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Phonon-polariton excitations in photonic crystals
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The incorporation of materials which exhibit transverse phonon-polariton excitations into a photonic crystal
produces an intricate optical system possessing unique and varied photon phenomena. In particular, we dem-
onstrate theoretically that such a system will exhibit both near-dispersionless bands with field localization in
the polaritonic material and metalliclike bands with complete flux expulsion in an extremely small frequency
interval around the characteristic phonon frequency. Moreover, when the fundamental resonances of the po-
laritonic rods overlap with the bands of a geometrically identical metallodielectric crystal, nearby states will
couple to produce a band in which the localized field varies continuously between two distinct nodal patterns,
in an exceedingly small frequency range. We also discuss the implications of losses on these phenomena and
verify that our results can be realized experimentally.
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I. INTRODUCTION

In recent years, the study of polar media which perm
transverse phonon-polariton excitations has comman
great attention both experimentally1 and theoretically2 due to
the unique and well-understood frequency-dependent die
tric function. In bulk polaritonic materials, there is a fr
quency range~thepolariton gap! in which the propagation o
electromagnetic~EM! waves is prohibited. Such a frequenc
range is generally called a photonic band gap~see Fig. 1!.
This photonic band gap~PBG! is unrelated to translationa
symmetry, unlike the PBG properties of crystals of const
dielectric materials, known as photonic crystals. Since
ground-breaking work of Yablonovitch,3 and John,4 the ex-
plosion of research into the design and fabrication of pho
nic crystals with complete PBGs~Ref. 5! has inspired a
wealth of potential telecommunications applications, inclu
ing waveguides, channel drop filters, and omnidirectio
reflectors.6–8 We demonstrate how the substitution of pola
tonic materials into photonic crystals introduces a wh
range of exciting physical phenomena.

At a resonance between a transverse-optical phono
frequencyvT and a transverse EM wave, the phonon-pho
coupling induces a radical change in the material’s opt
response. At low wave vectors, a simple model with disp
sionless phonons yields the dielectric function9

«~v!5«`S v22vL
2

v22vT
2D , ~1!

where«` is the dielectric response at high frequency, andvL
is related to«` and vT through the well-known Lyddane
Sachs-Teller relationvTA«(0)/«`. Clearly, the power of po-
laritonic materials lies in the opportunity to study the lar
epsilon and negative epsilon regimes using the same phy
structure by merely choosing the frequency of light bel
vT or inside the polariton gap betweenvT andvL .
0163-1829/2003/68~7!/075209~12!/$20.00 68 0752
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Various aspects of photonic band gaps and band struct
of polaritonic photonic crystals~PPCs! have been previously
studied using a diverse set of theoretical tools.10–15Work by
Sigalaset al.10,11 focused on determining the photonic ban
gaps in a two-dimensional~2D! photonic crystal slab com
posed of polar materials by analyzing the transmission co
ficient as a function of frequency using the transfer-mat
method. To our knowledge, the first 2D PPC band structu
were calculated by Zhanget al.12 and followed by Kuzmiak,
Maradudin, and McGurn.13 In both works, the authors iden
tify as the major development the presence of flat, alm
dispersionless bands below the phonon frequencyvT .

Kuzmiak et al. postulated an explanation for these ban
as coupling to the localized cavity modes of an isolated r
We show that this proposition is indeed correct, by providi

FIG. 1. ~Color! Dispersion relation for a material with polarito
dielectric function given by Eq.~1!.
©2003 The American Physical Society09-1
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a fundamental model applicable in one, two, or three dim
sions for photonic crystal properties in the large-« regime
that quantitatively explains the locations of the PPC ba
below vT . In doing so, we demonstrate how the coupli
can occur in totally different manners for the TE and T
modes depending on the location ofvT relative to the bands
of a metallodielectric crystal, with the polaritonic materi
replaced by a perfect metal. In some cases, the crystal
manifest an anticrossing behavior of the TE bands (H out of
plane! that has not been previously observed~due to the
choice forvTa/2pc, wherea is the PPC lattice spacing, o
either 0.5 or 1.0 in the two other works12,13!.

In addition, we provide a description of the bands direc
abovevT , a metallic regime that has not been previou
investigated. The presence of TE and/or TM bands wh
converge tovT is again regulated by the position ofvT
relative to the bands of the metallodielectric crystal. The s
ations in which bands exist arbitrarily close tovT both above
and below lead to the introduction of a uniqueflux expulsion
phenomenon, where light can be transferred completel
and out of the polaritonic material into the interstitial phot
nic crystal medium asv sweeps acrossvT in an extremely
small interval.

