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CLADISS—A Longitudinal Multimode Model for the
Analysis of the Static, Dynamic, and Stochastic
Behavior of Diode Lasers with
Distributed Feedback
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Abstract—A new computer model called CLADISS is presented for
the analysis of multisection diode lasers. The model allows for the anal-
ysis of a wide variety of multisection devices with discrete or distrib-
uted internal reflections. The simulator can carry out a threshold, dc,
ac, and a noise analysis. The threshold analysis determines the thresh-
old of the various longitudinal modes of the laser. The power versus
current and the wavelength versus current characteristics are found
with the self-consistent dc analysis. In each of the dc bias points the
dynamic ac analysis can calculate the FM and AM response of the laser,
while the noise analysis can determine the frequency and intensity noise
spectra, and the line shape of the longitudinal modes. Not only do the
dc, ac, and noise analyses consider several longitudinal modes simul-
taneously, but they also take into account linear gain suppression,
spontaneous emission, and longitudinal spatial hole burning. CLAD-
ISS includes all of the longitudinal variations by dividing each laser
section in many short segments. Both the optical field and carrier den-
sity are discretized according to this segmentation.

To demonstrate the capabilities of CLADISS some nonlinear effects
in DFB lasers are treated. We first consider instabilities induced in the
side-mode suppression ratio by spatial hole burning. Next we discuss
the effects of spatial hole burning and side modes on the FM response
and on the linewidth. Finally, the model is used to calculate the line-
width floor due to the power dependence of the linewidth enhancement
factor.

I. INTRODUCTION

CONSIDERABLE research is currently being per-
formed in the field of optical coherent communica-
tion systems. Such optical systems require dynamic sin-
gle-mode diode lasers with a narrow linewidth as well as
wide tuning range when used as a local oscillator. In view
of meeting those demands new devices, such as C 3, DFB,
DBR, extended cavity lasers, and so on, were developed.
However, the complete behavior of these devices is not
always fully understood. Furthermore, one is interested
in knowing for which combination of geometrical struc-
ture and material composition a specific type of laser cav-
ity behaves optimally. Simple analytic formulations can-
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not give a satisfactory answer to many of these questions.
More and more research groups are therefore putting an
increased effort in computer-assisted laser diode modeling
[1]1-[6], not only to explain the behavior of existing de-
vices but also to predict the behavior of future devices still
on the “‘design table.”’

We developed a new diode laser simulator, called
CLADISS, which stands for ‘‘compound cavity laser
diode simulation software.”” With CLADISS all previous
mentioned types of devices can be analyzed and the sim-
ulator is sufficiently general to investigate a variety of
other, multisection diode lasers. CLADISS can carry out
a threshold analysis, a static above-threshold dc analysis,
a dynamic small-signal ac analysis, and a linewidth cal-
culation. Characteristic to all of these types of analyses is
that they consider several longitudinal modes simulta-
neously. Moreover, in the dc, ac, and noise analyses,
nonlinear gain suppression, longitudinal spatial hole
burning, and spontaneous emission are taken into account
accurately. CLADISS includes all longitudinal vari-
ations, in particular spatial hole burning, by dividing each
laser section into many short segments. Both the optical
field and carrier density are discretized according to this
segmentation. By means of the CLADISS analysis tool,
we are able to calculate the laser threshold, the output
power and wavelength versus current characteristics of the
different modes, the FM and the AM response in any dc
bias point, as well as the frequency and intensity noise
spectra, and the linewidth and line shape of each mode of
a dc solution.

In this paper we present the CLADISS package. We
first describe how the laser is decomposed in several sec-
tions. Next the mathematical description of a section is
given by means of a carrier rate equation and a set of
coupled traveling-wave rate equations, which incorporate
spontaneous emission and noise. In the following sections
each of the four types of analysis is presented in more
detail. Finally, to demonstrate the capabilities of CLAD-
ISS, we discuss some important issues related to DFB la-
sers: instabilities in the side-mode rejection induced by
spatial hole burning [1], [5], the spatial hole burning con-
tribution to the FM response [7], and the linewidth satu-
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ration at high-power levels. We also confirm our earlier
statement that for DFB lasers with a good mode rejection
ratio (greater than 30 dB at a 5 mW output power) the
linewidth floor is mainly due to nonlinear gain saturation

(81, 191

II. THE LASER STRUCTURE

Most existing diode lasers can be decomposed into a
cascade of sections which have uniform structural dimen-
sions and material properties along the longitudinal direc-
tion. Gratings form one exception to this but they are gen-
erally considered as a small perturbation of a longi-
tudinally uniform structure. In our model a laser structure
is therefore described as a concatenation of longitudinally
uniform sections, each of which can have different mate-
rial or geometrical properties. At the transition between
two sections there can be discrete reflections and these are
represented by what we call interface elements. Therefore
each laser forms a cascade of sections and interface ele-
ments. Fig. 1 shows a laser with four sections. We also
drew the corresponding cascade. Notice that interface ele-
ments are only used if a misadaption effectively occurs.
The boundaries of the laser cavity are also considered to
be interface elements connecting the laser cavity to the
outside.

In the current implementation all the laser sections in
CLADISS are ‘‘current controlled,’” i.e., the electrical
excitation, if any, of a section is induced by a current
source.

III. THE MATHEMATICAL DESCRIPTION OF THE LASER

We assume that each section waveguide only sustains
the lowest TE mode. In each section the forward ( + ) and
backward ( —) propagating parts of the lateral electrical
laser field, consisting of several longitudinal modes, are
represented by

Eyi(xv ¥, %, t)

= &(x, y) Re |:§ E;(z,t)exp (jw,t F jB,qz)}.

