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Abstract—We compare the results of different optical vertical-
cavity surface-emitting laser models on the position-dependent
effects of thin oxide apertures. Both scalar and vectorial models as
well as hybrid models are considered. Physical quantities that are
compared are resonance wavelength, threshold material gain, and
modal stability. For large device diameters and low-order modes,
the agreement between the different models is quite good. Larger
differences occur when considering smaller devices and higher
order modes. It is also observed that the spread in the resonance
wavelengths is smaller than that for the threshold material gain.

Index Terms—Distributed Bragg reflector lasers, laser modes,
semiconductor device modeling, semiconductor lasers, surface-
emitting lasers.

I. INTRODUCTION

I N RECENT YEARS, the characteristics of vertical-cavity
surface-emitting lasers (VCSELs) have improved enor-

mously, especially after the introduction of oxidized apertures
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to realize electrical and optical confinement. Today’s VCSELs
show low-threshold current densities [1] and high output
powers [2]. Moreover, their circular beam profiles and the
possibility to integrate then into 2-D arrays [3] make them
suitable candidates for short-range optical communications and
optical interconnects.

In order to design the next generation of VCSELs with even
better performance, it is imperative to be able to model the op-
tical, electrical, and thermal effects that come into play in these
devices. Specifically, the modeling of the optical field is quite
challenging, since the Helmholtz equation is not separable in
this case. Moreover, these structures can have large index con-
trasts, especially so for oxide-confined and airpost VCSELs.
Over the years, a number of approaches have been proposed
to model VCSELs, either scalar or vectorial, or approximate or
rigorous. However, comparing these models and therefore vali-
dating their underlying assumptions has been difficult, if not im-
possible, since the published results obtained with these models
are all for different VCSEL structures. It is the aim of the present
paper to compare many of today’s important VCSEL models on
the same benchmark problem, thereby quantifying the spread of
results among the different models.

The rest of this paper is organized as follows. Section II gives
a brief overview of each of the models involved in this compar-
ison. The models are subdivided into scalar models, models with
both a scalar and a vectorial implementation, hybrid scalar–vec-
torial models, and finally vectorial models. The names in paren-
theses occurring in each paragraph title will be used to refer to
the results of that particular model. These names usually de-
rive from an acronym or from the name of a university or com-
pany. The benchmark structure itself will be described in Sec-
tion III. Subsequently, the simulation results of the models will
be compared in Section IV. Finally, Section V summarizes our
main conclusions. The numerical results of the simulations will
be given in the Appendix, to facilitate comparison with future
models.

II. OPTICAL VCSEL MODELS

A. Scalar Models

This class of models starts out from the scalar Helmholtz
equation. In doing so, all polarization information is lost. This
is usually not a problem, except when considering fields that
have a relatively large transverse wavevector component, as is
the case in higher order modes or smaller devices. The main ad-
vantage of these models is obviously their speed, making them
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suitable design tools when the focus is more on capturing device
trends rather than on obtaining numerically accurate results.

Hadley’s Effective Index (EI) Model:In this model, imple-
mented among others at Avalon Photonics, the lateral optical
waveguide in the VCSEL is approximated by an EI step located
at the radius of the oxide aperture. The index of the waveguide
core is calculated from a field-weighted average of the different
refractive indices in the VCSEL layer structure [4]. The index
step to the cladding region is found by multiplying the core
index with the relative wavelength shift of the cavity mode when
the structure is oxidized [4]. The op-
tical modes are linearly polarized (LP) modes, as found from
the standard solution of a step index waveguide.

EI Method Using Eigenmodes (Chalmers):This model im-
plemented at Chalmers University is also based on Hadley’s EI
model [5] for which the longitudinal field distribution is calcu-
lated by solving a 1-D eigenvalue equation. The transverse field
distribution was obtained by solving

(1)
where was assumed to have a time dependence ac-
cording to

(2)

By inserting (2) into (1), we arrive at the following eigenvalue
equation:

(3)

We can gather from (2) that the real and complex parts of the
eigenvalue are closely related to the modal cavity reso-
nance and gain, respectively.