The paucity of previous PPC calculations is perhaps
to computational obstacles in traditional time-domain a
plane-wave method~PWM! codes that crop up near the pol
and zeros of« at vT and vL , respectively. However, it is
precisely these frequency ranges, where the materials d
from normal optical behavior, which we have found to be
particular interest. To overcome these difficulties, we emp
a technique based on vectorial eigenmode expansion,
cussed in Sec. II, which is ideally suited for frequenc
dependent dielectrics and is accurate over an extremely l
range of«.

In Sec. III, we provide a comprehensive description of
band structures of 1D PPCs. We introduce our model for
flat bands belowvT , and demonstrate the excellent agre
ment with our numerical results. We also characterize
bands inside the polariton gap atG, and demonstrate that fo
certain values ofvT , vL , and«` , there can be a characte
istic frequency at which the entire crystal becomes trans
ent. In addition, the simplicity of the 1D crystal allows us
provide an analytic solution for the wave vector of the ban
at vL at which«(v) goes to zero.

In Sec. IV, we adapt our model of the flat bands belowvT
to a 2D square lattice of polaritonic rods, and demonstr
the difference in behavior between TE and TM polarizatio
The metallic bands directly abovevT appear, and we explain
how the band structure in these two regions can be sim
tuned by varyingvT , in particular, to exhibit flux expulsion
Finally, in Sec. V we discuss the effects of losses in
polaritonic material.

II. COMPUTATIONAL METHOD

To calculate the Bloch modes of a structure consisting
frequency-dependent materials, we use an approach bas
vectorial eigenmode expansion.16 We identify a unit cell in
the crystal oriented along a certain propagation direction,
07520
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subsequently divide this cell into layers in which the ind
profile does not change in the propagation direction~see Fig.
2!. In each of these layers, we expand the field in the lo
eigenmodes of that particular layer. The only approximat
is the size of the eigenmode basis.

Using mode matching, we can eventually derive reflect
and transmission matrices that completely describe the s
tering behavior of the unit cell:

F25T12•F11R21•B2 , ~2!

B15R12•F11T21•B2 . ~3!

Here,F andB are column vectors containing the expansi
coefficients of the forward and backward propagating fiel
respectively, andT12, R21, etc. are explicit functions of fre-
quency. We then impose Bloch boundary conditions

F25e2 ikaF1 , ~4!

B25e2 ikaB1 . ~5!

Equations~2! and ~4! can be recast as a generalized
genvalue problem, which can be solved for each frequen
whereI is the unit matrix andq5e2 ika:

FT12 R21

0 I GF F1

qB1
G5qF I 0

R12 T21
GF F1

qB1
G .

In contrast to other approaches which compute the eig
vectors of the transfer matrix,17,18 no matrix inversions are
required in our approach and therefore the method is num
cally more stable. We also want to point out that in o
dimension, this method is equivalent to the well-know
transfer-matrix method~TMM !.

Since the independent variable in these calculations is
quency rather than wave vector, it is trivial to account f
material dispersion. Moreover, it is possible to increase
frequency resolution locally, an advantage over time-dom
simulations where a frequency grid of increased resolutio
implemented through a global increase in the number of t
steps. This flexibility is exceedingly important for polariton
materials, since there are rapid changes in the dielectric fu
tion over very small frequency intervals nearvT . These

FIG. 2. Unit cell in a periodic structure marked by th
solid outline. Note the axis convention which will be adhered
henceforth.
9-2
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PHONON-POLARITON EXCITATIONS IN . . . PHYSICAL REVIEW B68, 075209 ~2003!
techniques were implemented in our generic photonic sim
lation tool CAMFR, which is freely available from http:/
camfr.sourceforge.net

A further restriction on time-domain and PWM calcul
tions involving frequency-dependent dielectric functions
the necessity for a self-consistency loop when solving for
bands. In addition to the increased computational time,
have found the self-consistency step to introduce serious
merical instabilities in certain ranges, particularly where« is
very small. Kuzmiaket al.19 also mention the danger o
missing zeros in the determinant of the matrix of expans
coefficients in the plane-wave expansion if the incremen
frequency is too small. For the specific case of a polari
dielectric function, it is possible to recast the solutions
Maxwell’s equations as a generalized eigenvalue equa
using the plane-wave method to avoid the self-consiste
loop,13 but for general frequency-dependent dielectric fun
tions this simplification is impossible.

III. 1D POLARITONIC PHOTONIC CRYSTAL

We first examine the band structure of a 1D photo
crystal with propagation in thex̂ direction. The modes are
TEM in this case, with bothE andH parallel to the interface
For definiteness, we consider the polariton material CsI, w
vT51231012 rad/s, vL51631012 rad/s, and «`53.0.9

With a lattice constant ofa537 mm, the polariton gap oc-
curs between the normalized frequenciesvT50.24 andvL
50.32~in units of 2pc/a). For the most part, we will use ai
as the ambient material between polaritonic layers («amb
51). The dielectric function and band structure are sho
in Fig. 3.