(1)

For all of the longitudinal modes g the same transverse-
lateral field distribution ® (x, y) is used. The function $
is assumed to be independent of time and the axial posi-
tion in the section. The frequency w, is the reference fre-
quency of the phasor notation used for the quasi-time har-
monic fields of the gth longitudinal mode and must be
chosen close enough to the frequency region where lasing
is expected to occur. The amplitudes EZ will then vary
slowly in time with respect to w, and it is the time vari-
ation of the phase of E;—r that determines the lasing fre-
quencies of the spectral field components. Similarly 8,, is
a reference propagation constant. In case the section con-
tains no grating B,, is set equal to the propagation constant
B, at the reference frequency w, of the lowest TE mode
of the unperturbed waveguide, i.e., the waveguide with-
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Fig. 1. General structure of a multisection laser and its equivalent cas-
cade.

out loss or gain. When a grating is present 3,, is set equal
to the Bragg wavenumber 8, = mw /A, in which m is the
order of the grating. In that way the fast spatial variation
is removed from the complex amplitudes E ] in both cases.
For each position along the cavity, a set of forward and

backward instantaneous frequencies & ;ﬁ (z, t) can be de-
fined:

~ + 9 +

OX(z, 1) = w, + g, e [Ef(z, 1)]. (2)
However, if the dynamic excitation is slow as compared
to the round-trip time of the laser, then the instantaneous
frequencies will hardly vary along the cavity. Therefore
the instantaneous frequencies &, or @, at any position
along the laser can be used to represent the lasing fre-
quency @,(¢) of the gth mode. We will take the instanta-
neous frequency of the backward field at the left-hand
facet. The origin of the z axis is chosen at this facet, so
that &, becomes

(1) =@, (2=0,1) =w, + Aw,(1). (3)

The second equality defines the difference Aw, = @, —
w,, used further on. In all the complex refractive index
perturbations due to the carrier injection, we will apply
this frequency &,(7).

The complex amplitudes E ;—' (z, t) are transformed into
new complex amplitudes qu (z, t) by the relationship

Ef(z,t) = R;(z, 1) exp [ S Awy(T) dr}

with
Ry (z, 1)

¢,(z=0,1)

ri(z, t)exp [jo;(z 1))
0. (4)

]
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Both r; and ¢ are real functions of z and 7. The chirp
or FM of a mode is now no longer included in the field
amplitudes qu, but appears explicitly in the extra variable
Aw,. This extra variable induces an extra equation which
fixes the phase $,(z = 0, 1) to a constant value, i.e.,
zero.

For each mode, with modal amplitudes qu(z, ), a set
of coupled traveling-wave rate equations can now be de-
rived from Maxwell’s equations using the slowly-varying
amplitude approximations [10] and the approximations

related to the coupled-mode theory [11]. We then obtain
R} 1 0R;] Aw J
L +<j—"+jA;8q——"—2>Rq+
0z Vg, OF Vgq ‘RH
:jK+R,{_ + F;’
oR 1 oR; Aw J
q q . q . sp _
-t ——+ (i —2 +jA R
9z Vg O <J Vgq JAB, IR, 2> ‘
=jk R, + F, (5)
with
Aﬁq = ﬁq - qu + FA’Y - O'Sjainl
2
w . 8
Ay = 5+ n,(an, + 2
Y Czﬁq na( n J 2kq>

8 = A(&,) (N = Ny(&,)) <1 - Zey(a, a,,,)P,,>

An, = 2k, [ ~ony,0(3,) A(&y) N(z, 1) + B(&,)]
Qjpe = aO(‘I’q) + O‘l(‘z’q) N(Z7 l)
Pz 1) = [R; [+ |R; . (6)

In these expressions one can distinguish two types of pa-
rameters. First, there are those parameters (k¥ 0qs
*+ ) which are slow functions of frequency. They are
explained in Table I and are assumed to be constant with
a value taken at the reference frequencies w,. If no grating
occurs the x * coupling coefficients are set to zero. The
phase of x * depends on the relative position of the grating
with respect to the origin of the z axis. Furthermore, for
pure index gratings x * = (x ~)* and for pure-gain grat-
ings k7 = — (k7 )*. For a combination of both index and
gain gratings the x * can be split into two parts corre-
sponding, respectively, to index and gain grating effects
[12], [13]. The following assumptions are implied by the
slowly-varying amplitude approximation:

ABq << qu- (7)

Both conditions are fulfilled if w, and f3,, are chosen as
mentioned above.

Second, there are a number of parameters which vary
rapidly with frequency. For these parameters the fre-
quency dependence is taken into account. The function g
expresses the power gain in the active region at the in-

Aw, << Wy
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TABLE 1
Parameter Typical Value
w (um) 1.5 Stripe Width
d (pm) 0.12 Active Layer Thickness

T 0.5 Power Confinement Factor in
Active Layer

k" (um™") Coupling Coefficient—Backward
to Forward Propagating Wave

k= (um™") Coupling Coefficient—Forward
to Backward Propagating
Wave

L (pm) +300 Laser Length

A, (pm) Wavelength of the gth Mode

A (pm) 0.2413 Grating Period

n, 3.25 Unperturbated Effective
Refractive Index

Qe (pm™hy 50 - 1074 International Waveguide Losses

vy (pm/s) 7.46 - 10 Group Velocity

Pp Field Reflectivity at Left (or
Back) Facet

Pr Field Reflectivity at Right (or
Front) Facet

Doy (-7, 7) Phase of Reflectivity Py

Doty (—m, ) Phase of Reflectivity p,

R, 0.32 Power Reflectivity at Left Facet

R, 0, 0.05,0.32  Power Reflectivity at Right Facet

B 107* Spontaneous Emission Factor

n, 2 Inversion Factor

n 0.8 Current Injection Efficiency
q (Coulomb) 1.6 - 107" Electron Charge

T (s) 5-107° Carrier Lifetime

B (pum’/s) 100 Biomolecular Recombination
Cc (um®/s) 201073 Auger Recombination

stantaneous frequency &,(t) of the gth laser mode. Non-
linear gain suppression at @, resulting from all the modes
is included via the (1 — £ €5, Pp) factor. P, is expressed
in watts, which implies that the | R} |* are power normal-
ized; ey, can for instance be attributed to spectral hole
burning or to the gratings induced by the cavity standing
waves. The function An, expresses the change in the real
part of the refractive index associated with the carrier in-
jection and can be linked to the linear gain via oy, 0- The
ain term represents the internal losses. In 1.55 um lasers
they mainly consist of intervalence band absorption [14].
The functional dependencies of g, An,, and «;, on @, and
the carrier density N(z, ¢) are given by analytic functions
found through curve fittings on the numerical results ob-
tained with the material models of [14] and [15].