Prior to numerical calculations, the operator in (3) was
discretized uniformly by 100 points on a 10-m mesh window.
To calculate a mode profile with an accompanying eigenvalue
took s. Calculations were done on a 333-MHz Pentium-II
PC in a Matlab environment.

Effective Frequency (EF) Model:This model is also based
on Hadley’s EI model [4]–[6]. A comprehensive description can
be found in [7]. The main differences to Hadley’s model can be
summarized as follows.

1) The optical frequency is considered to be a complex
number. Its real and imaginary parts determine the modal
wavelength and the decay constants, respectively, of the
eigenmodes of the device.

2) The term occurring in the scalar wave equation
is linearized around a real valued reference frequency.
For the device considered here, was chosen to corre-
spond to a vacuum wavelength of 980 nm.

3) Because the dielectric function may depend on the
frequency , temporal dispersion is included.

4) Instead of having to solve a time-dependent, in-plane par-
tial differential equation as in [4]–[6], we have to deter-
mine a complex valued eigenvalueof a time-indepen-
dent ordinary differential equation, which gives the reso-
nance wavelengths and decay constants of the modes of

the whole resonator. The complex valued eigenvalueis
proportional to the frequency difference .

5) The derivation of the in-plane equation is based upon a
variational principle by minimizing a functional.

By comparing with other models, it should be also noted
that, in both the vertical direction (perpendicular to the epitaxial
layers) and the in-plane direction (parallel to the layers), the
simulation domain is treated as infinitely extended, and exact
transparent boundary conditions are used. Additionally, conti-
nuity of both the electric field strength and its normal derivative
is required at all interfaces between different materials.

The numerical procedure of locating the material gain where
the imaginary part of vanishes takes about 1 s on a 667-MHz
DEC-Alpha workstation, for the benchmark structure of Sec-
tion III. The linearization with respect to frequency leads to
slight deviations of the results from the exact value, even for
a purely planar configuration.

Optimized-Waist Paraxial Eigenmodes Using a Cavity
S-Matrix (PREVEU): In the Paraxial Radiation Eigenmodes
for VCSEL Emulation (PREVEU) model developed at Science
Applications International Corporation [8], [9], the cavity
round-trip S-matrix is obtained analytically using a paraxial
mode expansion with the mode waist as a free parameter. No
longitudinal index-averaging, or separable approximations, are
assumed. Distributed Bragg reflectors (DBRs) are modeled by
equivalent hard mirrors, located at the effective phase penetra-
tion and the effective diffraction lengths, respectively, for the
standing-wave condition and reflected wavefront computation.
Wavefront “clipping” due to finite mirror radius, and gain
guiding due to finite gain area, are evaluated analytically in
terms of nondiagonal S-matrices. In treating apertures, losses
from wide-angle scattering outside the paraxial propagation
cone are computed, applying the Born approximation to the EM
scattering theory. The aperture-induced phase-shift is computed
by Schrödinger perturbation theory. Scattering losses overtake
combined losses from all other factors at small apertures. Wave
propagation between gain, aperture, and mirror elements is
modeled by the uniform medium paraxial propagator, yielding
simply a rescaling of the paraxial beam parameters with dis-
tance traveled. Finally, the diffracted and deformed wavefront
is projected onto the original, obtaining the analytic expression
for the round-trip matrix in terms of current aperture, mode
waist, and cavity Fresnel number. Variation of the round trip
eigenvalue with respect to the mode waist yields the mode
structure analytically.

Execution time for obtaining the first 20 modes is less than
100 ms on a Pentium 500 machine. Computed results yielded
excellent agreement with near-field profile measurements on a
780-nm etched mesa device.

B. Models With Scalar and Vectorial Implementation

These models can be either formulated in a scalar or vectorial
way and are, therefore, potentially well suited to evaluate the
necessity of a vectorial implementation.