There are three interesting features of Fig. 3~b! that are
immediately apparent:~i! the flat bands belowvT , ~ii ! the
modes existing inside the polariton gap belowvL , and~iii !
the portion of the band around the frequencyv50.3533

FIG. 3. ~Color! ~a! Polariton dielectric function of CsI with
vT50.24,vL50.32, and«`53.0. ~b! Band structure of a 1D pho
tonic crystal composed of CsI and air, withd15a/2. Note the flat
bands belowvT , the penetration of the phononlike part of the ba
nearvL into the polariton gap, and the transparency point~repre-
sented by the open circle! where«51 and the band intersects th
line v5ck.
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where «51 and the band intersects the linev5ck. One
important question is whether our choice of polariton para
eters$vT ,vL ,«`% holds any importance. In one dimensio
the location of the polariton gap has little effect, but a d
ferent picture will emerge in two dimensions.

We study~i! by examining the modes of photonic crysta
in the large index contrast limit. Our understanding of~ii !
comes from an analytic solution of the wave vector atvL
given by the TMM, and~iii ! is a simple by-product of the
transparency of the crystal at a particular frequency.

A. Large-n slab modes

As previously mentioned, other authors12,13have observed
the flat band phenomenon in PPCs belowvT . However,
what is missing is a theory to describe both qualitatively w
the dispersion is so small, and quantitatively where th
bands occur. We provide an answer to both of these issue
detail for a 1D PPC with a mind toward facilitating our fu
ture discussion in two dimensions. Directly belowvT , the
polariton material has a large index of refraction, and so
order to understand the flat bands in this frequency range
initially ignore the frequency dependence of the material a
consider a slab with fixed, largen. As n→`, the reflectivity
normal to an air interface may be shown to behave as

R5Un21

n11U
2

→1.

Hence, there are localized modes within the dielectric
the formwm5sin(vmx), with frequenciesvm5mpc/nd. We
note that these are of course only true localized modes in
limit n→`; for finite n, the leakage of the fields into the a
region allows for coupling between adjacent slabs and in
duces frequency dispersion.

If we now assume a frequency-dependent dielectric fu
tion, the slab resonances also become frequency depen

We can solve the equationv̂m5vm(v̂m)5mpc/dA«(v̂m)
to obtain

v̂m
2 5

1

2
@vL

21Vm
2 2A~vL

21Vm
2 !224Vm

2 vT
2#, ~6!

whereVm5mpc/dA«`.
In the limit of extremely localized fields, we expect th

bands of the 1D polaritonic photonic crystal to follow
simple tight-binding model with a Hamiltonian

Hwm5v̂mwm1T~wm111wm21!,

and bands of the formv(k)5v̂m1T cos(ka/p). The Hamil-
tonian has been linearized to obtain eigenvaluesv rather
than the standardv2 by expanding in the small neares
neighbor coupling integralT. Similar tight-binding models of
photonic crystals have shown excellent agreement when
dielectric material has large«.20

In Table I, we compare the frequencies atk5p/2a to v̂m
and find excellent agreement, to within 0.1%, for allm.1.
This clearly indicates that the localized mode model wo
beautifully and allows for the precise determination of n
9-3
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only the location of every band belowvT but also, as we will
examine more closely in two dimensions, the shape of
highly localized fields inside the polariton material.

B. Defectlike states in the polariton gap

We now turn our attention to the other side of the pol
iton gap. In Fig. 3~b!, we see that in the rangev
P@0.2997,vL# there are states inside the polariton ga
where «(v),0. There is a simple interpretation of the
modes. In the crystal, the slabs of air can be treated
defects in an otherwise homogeneous polariton mate
drawing the states neark50 aroundvL down into the gap.
This is the opposite of the normal effect of air defects in
photonic crystal; the air becomes the higher index mate
whenv is nearvL .

At v5vL , the wave vector is given analytically by th
TMM as

k~vL!5arccosFcos
vLd1

c
2

vLd2

2
sin

vLd1

c G . ~7!

This wave vector is plotted in Fig. 4. Note that for 0.52
,vL,0.854 there is a band in the polariton gap that exte
throughout the Brillouin zone.

For the bands inside the polariton gap, we can charac
ize the decay rate of the field strength inside the polari
material of a mode of frequencyv0 at k50 by Au«(v0)u,
which we plot in Fig. 5 as a function of«` for various values
of vT and vL . We see that the decay rate increases w
increasingvT or vL , and asymptotes as a function of«` .

C. Crystal transparency

The crystal becomes transparent to light at a frequenc
v t50.3533 in Fig. 3~b!, where«51 and the band intersect
the linev5ck. In general,«(v)5«amb when

v2[v t
25

1

«`2«amb
~«`vL

22«ambvT
2!5

«02«amb

«`2«amb
vT

2 .

