bloch mode should be negligible to
ensure the validity of the formula. This result can be interpreted
by looking at the forward and backward components of the fun-
damental guided Bloch mode. As previously shown, the funda-
mental guided Bloch mode in the hole structure is mainly de-
termined by the forward components, however, a stronger inter-
action between the forward and backward components exists in
the rod structure. Furthermore, a high transmission is achieved
in the former case so that the coupling to higher order Bloch
modes as well as the reflection can be neglected. Therefore, we
conclude that, only in very specific cases, (28) can be used for
coupling issues in photonic crystals.

(28)

V. CONCLUSION

Coupling losses have been analyzed at an interface formed by
a dielectric waveguide butt coupled to a photonic crystal wave-
guide. The main contribution of the paper is the derivation of
closed-form expressions for the reflection and transmission ma-
trices that completely characterize the scattering that occurs at
the interface. Analytic expressions are based on an eigenmode
expansion technique but the same derivation can be used with
other field expansions. Furthermore, we showed that the clas-
sical approximate formula employed to study fiber-coupling is-
sues can only be used for interfaces involving photonic crystal
structures in very specific cases.
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A similar procedure to the one followed here can be derived
to analyze other coupling problems. Furthermore, it is important
to mention that although in this paper we have considered a 2-D
problem for the sake of simplicity, analytic expressions are also
valid in three-dimensional (3-D) problems. Therefore, they can
be a useful instrument in order to study coupling issues in 3-D
avoiding highly consuming resources and complex simulations.

In a second step, analytic expressions, validated by means of
CAMEFR and FDTD simulations, were used to analyze coupling
losses in two different photonic crystal structures. We showed
that the transmission efficiency can be significantly improved
by choosing the optimum cut position within the basic period of
the photonic crystal. Thereby, the transmission efficiency can
be increased from values lower than 5% to values near 70% for
the rod structure while efficiency near 100% can be achieved
for the hole structure. On the other hand, we obtained that, even
choosing the optimum interface, the maximum transmission ef-
ficiency is limited by the group velocity mismatch. Finally, we
showed that the behavior of the coupling efficiency can be partly
predicted by analyzing the forward and backward components
of the guided propagating Bloch mode.

APPENDIX A
DEMONSTRATION OF THE REFLECTION MATRICES EQUALITY

In this Appendix, it is demonstrated that (12) is equivalent to
(23), which is defined by

R = Ryo + T BT. (A1)
First, we can put (A1) into the form
R = (Ri2T5,'(I - RuBF')F + T B) T. (A2)
After some algebraic manipulations, we obtain
R= (R12T1_21F + T3 (Th2Ton + Ro1R21)B)T  (A3)
where it can be shown that
T12T51 + Ro1 By =1 (A4)

by using the self-inverting property of the scattering matrix and
relating it with the transfer matrix [22]. Thus, it can be shown
that (A3) is equal to (12).

APPENDIX B
APPROXIMATE FORMULA FOR THE POWER COUPLING
EFFICIENCY IN z-INVARIANT MEDIA

The approximate formula usually employed to study fiber-
coupling issues can also be derived from (1) and (2). In this case,
the reflection is neglected and the transmission is obtained by
taking the right cross product of (1) with HI! and the left cross
product of (2) with E%I. However, as the reflection has been
neglected, the transmission efficiencies obtained from (1) and
(2) will be different, as follows:

(Eps H') = 3 175 (B HY')
J

(Bt Hy) = D T3 (B H.
J

(B1)

(B2)
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The transmission from the incident mode into the desired trans-
mitted mode is obtained using the orthogonality relation in (B1)
and (B2) which yields

Tr = (Er, Hu)/ (B, Hir) (B3)
Ty = (B, Hy) /(F, Hi). (B4)
The power coupling efficiency is then described by

Re{(Er, Hy) }
However, the above derivation is normally followed by using the
conjugated magnetic field, which gives rise to the same results
provided we have lossless materials. Thus, (BS) results in

y = Rel(Br Hiy)(Eu, Hi)/(Bu, Hiy}

Re{(Ey, Hy)} '
In conventional index-guiding waveguides, the tangential com-
ponent of the magnetic and electric fields are related by the wave
impedance, allowing us to simplify (B7) into the well-known
formula

(B6)

(Ex, By 2
= L —. (B7)
1= By Ef) (B, By
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