Coupled Mode Model (Torino):In this model [10], [11], im-
plemented at the Politecnico di Torino, Italy, the vectorial elec-
tromagnetic field is expanded on the continuous basis of the
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TE and TM free space modes of a reference medium in cylin-
drical coordinates. These are expressed in terms of Bessel and
trigonometric functions and are labeled by the continuous trans-
verse wavevector, and by the discrete azimuthal index. In
each longitudinally homogeneous layer of the device, the cou-
pling between the expansion modes is determined by the per-
turbation to the reference refractive index induced by the de-
vice transverse structure. Through the formal solution of the
coupled-mode equations, it is possible to define a relation be-
tween the electric field at any two positions of the resonator.
The boundary conditions are set by the self-consistency between
backward and forward waves at two arbitrary sections and de-
fine the threshold condition of each mode as the solution of an
eigenvalue problem: eigenvalues are related to threshold gains
and lasing frequencies of the modes, while the corresponding
eigenvectors give the expansion coefficients and allow the re-
construction of the fields. The only approximation in this ap-
proach is the discretization of the continuous wavevector. The
adopted discretization step and the number of modes in-
cluded in the mode expansion fix the dimensions of the eigen-
value problem. Different azimuthal modes are coupled only in
the case of noncircularly symmetric structures. We have imple-
mented this model with Matlab on a Pentium 400 MHz PC and
finding a laser mode for the benchmark structure takes about
4 min.

The same formalism can be applied by adopting a simplified
scalar basis for the field expansion that can be derived from the
vectorial basis in the TEM limit. In this way, a comparison be-
tween the vectorial treatment and the LP scalar approximation
can be carried out and the range of validity of the scalar ap-
proach can be discussed. The size of the LP problem is reduced
by a factor of 2 (TEM instead of TE and TM modes) which cor-
responds to a factor of 4 decrease in computational time.

Numerical Mode-Matching Method (UI-NMM):To find the
vector modes of the VCSEL cavity, a numerical mode-matching
method (NMM) [12] is used. The starting point of our method
is similar to the approach described in [13]: the VCSEL struc-
ture is placed in a perfect conducting cylindrical waveguide and
the modes of that perfect conducting waveguide are used as an
expansion basis. An orthonormal basis is calculated from this
expansion basis using the modified Gram-Schmidt algorithm.
The finite-difference operators are then projected onto a smaller
subspace. The projected operators no longer contain the field fi-
nite-difference operators. At the same time, this method avoids
the calculation of the overlap integrals between the field and re-
fractive index profiles. Thus, our formulation is not structure-de-
pendent (in the sense that it is not limited to structures with
only single step-index profiles) and permits the accurate mod-
eling of VCSEL structures with complex permittivities of ar-
bitrary transverse profiles. Furthermore, Krylov subspace tech-
niques are used to improve computation speed. An efficient al-
gorithm to obtain the resonant wavelength, quality factor, and
“hot-cavity” threshold gain for each mode is derived. The details
of the optical model are given in [14]. This solver was used in
conjunction with a comprehensive rate-equation solver to model
complex VCSEL structures [15].

The computational resources to run this code are fairly
modest: on an Intel Celeron 366 MHz with 128 MB of RAM,

simulation times to find the characteristics of one mode (reso-
nant wavelength, “hot-cavity” threshold gain) are on the order
of a few seconds to a couple of minutes.

Using the NMM, a scalar formulation was also derived. It is
observed that the results closely match the vector results, es-
pecially for the wavelength. The largest discrepancies were ob-
served for small diameters ( and 2 m) when the aperture
is at a standing-wave anti-node (position no. 5). In this case, the
relative difference in wavelength values is still negligible but the
relative difference in threshold gain values is 7.6% for m
and 5.2% for m. For most practical cases, the scalar ver-
sion of our code is sufficient. Compared to the vector version,
computation times are divided by eight and memory require-
ments are divided by four.

For the simulation results given in the rest of this paper, the
vectorial version of the model was used.

C. Hybrid Models

These approaches combine both scalar and vectorial ap-
proaches to deal with different subproblems of the VCSEL
model.