The J,,/|R; |* terms represent the local average spon-
taneous emission that couples into the forward, respec-
tively, backward propagating waves of the gth mode. The
spontaneous emission is written here as a contribution to
the gain and is a nonlinear term. The justification for de-
scribing the spontaneous emission in that manner is given
in Appendix I. Its inclusion is necessary to model mode
competition accurately in a multimode above-threshold
analysis. For power-normalized field intensities the Jop
coeflicient is written as

Jo = $wdB,(hw,) BN(z, 1). (8)
Again we refer to Table I for an explanation of the param-
eters. Note that BN? represents the radiative spontaneous
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recombination and that 3, is the spontaneous emission
factor [16].

The F ,'f(z, t) terms are the Langevin force functions
which represent the photon shot noise. The statistical pro-
cesses related to these force functions can be approxi-
mated by Gaussian processes [17], [18]. In that case the
Langevin functions are completely determined by their
first- and second-order moments, which will be given in
Section V-D, when discussing the noise analysis in detail.

When two adjacent sections have misadapted wave-
guides an interface element is introduced to describe the
boundary condition between the two guides. For two
waveguides 4 and B joining each other at the axial posi-
tion z; of the jth interface (see Fig. 1) the boundary con-
ditions become

R} 1/ 1 -0\ (R}
<Rq_>(2pt)3=?j<_pj ?)(RlI)(zj,t)A. (9)

For the boundary conditions at the ends (z = O and z =
L) of the laser cavity we use

R, (0,1) = p,R, (0, 1)
R;(L,t) = pfRy (L, 1). (10)

Remember that at z = 0 the additional relation ¢, (z =
0, t) = 0 holds.

The g, An,, oy, and Jg, quantities in the above wave
equations all depend on the carrier density N(z, ¢) in the
active region. Due to spatial hole burning N(z, r) can
vary with position within a section. The carrier dynamics
are given by the following rate equation:

N _nJ N Tg(N, &)

— = _—BN*-CN* -2
a qd 7 q (ho,)wd

SR+ RS + Fulz. o). (11)

Table I explains all of the parameters; J is the injected
current density and is taken uniform throughout the whole
section. The longitudinal diffusion term has been ne-
glected in (11) because the diffusion length is usually short
as compared to the longitudinal variations of N. The func-
tion Fy (z, t) is the Langevin force function representing
the carrier shot noise, which is also assumed Gaussian.
Its relevant moments are given in Section V-D. Fluctua-
tions of the injected current and 1/f noise can also be
taken into account.

Equations (1)-(11) determine the static, dynamic, and
stochastic behavior of a large class of multisection diode
lasers. The main limitations are that only current con-
troled sections are used, that strong lateral and transverse
confinement of the carriers and the fields is assumed and
that only the lowest TE mode is considered.

Finally we ought to mention that no thermal effects are
included in the implementation presented here.

IV. STRUCTURED ANALYSIS OF A DIODE LASER

Table II shows the four types of analysis versus four
characteristic elements of the mathematical description.

TABLE 1l
Stimulated Nonlinear
Spontaneous Recombi- Dynamics Gain
Analysis Emission Jg, nation (t-Derivative)  Suppression
Threshold - - — -
dc + + - +
ac + + + +
Stochastic + + + +

Threshold analysis
|

th.q ’mq,lh

DC-analysis
Pq » O /1
AC-analysis Noise analysis
Av ,RIN, FM- noise|

AM, FM J

Fig. 2. Simulation procedure to be followed when using CLADISS.

The crosses ( +) in Table II indicate which of the four
characteristics are taken into account by each analysis.

The first step in the investigation of a diode laser with
CLADISS should be a threshold analysis, that determines
the threshold currents and wavelengths of several longi-
tudinal modes. The threshold analysis also indicates which
modes, besides the main mode, we should consider in the
dc analysis, by calculating the threshold gain differences
between the main mode and the side modes.

Next, a dc analysis can be executed. This is a self-con-
sistent static analysis that calculates the power versus cur-
rent and the wavelength versus current characteristics of
the laser. Each point of these characteristics is calculated
iteratively and uses the former point as an initial estimate.
Therefore, successive points must be close to each other
to obtain good convergence and the first point should be
taken close to threshold because we can then use the
threshold solution to find a good initial estimate for this
starting point.

Both the ac and stochastic analysis use a small-signal
approximation. This approximation allows the lineariza-
tion of all of the dynamic equations around some bias
point, which can be any point of the dc solution. There-
fore, prior to the ac or noise analysis the dc calculation
must be executed.

Fig. 2 summarizes the procedure to be followed when
studying a diode laser with CLADISS. It also gives an
overview of the various characteristics calculated by each
analysis. In the next sections we discuss each of the four
types of analysis.

V. NUMERICAL IMPLEMENTATION
A. The Threshold Analysis

Consider a laser with m, sections and take the current
I, of the vth section as the independent variable current
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source. The currents in the (m, — 1) other sections are
assumed to be of the form

i=al,+i>0 aq

;2 0

(12)

in which a@; and i; are user-specified parameters. The
threshold analysis searches for the threshold values of I,
i.e., those values of I, for which there exists at least one
frequency @, such that the amplitude and phase resonance
conditions of the cavity are fulfilled.