~8!

TABLE I. Comparison of the band frequencies atk5p/2a to

v̂m from Eq.~6! for a 1D crystal of CsI in air withd15d25a/2. In

the last column is the value of« at v5v̂m .

m v (p/2a) v̂m «(v̂m)

2 0.2362 0.235 900 71.88
3 0.238 256 0.238 194 158.6
4 0.239 008 0.238 988 280.1
5 0.239 361 0.239 353 436.4
6 0.239 555 0.239 551 627.3
7 0.239 672 0.239 670 853.0
8 0.239 749 0.239 748 1113
9 0.239 801 0.239 801 1408

10 0.239 839 0.239 839 1738
11 0.239 867 0.239 867 2103
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Note that when the slabs are in air,v t.vL . However, the
point of transparency will be belowvT when«amb.«` and
vT

2.vL
2(«` /«amb). This provides a unique tunability to

polaritonic system, since the transition to transparency
occur in a region of either rapidly or slowly varying index. I
addition, note that there is nov t when«`,«amb,«0.

IV. 2D PHOTONIC CRYSTALS

We use our understanding of 1D crystals from the pre
ous section to infer much of the relevant behavior in tw
dimensions. However, the existence of bands in a metall
electric crystal will add rich, different phenomena and co
trol possibilities that open the door for many exciting app
cations.

The band-structure calculations of Zhanget al.12 exclu-
sively use a polariton gap between@0.5,1.0#, while those of
Kuzmiak et al. use@1,1.08#. However, we demonstrate tha
it is impossible to describe all of the complex elements of
band structures of 2D PPCs using a single choice of die
tric function parameters. The two-dimensional polariton
photonic crystal that we examine consists of square rod
side 2r in air, with 2r /a50.25, along the directionG to X.

A. Large-n cavities

We can understand the physics of a polaritonic crysta
two dimensions at frequencies belowvT by first considering
the modes of a square cavity in air withk50 along the rod.
As n→`, the reflectivity goes to 1 at all angles away fro
Brewster’s angle. To see how well this picture works f
finite n, we compare the resonances of the square cavit
the metallic waveguide modes with frequencies

v lm5
pc

2rA«
~ l 21m2!1/2, ~9!

FIG. 4. The dependence of the wave vectork at v5vL on vL ,
according to Eq.~7!. The black dot refers to the value ofvL used to
calculate the band shown in the inset intersectingvL50.32 atk
5p/2a for a 1D crystal of CsI in air. Note that for 0.527,vL

,0.854, there is a band entirely within the gap.
9-4
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FIG. 5. ~Color! The rate of decay of the field strength inside t
polariton material of a mode of frequencyv0 at k50, given by
Au«(v0)uk50, as a function of«` . The black lines are forvT

50.32 (2pc/a) and red are forvT50.48 (2pc/a). From bottom
to top, the successive curves of each color are forvL from vT

10.04 (2pc/a) to vT10.2 (2pc/a) in increments of
0.04 (2pc/a).
07520
FIG. 6. ~Color! Resonance frequencies of a square cavity w
n520 compared with the metallic waveguide frequenciesv lm ,
shown as black horizontal lines in the center. TE modes are sh
in red, TM in blue. The arrows indicate association between mo
with fields of the same nodal structure.
FIG. 7. ~Color! Band structure of a 2D PPC of square TlCl rods in air with 2r /a50.25, vT50.4, vL51.0, and«`55.1. The TE bands
are in red in~a!, TM in blue in ~b!. Note the three different frequency spacings for the intervals@0,0.32#, @0.32,0.4# ~shaded in gray!, and
@0.4,1.5#. The primary photonic band gap in the TM modes is indicated by purple shading.
9-5
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HUANG, BIENSTMAN, JOANNOPOULOS, NELSON, AND FAN PHYSICAL REVIEW B68, 075209 ~2003!
where the modes withl 50 or m50 are excluded from con
sideration since the fields should go to zero at the bound
It is important to note, as in one dimension, that there are
true modes of the isolated rod with out-of-planek50, but
rather pseudomodes that become exact only in the limi
infinite n. Keeping this is mind, we nevertheless refer
them as resonance modes, or resonance frequencies,
the true PPC states will retain the characteristics of th
pseudomodes at finiten.

In Fig. 6, we plot the cavity resonance modes for a squ
rod with n520 for both TE and TM polarizations and com
pare them to the model frequenciesv lm . The correspon-
dence was made by examining the field pattern inside the
to determine the nodal pattern; the TE modes show slig
better agreement with the frequenciesv lm .

We have used square rods because of the simple, ana
solution given in Eq.~9! for the metallic waveguide mode
confined to the plane with zero out-of-plane wave-vec
component. We infer that in a general 2D large-n photonic
crystal, the band structure is governed primarily by the re
nances of a single rod, whose frequencies are determine
the rod’s geometry, where the periodicity of the crystal w
only introduce slight dispersion.