Weighted Index Method With Parasitic Mode Loss
(WIMP): The Weighted Index Method with Parasitic mode
loss (WIMP) is a semi-analytic, hybrid scalar–vector technique
for computing the relevant optical mode data (e.g., wavelength,
threshold gain,and confinement factor) of an oxide-apertured
VCSEL [16]–[18]. The method is born out of a quasi-rigorous
solution of Maxwell’s equations for an azimuthally symmetric
layered geometry. For each eigenmode of the VCSEL, the total
electric and magnetic vector fields are segregated into two
parts: a separable portion and a nonseparable portion. This is
the crux of the method.

The separable fields are defined such that they exactly solve
Maxwell’s equations for an underlying separable VCSEL
geometry. Both the separable fields and their associated sep-
arable VCSEL geometry are simultaneously computed using
the Weighted Index Method (WIM). In practice, for the sake of
efficiency, we make the “linearly polarized” mode approxima-
tion, thereby yielding a representation of the separable fields
where only the dominant vector field component is considered.
The explicit results of this calculation are, for each eigenmode:
separable electric and magnetic fields, corresponding sepa-
rable geometry, resonant wavelength, confinement factor, and
threshold gain. Here, the threshold gain compensates for mirror
and absorption loss, as well as the two optical loss mechanisms
present in the separable geometry. Diffraction loss comes
about due to the nonseparablity of the real geometry, which is
captured by the second part of the WIMP.

The nonseparable vector fields solve a set of Maxwell’s equa-
tions in the original VCSEL geometry but with an additional
volumetric source current stemming from the separable fields.
The volumetric source current depends on two things: the rela-
tive strength of the separable fields, and the difference between
the separable geometry and the actual geometry. Physically, we
may think of the nonseparable fields as being the fields radiated
by the separable source fields to compensate for the “nonsepa-
rability” of the VCSEL geometry. This is a semi-analogous line
of reasoning to Huygen’s principle for wave propagation.
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We solve for the nonseparable fields by expanding them in
a Fourier basis set in the longitudinal direction. In order to re-
tain the full vector stature of these fields, we use two orthogonal
basis sets: a transverse electric set and a transverse magnetic
set. The strength of each Fourier component is solved exactly
in closed form using standard electromagnetic techniques; the
diffraction loss is computed concurrently. The explicit results
of this calculation are, for each eigenmode, a Fourier represen-
tation of the nonseparable fields and the diffraction loss. Finally,
the separable and nonseparable solutions are combined and the
threshold gain is adjusted to account forall optical loss mecha-
nisms: absorption, mirror, and diffraction.

D. Vectorial Models

It is the aim of these models to solve Maxwell’s equation
exactly, without resorting to any approximations other than a
nonzero discretization length or a finite number of terms re-
tained in a series expansion. Therefore, these models are slower
than their scalar counterparts, but they are the only resort when
studying polarization properties or when considering fields with
a significant amount of nonparaxial propagation (higher order
modes, small devices, etc.).

Method of Lines (MoL):The method of lines (MoL) has been
used to solve the vectorial wave equation in cylindrical coordi-
nates [19], [20]. The structure is divided into layers where the
material parameters are constant in the axial direction. An ar-
bitrary distribution of the permittivity in the radial direction is
possible. The wave equation has been discretized in the radial
direction and trigonometric functions have been introduced in
the azimuthal direction. The refractive index can also be vari-
able in the azimuthal direction. In this case, Fourier series can
be used instead of one single trigonometric function [21].

In the direction of propagation, analytic solutions are consid-
ered. The relation between the electric and magnetic fields at the
boundary of two layers can be expressed as a complex admit-
tance. Then, the impedance/admittance transformation concept
has been used to transform the admittance into a reference plane
where an eigenvalue problem must be solved. The admittance
transformation concept is an excellent method to analyze struc-
tures with several (hundreds!) of different layers. It is a stable
procedure, which has been proven by several examples [22].

The optical gain is introduced as the imaginary part of the
complex refractive index of the active region. The whole struc-
ture has been calculated for the condition that the imaginary part
of the complex resonance frequency vanishes. After solving the
eigenvalue problem, the wavelength of the resonator and the op-
tical field can be calculated in the whole structure.