The amplitude and phase resonances are defined as fol-
lows. Take some point z, somewhere along the cavity.
As Fig. 3 shows, the cavity is then divided into two parts,
which can be replaced by effective reflectivities, respec-
tively, p, for the left-hand part and pg for the right-hand
part. Those reflectivities depend on the frequency @, and
the current /,. Using the complex round-trip gain p, pg,
the phase and amplitude resonance conditions are ex-
pressed by

oL (‘I’q’ Iu) pR(a‘qv Iv) -1=0 (13)

In this way the threshold analysis reduces to the search of
the roots (&, u, fin ;) of (13). The couple with the lowest
threshold current 1, o defines the laser threshold.

The reflection coefficients p, and py are calculated by
means of the propagator matrices F, (@4, 1,) and fR(&:q,
1,) [2]1, [19] of the left-hand and right-hand parts of the
cavity (Fig. 3):

- pl(;L)]l + (FL)U

o pl(FL)N + (Iz‘"L)D
o = _Pz(FR)12 - (FR)22 (14)

92(?R)|1 - (?R)ZI.

Because the stimulated recombination is omitted in the
threshold analysis (i.e., no gain suppression or spatial hole
burning occur), the propagator matrices can be calculated
straightforwardly without any iteration techniques, once
a frequency @, and a set of section currents are specified.

CLADISS solves (13) by means of a two-step proce-
dure. First, good initial estimates of the most important
roots, i.e., the lasing mode and its nearest sidemodes, are
traced by a scanning procedure, that is applied to a suffi-
ciently-wide frequency window in the (@, 1,,)-plane. Sec-
ond, with the obtained estimates a Newton-Raphson it-
eration is initiated. The derivatives dp; /d&,, dpg/ 0&,,
dp./dl,, and dpg/dl, needed in this NR-algorithm, are
calculated analytically. Our two-step procedure has the
advantage of finding the threshold in almost any case
without much effort from the user, who only has to define
the initial position of the frequency window.

B. The DC Analysis

The nonlinear static problem is obtained by omitting
the fime derivatives and the noise sources in (5) and (11).
Consider g, modes. Given the static current excitations,
the lasing wavelength &, and the optical power level of
those ¢; modes are found by transforming the boundary
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Fig. 3. Division of a laser in two parts for the calculation of the complex
round-trip gain.

value problem (5)-(11) into an initial value problem that
is solved with an iterative shooting method. As in our sin-
gle-mode dc analysis of [7], this shooting method is also
based on the propagator matrix formalism [2], [19].

To take into account the spatial variations of the carrier
density along the cavity, each section j is divided into
many small segments, in which the carrier density is con-
sidered to be uniform. However, in contrast to [7]1, we
now need to include the spontaneous emission in the prop-
agator matrices. For the ith segment, with length [, the

propagator-matrix F; of the gth mode then becomes
- A
. _ . e
(Fg),, = dc[cosh (D) + j 2D, sinh (Dql,»)J

+
K

(Fgi),, = 2jd. 2D, sinh (D, /;)
= L, K—
(Fa),, = 2jd, 2—Dq sinh (D,1;)

= . Aq .
(Fai)yy = dc[cosh (D) = j —ZDq sinh (Dql,-):| (15)
with

d.=exp [$(gs — g5) 1]

A, = =2(Aw,/vy, + AB,)
1/2

~Jj(gs + &%)
D, = [-A}/4 + k' k7]

85 = /0] | de/|R: T

The g §, terms describe the spontaneous emission effects.
The matrix F,; depends on the fields in segment i via the
spontaneous emission, the spatial hole burning, and the
nonlinear gain suppression. These dependencies imply a
nonlinear wave propagation.

The propagation technique proceeds as follows. First,
for each mode, an initial estimate is introduced for its las-
ing wavelength @, and for its backward field R, (z=0),
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which can be taken real without any restriction [see (4)].
Applying the left boundary condition gives the starting
values for the g, fields R, (z = 0). Both backward and
forward waves of the ¢, modes are then propagated
through the laser taking the photon-carrier interaction into
account self-consistently. Therefore the propagation
through each segment [z, |, z;] requires a local iteration
to find both the local carrier density and the f‘q,- matrices.
Once having arrived at the right facet (z = L) the second
boundary condition requires R, (L) — sz; (L) to be
zero. Since the propagation implies that R, (L) and
R; (L) are complex functions of the real variables &,
and R; (0) with p, g = 1, - - -, g, it is clear that we
have to find the appropriate solution [&®;, R (0), @,
R3(0), + ++ , &y, Ry (0)] of the set of g, complex non-
linear coupled equations:

[Rq_ (L) - PzR;(L)] [(“fp’ RP_(O));
p=1’...’qs]=0’ (q:l,'aqr)(lé)

A Newton-Raphson (NR) technique-is applied to find this
zero starting from the initial estimates. The derivatives
needed in this NR algorithm are calculated by an addi-
tional nonlinear propagation of the 6R;-r (z)/8&, and
dR?(z)/dR, (0) derivatives (p, ¢ = 1, -+ -, g,). The
initial estimates pose no problem if the dc analysis is ex-
ecuted as described in Section IV.

With the carrier density and fields resulting from the dc
analysis, CLADISS can also calculate the round-trip gain
o1 pr above threshold for any frequency at any dc bias.
The use of a single-mode dc analysis combined with the
complex round-trip gain calculated above threshold over
a wide frequency window allows to detect the onset of the
side modes and is not as CPU time intensive as a self-
consistent multimode dc analysis.