B. 2D band structure

In this section, we use the insight gathered in Sec. IV A
understand the band structure of a 2D PPC in the high in
region. In Fig. 7, we show the band structure for the pola
tonic material TlCl with vT51231012 rad/s, vL530
31012 rad/s, and«`55.1 ~Ref. 9! ~in normalized units,vT
50.4 andvL51 for a562.8mm!.

The most striking feature is that the TE and TM ban
exhibit very different behaviors. As expected, the TM ban
closely resemble the 1D bands predicted by our simple tig
binding model since theE field is continuous everywhere
We demonstrate the low amount of dispersion by plotting
group velocity as a function ofv for all of the TM bands
below vT in Fig. 8.

However, the TE bands are roughly linear, except n
particular frequencies~which we identify as resonances of
single rod! where they rapidly flatten. Let us examine th

FIG. 8. ~Color! Group velocity in units of 2c as a function of
frequency of the TM bands displayed in Fig. 7 in a 2D TlCl PP
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behavior more closely. The frequency-dependent resona

solving v̂ lm5pc/2rAe(v̂ lm) are

v̂ lm
2 5

1

2
@vL

21V lm
2 2A~vL

21V lm
2 !224V lm

2 vT
2#, ~10!

whereV lm5pc( l 21m2)1/2/2rA«`. In Fig. 9, these frequen
cies are overlayed upon the TE bands nearvT , to show the
close agreement. The largest gap at the band edges in
TlCl crystal is relatively small~1.6%!, occuring at the mid-
gap frequencyvmid50.3175.

Why the difference between TE and TM modes? The
swer lies in a comparison to the bands of a metallodielec
crystal with the same geometry of square metal rods, sho
in Fig. 10. We point out one major difference between pol
izations: the lowest TE band goes to zero frequency atG,
lowest TM band has a frequencyv(G)50.409. In addition,
there is a gap at X in the TE bands between 0.458 and 0.
while the lowest TM band has a frequencyv(X) 50.546.

It is clear from Fig. 9 that the lowest TE-polarized meta
lodielectric band increases in frequency fromG to X in pre-
cisely the same fashion as the linear regions of the TE ba
of the PPC. Thus, we interpret this observation as the a
crossing interaction of the highly localized resonance mo
of the polaritonic rods with the modes of the metallodiele
tric crystal ~with the field completely removed from th
rods!, which is possible due to the small but finite leakage
the resonance modes out of the rods. In agreement with
simple characterization, the field near the band edges
sembles the resonance mode of the rod closest in freque

FIG. 9. ~Color! Matching of the frequency-dependent metal

waveguide resonance frequenciesv̂ lm from Eq.~10! to the 2D crys-
tal band structure of TlCl rods in air with 2r /a50.25. The reso-
nance frequencies are displayed as horizontal black, dotted li
the lowest TE band of the metallodielectric crystal is shown a
dashed red line.
9-6



c
s
f
e
t

ta
g
g

tio
s

ve
in

M
d

ds
g

n

de
on
th
E
e

e
in

ate

the

the
s: a

en
es

he

ig.

e-
,
T

of

-

osi-
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The implications of this phenomenon on the importan
of the location of the polariton gap are significant. There i
frequency cutoffvmetal50.458, the maximum frequency o
the lowest TE band of the metallodielectric crystal betwe
G and X. Belowvmetal, all of the bands of the PPC are fla
nearG and X as a result of anticrossing between the me
lodielectric TE mode and a particular rod resonance. Alon
single band, the nodal surface of the field in the rod chan
to match the two different resonance modes atG and X.

However, a drastic change in the band characteriza
occurs whenvT.vmetal. In Fig. 11, we plot the TE band
for an SiC crystal withvT514.931013 rad/s, vL517.9
31013 rad/s, and«`56.7 ~Ref. 9! ~in normalized frequency
units, fora56.3 mm, vT50.5, andvL50.600 67). For this
set of parameters,v̂1150.474, and consequently we obser
dramatically different behaviors from all of the TE bands
the TlCl crystal withvT50.4. Now all of the bands below
vT , aside from the lowest, are very flat, much like the T
bands, representing a single resonance mode with slight
persion resulting from interrod coupling of the weak fiel
outside the rods. In this case, the gaps are larger, reachin
high as 3.5% aroundv050.452 in Fig. 11.