The modeling of the task presented in this paper (see Sec-
tion III) took 15 min in Matlab on a Pentium II 333-MHz PC to
calculate the wavelength and the optical gain of one mode.

Green’s Function Model (Green):The Green’s function
approach is based upon a mode eigenvalue equation forcing
the modal gain to equal the modal loss, thereby enforcing the
semiclassical lasing condition for the modes. The eigenvalue
is defined as the complex number multiplying the gain in
order that the semiclassical lasing condition is satisfied [23].
The mode equation is formulated as an integral eigenvalue

equation incorporating the tensor Green’s function of the
VCSEL structure. This is done to take advantage of the fact
that the Green’s function can handle open boundaries in a
natural way. The eigenvalue equation is discretized using
the method of moments, resulting in a small, dense matrix
eigenvalue problem that is rapidly solved. The slow part of the
problem is evaluating the Green’s function matrix elements
between source and receiver “bricks.” These matrix elements
are calculated by separating the VCSEL structure into planar
and nonplanar parts, assuming that the underlying VCSEL
structure is planar. The Green’s function for the planar part is
calculated by expanding the source and receiver in plane waves
and propagating the resulting plane wave fields through the
structure. The Green’s function for the nonplanar part (e.g., the
oxide aperture) is calculated by treating the nonplanar regions
as effective volumetric polarization sources in the eigenvalue
equation, making the eigenvalue equation into a generalized
eigenvalue equation. This calculation is difficult, but it need
only be performed once for a wide range of VCSEL structures
and gain configurations, which was the goal of this effort.
The simulations presented here took roughly an hour for each
mode on a DEC Alpha 533-MHz processor, but the modes
may be recalculated for changing gain conditions in a matter
of seconds.

Eigenmode Expansion With PML (CAMFR):In this ap-
proach, the structure is divided into sections with a constant
refractive index profile along the propagation axis, and the field
in each of these sections is expanded onto the eigenmodes of
that particular section. In order to get a discrete set of radiation
modes, the VCSEL is placed in a perfectly conducting metal
cylinder. This cylinder is coated with a perfectly matched
layer (PML), so as to eliminate the parasitic reflections from
it, thereby effectively simulating an open structure [24]–[26].
Thanks to these absorbing boundary conditions, the cylinder
can be placed much closer to the VCSEL, leading to a smaller
computational volume and an improved computation time.
At the interfaces between different sections, mode matching
is used to decompose the field into the eigenmodes of the
new section. This procedure ultimately gives rise to scattering
matrices describing the top and the bottom half of the cavity.
These matrices can be used to express the condition that the
lasing mode should have a round-trip gain of unity. Wavelength
and material gain are varied to achieve this. The entire approach
is implemented in our simulation tool CAMFR [26]1 . The
simulation results in this paper were obtained with a radius of
the metal cylinder of 12-0.05j m and 200 modes. Locating
a lasing mode takes on the order of 5–10 min on a 250-MHz
Ultrasparc II.

III. B ENCHMARK STRUCTURE

The benchmark structure originated from a modeling exercise
[27] in the European COST268 action, which is an open frame-
work to facilitate the free flow of scientific ideas and results.
Participation to this modeling exercise was completely open,
and in effect also many non-European groups collaborated. In

1Available: http://camfr.sourceforge.net.
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Fig. 1. Benchmark structure.

TABLE I
LAYER THICKNESSES ANDREFRACTIVE INDICES OF

BENCHMARK STRUCTURE

the end, ten different groups participated in the comparison, re-
sulting in a significant cross section of the currently pursued
VCSEL modeling research.

The structure itself is detailed in Fig. 1 and Table I. It is an
AlGaAs VCSEL designed for operation around 980 nm. The
bottom reflector consists of 29.5 pairs of AlGaAs–GaAs, while
the top mirror has 25 pairs. In the lower layer of the top
mirror, a -thick oxide aperture is placed. The gain in the
5-nm-thick quantum qwell (QW) is assumed to have a step-
index profile with the same dimensions as the oxide aperture.
Outside of the aperture, the QW exhibits loss. The structure is
grown on a GaAs substrate. The parameters that are varied in
the simulation are the position of the aperture with respect to
the optical field (from ’1—node position’ to ’5—antinode posi-
tion’ and the diameter of device (from 1 to 8m).