C. The AC Analysis

In this section we extend the single-mode ac analysis of
[7] to a multimode ac analysis. Consider the g, modes of
the dc analysis. The usual approach towards the small-
signal analysis is the sinus regime, written in the phasor
notation. However, before complex phasors related to the
modulation frequency Q /27 can be introduced, the com-
plex notation with respect to the optical reference fre-
quency w, must be removed. Therefore, the complex fields
RZ(z, 1) are replaced by their modulus r; (z, ¢) and phase
¢Z(z, t) [see (4)]. For each mode the traveling-wave
equations for r; and ¢ ;‘ then become (with AB, = AB,,
+JjABy)

ar; 1 3r; I .
o vy, o <Aﬁ"" ’ (r;)2> "

84

= —|«k"|sin (o] + ¢, —0,) + F/,
b, b, 1
—L +——T+—Aw, + A
3z o et AP

= |k"|cos (o) + &, — ;) +F;,

(17)

1
Ugq
Ta
<
q
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where ¢ is the phase of x *. The Langevin force func-
tions F,7, and F§ , respectively, for the amplitude and the
phase, again describe Gaussian processes. In the next sec-
tion we will immediately give the statistical properties for
these Langevin functions, instead of deriving them from
the properties of F,. For r; and ¢, similar equations
hold. Also, the boundary conditions at the laser ends and
between two cascaded laser sections must be transformed
into amplitude and phase expressions.

The sinus regime, with modulation frequency {2 /2w, is
now introduced by linearizing (11) and (17) and the ap-
propriate boundary conditions around some bias point,
using

rqi (z,1) = r,fo(z) + Re (Arqi(z, Q) ejn')
bi(z.1) = ¢20(2) + Re (Ao (z, Q) ')
N(z, 1) = No(z) + Re (AN(z, 2) ¢’")

Ji(t) = J,0 + Re (AJ; /) (j = section index)

(18)

The terms with the subscript (0) belong to the static so-
lution, while the other terms are small-signal complex
phasors.

In the case of the ac analysis the noise sources are omit-
ted and the only small-signal excitations are the modula-
tion current densities AJ; (j = 1, - -+, m) superim-
posed on the bias current densities of the m sections. The
small-signal equations thus obtained form a linear set of
differential equations written in matrix form as

Aw, (1) = Aw,o + Re (A6,(Q) e’™).

X (e0) = A ) Xz, 0) + B2 8 (19)

X,
X

Sl
I

with

Ad}
A,

The equations fordA @, /dz, included in (19), are the triv-
ial identities d A&®,/dz = 0. The matrices A and B depend
on the static solution of the bias point. Notice that the
carrier density has been eliminated from (19). We will not
give the linearized equations in any further detail because
they are too extended, although their derivation is
straightforward. By applying finite differences with the
same longitudinal discretization scheme as in the dc anal-
ysis, (19) can be transformed into a set of linear algebraic
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equations. Together with the linearized boundary condi-
tions this linear set can be solved with standard tech-
niques. A&, () then describes the FM response of the gth
mode, while the IM response can be deduced from
Arg(0,9Q)and Ar, (L, Q).

D. The Noise Analysis

Although several linewidth calculation techniques were
developed for complex laser structures, to our knowledge
none of them includes spatial hole burning [6] and mul-
timode effects [18], [20] simultaneously. CLADISS how-
ever, does.

The noise analysis is based on the introduction in the
laser equations (5) and (11) of Langevin forces that are
both z- and #-dependent. Because the laser equations are
derived in the slowly varying amplitude approximation,
the Langevin forces must be regarded as the slowly-vary-
ing components of the carrier and photon fluctuations.
However, quantities of practical interest, such as the line-
width (A») and the relative intensity noise (RIN), are also
determined by slow variations ( <10 GHz) of the fre-
quency and the intensity. From the carrier scattering time
(~0.1 ps) and length ( ~ 10 nm) it then follows that all
Langevin forces are uncorrelated in time and longitudinal
distance. The correlation functions of the Langevin forces,
all assumed Gaussian with zero average, are derived in
Appendix II and can be written as

(Fl(z. ) F23(Z, 1))
= 0.5Tg(&,) hayng,d(z —z') 8(r — 1')

(Fo z, ) FSo(z', 1))

-2
=(ry) "(Fl(z ) Fl (2, 1))
2rt 2r>
Fy=Fs— 22— F+r _ ! FC
NS h&;qwdF"" %h&’qwdF"q
(Fs(z, 1) )F§(z', 1))

2 (N 2 N
wd{ + BN +CN}5(z Z)é(t—1)

(21)

with ng, being the inversion parameter. Similar relations
hold for Fy ; and F, ,. Notice that, the Langevin forces in
which Fy is decomposed, are all uncorrelated.

Usually, the Langevin forces only perturb the field
quantities a little. This justifies a small-signal approxi-
mation. By subsequently Fourier transforming (11) and
(17) and the Langevin forces, the sinus regime is intro-
duced again. For each Fourier frequency Q /27, the next
set of linear differential equations results in

dX = = -

pa (z, Q) = 4A(z, ) X(z, Q) + C(z, Q). (22)
Here, X is given by (20), but now its elements describe
the Fourier transformed stochastic perturbations (ArZ,
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Ad¢;, Ady,) of the field quantities. The elements of the
source vector C are linear combinations of the Fourier
transformed Langevin forces at the Fourier frequency
Q/2x. Therefore, C is Gaussian with zero mean. More-
over, (21) shows that for two different Fourier frequen-
cies, the corresponding spectral components of the Lan-
gevin forces are uncorrelated. Combining the above
properties of C with a finite difference technique similar
to the ac analysis, one can easily derive the correlation
matrix (X(z, @) X"(z, Q")) of X(z, Q). The superscript
(1) refers to the Hermitian matrix. To determine the in-
tensity noise spectra at both laser facets, we need the cor-
relation functions (Ar (0, Q) Ar'*(O Q')) and
(Ar (L, @) Ar *(L, Q )Y, Whlch are elements of
(XXT) at, respectlvely, z = 0and z = L. The spectrum
of the FM noise, the power spectrum, and the linewidth
of the modes can be deduced from

(A6,(2) A3 (Q)) = 2D, (Q) 8(Q — Q')

which are elements of the matrix ( XX' ) for any z.