Returning to Fig. 9, we observe that there seems to be
interaction with the (2,2) resonance mode nearv̂22. The fact
that no anticrossing occurs for this and any of the mo
(2l ,2m) with even indices is a direct result of the comm
symmetry of these modes. From Fig. 12, it is clear that
Hz component of the lowest metallodielectric crystal T
mode has even symmetry in the plane with respect to refl
tion about the line parallel to thex axis crossing through the
center of the cell. For any mode with even indices,Hz is odd,
so the overlap integral is zero. This symmetry argument
plains why none of the bands formed through anticross

FIG. 10. ~Color! Band structure of a 2D crystal of square, m
tallic rods ~in black! in air with 2r /a50.25. TE bands are in red
TM in blue. Note the frequencies at the band edges of the first
and TM bands.
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will have field patterns resembling the (2l ,2m) modes inside
the rod, or resembling the one out of the two degener
modes with frequencyv̂2l ,2m11 with odd symmetry.

However, the question remains as to what happens to
modes of a single rod with odd symmetry inHz once peri-
odic boundary conditions are imposed. We expect that
same description that was used for the TM bands applie
flat band should be formed near the frequencyv̂ lm whose
dispersion is a result only of weak interrod coupling betwe
nearby cells. Due to the greater localization of the mod
with TE polarization, the dispersion is extremely small. T
fact that there is no band nearv̂22 in Fig. 9 is simply a result
of the frequency grid spacing being chosen too large. In F

E

FIG. 11. ~Color! Matching of the cavity modesv̂ lm from Eq.
~10! to the 2D crystal band structure of SiC rods in air with 2r /a
50.25. Note the distinctions from Fig. 9, due to the placement
vT abovevmetal.

FIG. 12. ~Color! The Re@Hz# field pattern for the metallodielec
tric crystal TE mode at frequency 0.3 (2pc/a). Note the even
symmetry in the plane with respect to reflection about thex axis. In
this and all future field plots, blue indicates negative and red p
tive, with zero in white.
9-7
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13, we observe that the band is in fact present and ha
width on the order of 631027.

For the case of degenerate modes of frequencyv̂2l ,2m11,
we show in Fig. 14, using the (4,1) and (1,4) modes as
example, that the even-symmetry mode exhibits the a
crossing phenomenon, while there is a flat band correspo
ing to the mode of odd symmetry. Again, the bandwidth
this case is extremely small, on the order of 1026.

C. Node switching

There are several interesting metallic waveguide m
pairs connected by a single TE-polarized PPC band, suc
( l ,m)5(4,1) and (3,3), where the separation between
two frequencies v̂ lm in the PPC is extremely sma
@0.0007 (2pc/a) for the TlCl crystal parameters in Se
IV B #. Along this band, the nodal structure inside the rod

FIG. 13. ~Color! The (2,2) localized resonance mode of t
polariton rod, showing no anticrossing interaction. TheHz field
pattern inside the rod is overlayed to show the odd symmetry w
respect to reflection about thex axis. Note the frequency interva
in the inset, demonstrating the extremely small bandwidth
631027.

FIG. 14. ~Color! The contrast between the interactions of t
(4,1) and (1,4) modes with the lowest metallodielectric TE mo
The Re@Hz# field patterns inside the polariton rod are overlaye
Note the anticrossing with the mode of even symmetry across tx
axis, and the dispersionless band with bandwidth 831027 for the
mode of odd symmetry.
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sforced to continuously change from one pattern to anothe
shown in Fig. 15. This phenomenon provides an unpr
edented capability for a state localized in the rod to cha
its coupling behavior over a very small frequency range.
terms of the practical impact of this phenomenon on pot
tial applications, the fact that some of these mode pairs, e
~4,1! and ~3,3! and ~3,4! and ~5,1!, can be found at frequen
cies reasonably far away from the region nearvT , where
losses can become very large, bodes well for future resea

D. The metallic regime

We now switch gears, to the other side of the discontin
ity of «(v) at vT . AbovevT , «(v) is very negative, so we
expect the polaritonic rods to behave as metals and e
nearly all of the field. Therefore, the possibility of findin
bands in the region close tovT is governed by the existenc
of bands in the metallodielectric crystal in Fig. 10 at the
frequencies. The positions of the gaps in both the TE- a
TM-polarized bands mark exactly where polariton exci
tions are prohibited in the photonic crystal.

In Fig. 16~a!, we plot the magnetic-field componentHz of
the TE band at the frequencyv50.44, where«(v)5

h

f

FIG. 15. ~Color! Node switching.~a! The sixth TE band con-
necting the~4,1! cavity mode to the~3,3! cavity mode of a 2D PPC
with square rods of TlCl, 2r /a50.25, with selected frequencie
indicated by the numbered arrows.~b! The real part ofHz inside the
rod at the frequencies indicated in~a! between 0.387 79 and
0.388 45.

.
.
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265.2, for the same TlCl PPC in Sec. IV B withvT50.4,
vL51.0. We observe in Fig. 16~b! that there is no TM band
at vT , as we would expect, since the lowest-frequency m
allodielectric TM mode is atv(G)50.409~see Fig. 10!.