At this point, we want to point out that we do not include
quantitative experimental verification for the modeling results.
Experimental verification would not be as useful at it first seems,
because a fabricated device will never have exactly the same
geometry (layer thickness, material composition, etc.) as a pro-
posed design, making exact quantitative comparisons awkward.
Additionally, in real-life devices other aspects are at play, such
as current flow and thermal effects, which are not captured by
most of the models involved. We do not consider this to be a
drawback of this paper, as it focuses solely on the optical aspects
of VCSEL modeling, which is in itself already quite a broad and
challenging topic.

IV. COMPARISON OFRESULTS

Fig. 2 shows the resonance wavelength for the fundamental
mode ( for the scalar modes, for the vectorial
models) as a function of oxide position for a VCSEL with
an 8- m diameter. The top curve corresponds to the planar
VCSEL, i.e., the central region extending toward infinity. All
the curves are blue-shifted with respect to the planar results,
since the outer region has a lower EI.

Generally, the trends of the different models agree very well
(within 0.5 nm), which is to be expected for such a large struc-
ture. The PREVEU model, however, predicts a much smaller po-
sition-dependent resonance shift. Also note that the two curves
for the scalar and vectorial version of the Torino model coin-
cide. The same is true for the Chalmers and the EI model, since
they are both variants of Hadley’s EI model. It is also interesting
to observe that there is no clear clustering between the scalar
models (full lines) and the vectorial ones (dashed lines).

Fig. 3 shows the threshold material gain for the fundamental
mode for the same 8-m VCSEL. When the oxide moves to-
ward the field minimum, confinement is lost in this particular
VCSEL design and the threshold material gain goes up. Apart
from the PREVEU model, there is a tendency for the vectorial
models to predict higher thresholds than the scalar models. This
is illustrated further in Fig. 4, which shows the relative threshold
difference normalized to the arbitrarily chosen EF model, which
also shows the lowest threshold. First of all, we can see that
the spread in threshold is significantly higher than the spread in
wavelength results. To study the differences between scalar and
vectorial approaches, we first have to distinguish between scalar
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Fig. 2. Resonance wavelength for the fundamental mode as a function of oxide position for an 8-�m-diameter VCSEL. (Full lines: scalar models. Dashed lines:
vectorial models.)

Fig. 3. Threshold material gain for the fundamental mode as a function of oxide position for an 8-�m-diameter VCSEL.

Fig. 4. Relative threshold material gain difference normalized to the EF model, for the fundamental mode as a function of oxide position for an 8-�m-diameter
VCSEL.

models that also imply a paraxial approximation (like the EI,
Chalmers and EF models) and those that do not (WIMP, Torino
LP, PREVEU, and the UI-NMM scalar version). The former are
unable to take diffraction losses into account and therefore tend
to predict lower thresholds, which can be seen from Fig. 4. The
nonparaxial scalar models try to include these diffraction losses,
but it is uncertain whether this is achieved as accurately as in
a full vectorial model. Full-vectorial models (CAMFR, MoL,
Green, Torino, and UI-NMM) take these diffraction losses fully
into account, and therefore they typically predict higher thresh-

olds than the other models (see the dashed lines in Fig. 4). How-
ever, it is to be noted that the spread among the vectorial models
is significantly higher than the spread among the scalar models.
We attribute this to the influence of the boundary conditions,
which becomes more prominent as radiation caused by diffrac-
tion propagates to the numerical boundary and can cause para-
sitic reflections [25].

When considering the scalar and the vectorial implementa-
tion of the Torino model, it can be seen that the differences are
relatively minor. The largest difference occurs at the node posi-
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Fig. 5. Modal stability as a function of oxide position for an 8-�m-diameter VCSEL.