CLADISS offers two alternatives for the calculation of
the linewidth and the power spectrum. The simplest ap-
proach is to approximate the FM noise spectrum by a
white spectrum. This results in a Lorentzian power spec-
trum, with a linewidth given by

(23)

Av, = D, (0)/(27?). (24)

The second, more accurate approach, which incorporates
the relaxation oscillation peaks, is based on the detailed
numerical evaluation of the next approximate expression
for the relative power spectrum of the gth mode [21}:

SAP.q(w) = F{exp Iijcqu - 0.5

<§; A&q(t’)dt'> J} (25)

Here F denotes the Fourier transform. The correlation
function appearing in the exponent of (25) is related to
(A&, (Q) A, (Q')) via

{S; Ad, (1) dt"}

= 2L7r2 S dt; S dtz S dQ 2Du-,q(9)

“exp [ Q1 — )] (26)

The integrations in (25) and (26) are performed numeri-
cally.

2

VI. THE SOFTWARE IMPLEMENTATION AND ITS
PERFORMANCE
CLADISS is a FORTRAN-77 program using single
precision arithmetics. The I-O of CLADISS allows an ef-
ficient use in both interactive and batch runs. This is
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TABLE 111
TypricaL CPU TIMES REQUIRED FOR THE ANALYSIS OF A SINGLE-SECTION
300 um LONG DFB LASER®

Required CPU Time on a

Type of Analysis VAX Station 3200

Threshold Analysis for Two Modes
dc Analysis for

42 min

Single-Mode Calculation:

1: 30-100 mA + 20 min
P 1-10 mW Two-Mode Calculation:
(Current Step: 0.5 mA) +60 min

Solution of the system of small-signal Single-Mode Calculation:

equations for a set of 30 +7s
modulation frequencies (ac Two-Mode Calculation:
analysis, noise analysis) +24s

“Longitudinal discretization step: /; = 12 um.

mainly achieved through the development of a CLADISS
Command Language (CCL). The CCL commands issued
to CLADISS specify the type of analysis to be performed,
the type of output (file, screen, tables, plots) that is de-
sired, and the operating range that must be investigated.
Table III shows some typical CPU times CLADISS needs
to perform certain calculations. As an example a DFB
laser was taken and the calculations were done on a DEC
VAX station 3200 (8 Mips).

VII. ExamMpPLES oN DFB LASERS

The model has already been applied to a large number
of laser diodes, including tunable three-section DBR la-
sers, \/4-phase-shifted DFB lasers, and external cavity
DFB lasers. Some results have been presented in [7]-[9],
[12], [13]. In this section we illustrate the capabilities of
CLADISS by means of three examples of DFB lasers, la-
beled A, B, and C. Their common parameter values are
listed in Table I, whereas parameter values specific to each
of them are given in Table IV.

Table V contains the values of the threshold current /;,
and the threshold gain difference AgL for 4, B, and C.
The large values of AgL suggest single-mode behavior
for each laser {22]. This expectation is sustained by Fig.
4, which shows the complex round-trip gain at threshold
for each of the devices. Both the main mode and the
strongest side mode are indicated by an arrow.

A. The DC Behavior of a DFB Laser

The threshold analysis does obviously not give any in-
formation about spatial hole burning effects and therefore
large values of A gL do not always guarantee a stable sin-
gle-mode behavior up to high-power levels. Conse-
quently, a yield analysis based only on the threshold gain
difference at threshold may be erroneous [1].

Therefore, some authors [1], [5] also determine the
threshold gain difference above threshold, so that the spa-
tial hole burning caused by the main mode can be taken
into account. This implies a single-mode dc analysis.
CLADISS goes a step further by explicitly calculating the
power in the sidemodes. In Fig. 5 this is illustrated for
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TABLE IV
PARAMETER CHARACTERISTICS OF LASERS A, B, AND C, RESPECTIVELY

L
Case R, b, R, @& [um] kL
A 0.32 T 0.05 3n/2 300 2
B 0.32 /4 0 — 300 2
C 0.32 ™ 0.05 3r/2 600 3
TABLE V
THRESHOLD CHARACTERISTICS
Ilh xIh

Case [mA] fum] Aol

A 22.05 1.5618 0.28

B 25.05 1.5616 0.32

C 39.56 1.5616 0.25

the laser C, where the main and the first side mode are
depicted. A clear deterioration of the side-mode suppres-
sion ratio is observed. Around 70 mA the strongest side
mode reaches its threshold. This is confirmed by Fig. 6,
which shows the complex round-trip gain, including spa-
tial hole burning effects, for 70 mA. Comparison of Fig.
4(c) and Fig. 6 confirms the detrimental effect of the spa-
tial hole burning in this particular case.

The influence of spatial hole burning can be seen from
the longitudinal variation of the real part of the Bragg de-
viation A 8,, which is depicted in Fig. 7 for the main mode
(g = 1) and the strongest side mode (g = 2) of laser C
at different bias levels. As the current increases, the Bragg
deviation | Re (AB,)| of the side mode decreases near the
laser facets, while the Bragg deviation |Re (A ;)| of the
main mode increases. Since the loss associated with the
Bragg reflections decreases for decreasing Bragg devia-
tions, it follows that the average loss of the side mode
decreases, while the loss of the main mode increases. Due
to gain clamping this also implies a gain increase. The
increased gain and the decreased loss of the side mode
can then result in the onset of the side mode. The varia-
tion of the Bragg deviation is obviously caused by the
variation of the carrier density and the carrier-induced re-
fractive index, which in turn is due to the longitudinal
variation of the optical power (spatial hole burning).