In Fig. 17, we plot the electric-field componentEz at the
frequencyv50.523 in a 2D square PPC of SiC rods. The
is now no TE band atvT , since the phonon frequency is no
within the TM gap@0.458,0.517#. Deviations from metallic
behavior are slight for the entire band, even atv50.523
near the band edge. Previous metallodielectric cry
band-structure calculations by Kuzmiak, Maradud
and Pincemin,19 using the frequency-dependent dielect
function

«metal512
vp

2

v2
,

FIG. 16. ~Color! Metallic behavior in the TE bands.~a! The first
TE band abovevT in a 2D TlCl PPC is represented by the solid r
line, with the corresponding portion of the lowest TE band in
metallodielectric crystal shown by a dashed red line. The o
circle contains the portion of the PPC band at frequencyv50.44,
for which the real part of the magnetic-field componentHz is plot-
ted in a single supercell in~b!, with the rod outline in black. The
wave-vector axis begins not atG but at 0.8p/a.

FIG. 17. ~Color! ~a! The first TM band abovevT in a 2D SiC
PPC shown by a solid blue line, with the corresponding portion
the lowest TM band in a metallodielectric crystal shown by
dashed blue line. The open circle contains the portion of the P
band at frequencyv50.523, for which the real part of the electric
field componentEz is plotted in a single supercell in~b!, with
the rod outline in black. The wave-vector axis begins not atG
but atp/2a.
07520
t-

al
,
wherevp is the plasmon frequency of the metal, have d
played similar behavior to that in Fig. 10 for frequenci
below vp where u«u is less than around 10, thus we a
clearly well within the regime considered as metallic atv
50.523 since«(v)5224.

These observations lead us to the introduction of the p
nomenon of flux expulsion in PPCs, where small change
v near the interface between the metallic and dielectric p
tonic band-gap regimes can induce enormous variation
the topology of the field pattern. We demonstrate this p
nomenon in Fig. 18. Using other geometries and/or ot
materials to surround the polaritonic medium~in particular,
nonlinear materials!, this tool should be extremely useful a
a switch to shift light in and out of different physical region
of the crystal. In the following section, we examine mo
closely the effect of losses, and we find that for some pol
tonic media, losses are restricted to a sufficiently small a
around vT so that practical utilization of flux expulsion
should be possible.

E. Other phenomena

We have chosen to focus on the large-n and metallic lim-
its, because the physics in two dimensions versus one dim
sion occurs in these frequency ranges. However, the o
two phenomena mentioned in Sec. III are still relevant:
transparency condition is unchanged, and there are ba

n

f

C

FIG. 18. ~Color! Flux expulsion.~a! The band directly abovevT

and a flat band just belowvT in a 2D PPC of TlCl rods with
2r /a50.25. The Bloch states withk50.43 (2p/a) at the frequen-
ciesv50.3916 andv50.403 are marked by arrows.~b! The field
pattern of the real part ofHz at v50.3916, where«5649. ~c!
The field pattern of the real part ofHz at v50.403, where
«521773. Note the extreme contrast between the localization
the field inside the rod in~b! and the complete flux expulsion in~c!.
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either close to or intersectingvL . In particular, although no
analytic solution is known to exist for the wave vector atvL ,
we find thatk(vL) is independent ofvT , as was the case in
one dimension.

V. LOSSES

In Secs. III and IV, we provided a comprehensive analy
of the band structures of photonic crystals in one and
dimensions composed of lossless polariton materials wi
wide range of phonon frequencies and dielectric lim
The well-known model to correct for losses is the dielect
function

e~v!5«`S 11
vL

22vT
2

vT
22v22 ivG

D , ~11!

where the magnitude of the losses is represented byG. Siga-
las et al. implemented Eq. ~11! in their transmission
calculations.11 Shown in Fig. 19 are the real and imagina
parts of the dielectric function for LiTaO3, using the param-
eters given by Schallet al.:21 vT526.731012 rad/s, vL
546.931012 rad/s, G50.9431012 rad/s, and «`513.4
along the ordinary axis of the atomic crystal.

Although losses will clearly become important nearvT ,
at frequencies separated fromvT by more thanG the dielec-
tric function is mostly unchanged and the effects of los
should be minimal. For the LiTaO3 parameters given above
with a lattice constant ofa525.6mm, the second TE band
of the lossless crystal will exhibit a transition from thev̂11
50.293 (2pc/a) to the v1250.331 (2pc/a) localized rod
state. In this range, the real part of the dielectric function
qualitatively equivalent to the lossless case, and deviat
never exceed 3.2%. Moreover, the TE band ending atvT
inside the polariton gap closely follows the lowest TE ba
of the metallodieletric crystal, as in Fig. 16, which termina
at 0.458 (2pc/a). The PPC states can thus be chosen to
well within the region of large negative dielectric and yet
sufficiently removed fromvT to minimize the effects of
losses.