Fig. 6. Resonance wavelength for the fundamental mode as a function of diameter for an antinode oxide.

tion, where the vectorial version has a slightly higher threshold.
These results seem to be typical for the Torino model, however.
For the UI-NMM method, the difference between the scalar and
the vectorial version is larger at the antinode position. These two
models are the only nonparaxial scalar models that also have a
vectorial version. Since comparing the differences between the
scalar and the vectorial version gives different results for the
different models, it would not be advisable to draw any firm
conclusions on the ability of nonparaxial scalar models to accu-
rately model diffraction loss.

Let us now consider simulation results on the first order
mode. For scalar models, this is . For vectorial models,
we choose . We could also have chosen or ,
since all three of these modes degenerate to in the scalar
limit, but as the difference between these three modes is rather
small, we restricted our parameter space to only.

In Fig. 5, we plot the modal stability, as defined by the per-
centage difference in threshold between the higher order mode
and the fundamental one, written as

Threshold first order Threshold fundamental
Threshold fundamental

For node oxides, the higher order mode suffers much more
from the lack of confinement than the fundamental mode.
This leads to an increased modal stability at the expense of
a higher threshold for the fundamental mode. We also see

that comparing modal stability leads to an even higher spread
in results than when comparing threshold gains or resonance
wavelengths.

After keeping the diameter fixed and varying the oxide posi-
tion, we now keep the oxide at the antinode position and vary
the diameter. From Fig. 6, we see a decrease in lasing wave-
length for decreasing aperture size. To further clarify the spread
between the models, we plot in Fig. 7 the differences in pre-
dicted wavelength with regard to the EF model. The spread be-
tween the models is mostly of the same order of magnitude as in
Fig. 2, although this time some models start to deviate from the
general trend in going to smaller apertures (most notably MoL
and PREVEU). As for the other models, the CAMFR results co-
incide very well with the WIMP model, and the EI, Chalmers,
Torino, and UI-NMM models also give very similar results.

In Fig. 8, we plot the relative wavelength difference for the
first-order mode. This time, the spread between the models
is significantly higher and also increases as we move to-
ward smaller diameters. The MoL results predict the longest
wavelengths. The WIMP results no longer coincide with the
CAMFR results and predict much shorter wavelengths. In spite
of this larger spread in results, there is still no clear clustering
between scalar and vectorial results, a conclusion consistent
with the previous resonance wavelength calculations.

It is also interesting to consider the wavelength difference
between the first order and the fundamental mode. This
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Fig. 7. Resonance wavelength difference with the EF model for the fundamental mode as a function of diameter for an antinode oxide.

Fig. 8. Resonance wavelength difference with the EF model for the first-order mode as a function of diameter for an antinode oxide.

Fig. 9. Difference in resonance wavelength between the first order mode and the fundamental mode as a function of device diameter.

quantity depends mostly on the aperture geometry (diameter,
thickness, position) and not so much on the longitudinal pro-
file of the structure [14]. Hence, it focuses on the 2-D portion
of the modeling and eliminates the influence of the longitudinal
profile (some models might suffer from the discretization along
the longitudinal direction). This wavelength splitting is an im-
portant parameter: as an example, it is possible to extract the
mode diameter from this value [28]. Fig. 9 shows that, apart
from the MoL, WIMP, and PREVEU results, the spread in this
wavelength difference is a lot smaller than the spread in the in-
dividual wavelengths (roughly 0.1 nm instead of 0.5 nm).

Reducing the aperture size leads to a loss in confinement and
higher thresholds, as can be seen in Fig. 10 (note the logarithmic
scale). Once again, the differences between the models increase
for smaller diameters, and vectorial models typically predict
higher thresholds. Similar conclusions can be drawn from the
relative threshold difference for the first-order mode in Fig. 11.
The EF and EI models predict lower thresholds, because they
do not take diffraction losses into account. The trend to show
higher diffraction losses for smaller apertures is also much more
pronounced for the vectorial models, and the relative spread be-
tween the vectorial models is, once again, much larger than be-
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Fig. 10. Threshold material gain for the fundamental mode as a function of diameter for an antinode oxide. Note the logarithmic scale for the gain.

Fig. 11. Relative threshold material gain difference with the EF model for the first-order mode as a function of diameter for an antinode oxide.