The influence of longitudinal spatial hole burning on
the single-mode stability increases for increasing values
of k and L. Indeed, large values of « and L give rise to
strong spatial hole burning, with the power being more
concentrated near the center of the laser. At the same time
however, the spatial hole burning has also more influence
since the Bragg reflections have a larger impact on the
laser behavior. Both lasers 4 and B, which are only half
as long as laser C, exhibit a stable single-mode behavior
up to high-power levels, as is illustrated in Fig. 8 (laser
A) and in Fig. 9 (laser B). The side-mode rejection of 4
and B remains more than 35 dB up to at least 20 mW
output power.
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Fig. 4. (a) Amplitude (solid line) and phase (broken line) of the complex
round-trip gain at the laser threshold current as a function of wavelength
for laser A. (b) Amplitude (solid line) and phase (broken line) of the
complex round-trip gain at the laser threshold current as a function of
wavelength for laser B. (c) Amplitude (solid line) and phase (broken
line) of the complex round-trip gain at the laser threshold current as a
function of wavelength for laser C.
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Fig. 6. Amplitude (solid line) and phase (broken line) of the complex
round-trip gain at the threshold current of the side mode (/ = 70 mA)
as a function of wavelength for laser C.

B. The AC Behavior of a DFB Laser

So far, the ac model has mainly been used to study the
carrier-induced FM response in DFB lasers. Experimen-
tally, a number of anomalies, either as a function of mod-
ulation frequency or as a function of bias level, are found
in the FM response of DFB lasers. Simulations with
CLADISS have shown that these anomalies can be well
explained by spatial hole burning [7].

The influence of spatial hole burning on the FM is il-
lustrated for the single-mode lasers 4 and B. No influence
of the side modes on the FM response can be detected
numerically for these lasers. The FM response including
the spatial hole burning contribution, is depicted in Fig.
10 for laser 4 and in Fig. 11 for laser B. Nonlinear gain
suppression has been neglected in the calculations. It is
seen that for low modulation frequencies the spatial hole
burning contribution can either be in phase (device A) or
out of phase (device B) with the modulation current.
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Some influence of side modes on the FM response can
be seen for laser C. Fig. 12 shows the amplitnde
phase of the FM response at a bias current of 70 mA,
calculated with and without taking into account the influ-
ence of the side mode. The relative side-mode intensity
is —17 dB at this bias level and causes only a small in-
crease of the FM response. In this example, nonlinear gain
suppression (e, = 15 W) is also taken into account,
which explains the strong damping of the relaxation os-
cillation.

carrd ¢t

C. The Linewidth of a DFB Laser

A phenomenon that is often observed, but that is not
quite fully understood is the presence of a linewidth floor.
Possible mechanisms to explain this effect, such as the
influence of side modes, nonlinear gain suppression, and
spatial hole burning have been investigated with CLAD-
ISS.

The linewidth floor can be caused by the onset, as
shown in [23], which influences the main mode through
spectral hole burning. The side-mode effects in the line-
width, however, occur only for relative side-mode inten-
sities above ~30 to —20 dB. We show that the influence
of the onset of a side mode on the linewidth of the main
mode can also be attributed to other nonlinearities. We
found that the onset of side modes in 2 DFB laser can also
affect the main-mode linewidth through spatial hole burn-
ing. This is illustrated in Fig. 13, where the linewidth of
laser C is depicted. Spectral hole burning is neglected in
this calculation and the linewidth rebroadening at the on-
set of the side mode is due to longitudinal spatial hole
burning. Once the side mode has reached its lasing thresh-
old, the linewidth is seen to decrease again. In this case
the lasing of the side mode results in additional carrier
clamping and the fluctuations of the carrier density and
hence the linewidth will be mainly proportional to the in-
verse of the side-mode power.

Experimentally however, a weak rebroadening or a sat-
nration of the linewidth also occurs for side-mode
suppression ratios of more than 30 dB up to high-power
levels, as in lasers A and B. An explanation for this, first
suggested by Agrawal in [24] and by the authors in [8],
is the power dependence of the linewidth enhancement
factor oy, due to gain nonlinearities, e.g., spectral hole
burning. If the nonlinearity causes a gain suppression
which is quasi-symmetric.around the lasing wavelength,
it will hardly influence the refractive index. Conse-
quently, it follows from (6) that for a single-mode situa-
tion (¢ = 1), the linewidth enhancement factor oy, Can
be written as

alw,O(‘:’q)

— . (27)
1 — e (@, @) P,

oy (@) =
This effect is illustrated in Fig. 14 for laser A. The line-
width minimum occurs for an average intracavity power
of approximately 1/(3esp(6>q, @,)). The value used for
the gain suppression coefficient e, (&,, @,) is 15 W' and
has the same order of magnitude as the experimental value
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Fig. 13. Influence of the side mode on the linewidth of the main mode for
laser C when only spatial hole burning is taken into account

obtained in [25]. It must be noted here that apart from
spectral hole burning, other gain nonlinearities such as
carrier-dependent dispersion or the formation of gratings
by cavity standing waves can also cause a gain suppres-
sion without affecting the refractive index. The exact
power dependence of the «,-factor obviously strongly
depends on the functional form used for the gain suppres-
sion.

Fig. 15 shows the calculated linewidth for laser B. The
linewidth rebroadening is less pronounced and occurs at
higher power levels in this case. The difference between
lasers 4 and B results from spatial hole burning. Spatial
hole burning causes an increase of the threshold gain and
of the spontaneous emission rate with increasing power
for laser A4, but a decreasing threshold gain and sponta-
neous emission rate for laser B. This partly compensates
the effect of the power dependence of the a-factor for laser
B. In both lasers 4 and B, no influence of the side modes
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Fig. 15. Linewidth saturation of a single-mode laser (laser B) due to spa-
tial hole burning and nonlinear gain suppression.

on the main mode linewidth could be detected numeri-
cally.