Therefore, the node switching and flux expulsion ph
nomena can be realized with states subject to little pertu
tion due to their removal fromvT by at least 2.5G. Key to
this analysis involving LiTaO3 are the large value of«0
513.4 and the small ratioG/vT50.032, and other material
with similar properties should also result in practical expe
mental utility. Indeed, we have verified these conclusions
explicitly including losses in select calculations for o
model PPC system with LiTaO3 rods.

VI. CONCLUSION

The ability to study many different optical response
gimes using the same physical PPC structure is an extrem
powerful tool. We have presented models for all of the r
evant frequency domains of a polaritonic material: the h
index region belowvT , the metallic region abovevT , and
the low index region nearvL . In previous works,12,13 the
authors have noted the presence of flat, dispersionless b
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nearvT . We verify these conclusions and provide a quan
tative description for the origin of these bands related to
localized resonance modes of a high index slab~one dimen-
sion! or rod ~two dimensions!. The success of this model i
shown to be excellent for a 1D slab PPC of CsI in air.

In a 2D square lattice of TlCl rods, a distinction betwe
TE and TM polarizations is immediately apparent. Anticros
ing behavior in the TE modes, contrasted against the flat
bands reminiscent of the 1D PPC band structure, is expla
by the interaction of the lowest metallodielectric TE ba
with the localized resonances of a single rod. We dem
strate that this conclusion is correct using a crystal of S
rods with a larger value ofvT inside the metallodielectric TE
band gap to eliminate the anticrossing interactions. T
property provides the unique opportunity to continuou

FIG. 19. ~Color! The real and imaginary parts of the polarito
dielectric function for LiTaO3 with «`513.4 anda525.6mm,
leading to normalized frequenciesvT50.3628, vL50.6372, and
G50.0128.
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PHONON-POLARITON EXCITATIONS IN . . . PHYSICAL REVIEW B68, 075209 ~2003!
vary the coupling behavior of a TE band over a very sm
frequency range, since the nodal structure of the field ins
the polariton rod matches different resonances of the isol
rod atG and at X.

A further use of the 2D metallodielectric band structure
to predict the presence of PPC bands directly abovevT in the
metallic regime. The locations of the TE and TM metallod
electric band gaps play the deciding role in determining
and where the PPC bands occur. By exploiting the adjace
of the large index and metallic regimes, it is possible
realize flux expulsion, effecting enormous changes in the
cation of the electromagnetic energy over a small freque
range.

In the region nearvL , important points to note are th
penetration of the phononlike band of the bulk polariton
material nearG into the polariton gap due to the air acting
a defect layer, inducing a nonzero wave vector atvL that we
have determined analytically in one dimension. In additi
there is a characteristic frequency at which the crystal
comes transparent. We have calculated conditions un
which this point is above or below the polariton gap.

For practical applications, the effects of losses in the
laritonic medium are at a maximum nearvT . However, us-
ing LiTaO3 as an example material, we found that the hi
index and metallic regimes overlap with frequency rang
in which the imaginary part of« is relatively small. There-
fore, all of these phenomena should be readily access
experimentally.

We note that it is remarkable that we have been able
observe all of the above phenomena using a single geom
structure. For wave vectors betweenG and M, the continuous
variation of the dielectric profile as a function of distan
along the propagation direction introduces the need fo
discretization approximation to the physical structure as w
as a significant increase in computational resources. We h
performed preliminary calculations to verify that our conc
sions regarding the shape and position of the bands that
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to the node switching and flux expulsion phenomena ap
conceptually without any major modifications. The ability
vary the size of the rods and the translational symme
group of the crystal should provide a further level of tunab
ity to facilitate isolating many of the effects described in th
work.

In addition, our research has provided compelling supp
for the inclusion of the vectorial eigenmode expansi
method in the set of techniques such as la
Korringa-Kohn-Rostoker22 and the multiple multipole
method,23 suitable for not only polaritonic systems but an
material with a frequency-dependent optical response.
have determined the eigenmode basis to be well converge
40 for all frequency regimes of the PPC. In both accura
and efficiency, this technique surpasses the traditional ti
domain and plane-wave method techniques. It provides
means to tackle further problems involving polaritonic ph
tonic crystals, including dissipative systems and more co
plicated crystal structures. Indeed, the complex wave-ve
solutions for the eigenmode problem in the case of lo
materials are readily available, and only numerical proble
related to the stability of the mode finder when losses
introduced have prevented a full band-structure calcula
of a lossy PPC at this time. With further research, t
nascent field of phonon-polariton excitations in photon
crystals promises to yield more exciting phenomena a
developments.
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