VIII. CoNcLUSION

We have shown how the multimode behavior of a gen-
eral multisection diode laser with or without distributed
feedback can be described by a set of (z, t)-dependent
differential equations, that include longitudinal spatial
hole burning, nonlinear gain suppression, spontaneous
emission, and noise. Next, we have indicated how these
equations are solved in threshold, dc, ac, and noise anal-
yses. The essential differences between those four types
of analysis are summarized in Table II while an overview
of the laser characteristics that can be calculated by them
is given in Fig. 2. The four types of analysis have been
implemented in the CLADISS simulator tool, which is,
to our knowledge, one of the most advanced diode laser
simulators at present. In particular, the multimode char-
acter and the inclusion of longitudinal spatial hole burning
are unique features.

To demonstrate the capabilities of CLADISS some ex-
amples illustrating essential properties of DFB lasers are
discussed in Section VII. The first example shows how
the single-mode behavior of a DFB laser can deteriorate
due to spatial hole burning, even when a very large
threshold gain difference occurs at the laser threshold.
Therefore the usual criterion [22] which claims that DFB
lasers with a threshold gain difference larger than some
critical value are single-mode devices should be regarded
with sufficient care. The second example demonstrates
that the spatial hole burning contribution to the FM re-
sponse of a DFB laser can either show a red or a blue
frequency shift. Moreover, we found that at a 30 dB down
level the side modes have no effect at all on the FM re-
sponse. Finally, in the third example we point out that for
DFB lasers with a good mode rejection ratio, i.e., greater
than about 30 dB at a power level of S mW, the linewidth
floor is due to the power dependence of the linewidth en-
hancement factor, caused by gain nonlinearities. Notice
also that a large gain suppression gives a large FM effi-
ciency at low and intermediate ( <1 GHz) modulation
frequencies. But on the other hand, a high-gain suppres-
sion level causes the linewidth floor to occur at lower
power levels. Both effects are due to the incomplete car-
rier clamping induced by the gain suppression. We also
showed that the onset of side modes can induce a line-
width floor through the spatial hole burning.

APPENDIX 1
SPONTANEOUs EMISSION

The form of the spontaneous emission terms in the wave
equations (5) can be justified as follows. Consider the next
wave equations, in which any noise sources are omitted
to simplify the calculations:

8R§+i8R$+<

i —_—
0z Vg, Ot

. Awq . +
J—— +jAB, | R;
Ugq

=jk*R] + TZ. (28)

T represents the fraction of the locally and sponta-
neously emitted photons that couple with the gth mode
qu. We now replace the complex amplitudes R} in the
wave equation (28) by r; exp ( j¢; ) and retain only the
real part of the resulting identities. After multiplication
with 27 we obtain the intensity equations

al: oIt
coe 19
0z Vg Of

=21Im (AB,) IF + 2 Re (TF(RF)M

+ 2 Re (jk*RT (RE)"). (29)

The asterisk indicates complex conjugation and /- equals
|RZ |*. The total spontaneous emission integrated over the
entire spectrum is equal to the radiative (i.e., bimolecu-
lar) spontaneous recombination. Expressed in the number
of photons generated per unit time and per unit volume,
it can be written as BN2. Only a fraction of the sponta-
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neous emission couples into the gth mode. Therefore, we
can state that

2Re (TH(RE)™) = 1B,wd (hw,)BN®.  (30)
The above relation expresses 2 Re ( Tqi (qu )*) as a source
term for the intensity, in analogy with the spontaneous
emission source in the local photon continuity equations
derived by Lamb for Fabry-Perot laser amplifiers [26].
The factor 1/2 indicates that the emission that is coupled
into a mode is divided equally over the forward and back-
ward waves; @, is the spontaneous emission factor, in-
cluding Petermann’s K-factor [16]. Because it is the in-
phase spontaneous emission that couples into the mode,
we assume T, to be in-phase with R;. We then get

B J
Tq = —— wd (hw,)BN* = —2— R*.
4(RJ) R |

The second identity defines J,

(31)

APPENDIX II
CORRELATION OF THE LANGEVIN NOISE SOURCES

The second-order moments of the Langevin forces can
be derived by rigorously transforming the generalized
Helmholtz equation for the electric field into coupled wave
equations [17].

Here we present a more intuitive derivation. It is based
on the transformation of (17) into rate equations. There-
fore, we introduce the total derivatives with respect to time
for the forward and backward propagating waves:

d_o, 18
dt; ot v 0z ©
d a 1 9
— = - 32
dr, 0t w0z (32)
Using those derivatives (17) can be written as
1 dr I
ABy, + —= ) rs
" i, ( B (r;)2> e
= —|c*|r)sin(¢} + ¢, — ¢,) + F},
1 d(b" L ae + AB
wq Aty Uy, ¥4 e
o
= r—’; |k cos (67 + dg — 7)) + Ff, (33)
q

Multiplication of the first equation with (2r, /h,) and
the integration over a segment /; results in a rate equatlon
for the number of forward propagating photons lq in the
segment /;:

1 dig 2J,
= 288,15 — 2

l/ dtf 9

2
=>—Re (jk "R, R;*I;) + F},

o, (34)

10, OCTOBER 1990
with

.= (h(aq)_l Sr dz2r  F,(z, t). (35)
The correlation function of the Langevin force appearing
in a photon rate equation has been derived before [18]:

(Fr () FlX(t)) = (36)

The correlation function of F;, can then be calculated
with the help of (35), by assuming the field amplitudes to
be constant in the small segments and by taking into ac-
count that

2Ri;6(t —1').

R = Tg(&,)v,ny,. (37)

The correlation functions of F,, and F{, can be derived
in a similar way.
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