Fig. 12. Relative excess modal loss for the fundamental mode as a function of device diameter. Note the log–log scale and the slope coefficient of�3.

tween the scalar models. The WIMP model follows the trend
of the vectorial models quite well, although it has some diffi-
culty in modeling structures smaller than 6m in diameter. The
scalar and vectorial implementations of the Torino model give
different results, but, strangely enough, the vectorial one pre-
dicts lower thresholds. This is explained by the fact that, in the
scalar version of this model, the mirror reflectivity is a weighted
average between the TE reflectivity and the slightly lower TM

reflectivity. This results in an underestimation of the true
reflectivity, and hence an overestimation of the threshold gain
for the scalar model.

From the results presented so far, we can also argue more
clearly that parasitic reflections are an important aspect in ex-
plaining the spread between the vectorial models. Looking again
at Figs. 10 and 11, we can see that this spread is larger for
smaller diameters and higher order modes, precisely the situ-
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TABLE II
NUMERICAL SIMULATION RESULTS FOR THEFUNDAMENTAL MODE IN AN 8-�m VCSEL

TABLE III
NUMERICAL SIMULATION RESULTS FOR THEFIRST-ORDER MODE IN AN 8-�m VCSEL

ations where more radiation is propagating nonparaxially. For
situations where we can assume the influence of parasitic re-
flections to be negligible, like for the fundamental mode in large
devices, the spread between the models is very small.

Finally, we show in Fig. 12 the relative excess modal loss
for the fundamental mode in the antinode oxide device. This
quantity is defined as the relative difference

between the threshold material for the actual device



1628 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 37, NO. 12, DECEMBER 2001

TABLE IV
NUMERICAL SIMULATION RESULTS FOR THEFUNDAMENTAL MODE IN AN ANTINODE OXIDE VCSEL

TABLE V
NUMERICAL SIMULATION RESULTS FOR THEFIRST-ORDER MODE IN AN ANTINODE OXIDE VCSEL

and that of the planar device. This excess loss is mainly due
to scattering losses at the oxide aperture. It has been observed
that this quantity scales roughly as [14], [29], which

is confirmed by most of the models in the log–log plot of
Fig. 12. Only the MoL curve tends to flatten a bit for large
diameters.
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V. CONCLUSION

Clearly, there is no such thing as the “best” VCSEL model
suited for all purposes, as there is a whole spectrum of models
that all trade off accuracy and calculation time, which are both
very important parameters for practical use. When one is only
interested in device trends, paraxial EI-like models can give very
good results at unparalleled speeds. For more accurate simula-
tions, there are nonparaxial scalar models or hybrid models that
combine some aspects of scalar and vectorial techniques. For
full accuracy, vectorial models are required, but these typically
have much longer computation times and also need to deal ad-
equately with the problems of parasitic reflections to achieve
their full potential.

Although all these models are mostly able to predict the cor-
rect qualitative trends, quantitative results are not always the
same. As far as resonance wavelength is concerned, these dif-
ferences are often below 0.5 nm and can be considered minor.
Larger differences occur when studying smaller oxide apertures
or higher order modes. For the resonance wavelength, there is
no clear clustering between scalar and vectorial models, which
indicates that the scalar approach yields reliable results. Much
larger discrepancies are observed in the threshold material gain,
where deviations of 10%–30% are not uncommon. Again, the
spread increases for smaller diameters and higher order modes.
In these cases, the EI and EF models break down and predict
lower thresholds, because they are unable to take diffraction
losses into account. Vectorial models do incorporate these ef-
fects, and they typically predict higher thresholds. However,
the spread among the vectorial gain results is much larger than
the spread among the scalar results, most likely due to numer-
ical influences like parasitic reflections at the boundaries of the
computational domain. This seems to be an important aspect to
take into account when developing models aiming for the “next”
level of high numerical accuracy.

APPENDIX

This appendix contains the numerical results of the simula-
tions. The data for the 8-m VCSEL as a function oxide posi-
tion can be found in Tables II and III, for the fundamental and
first order mode respectively. The results as a function of size
for an antinode oxide are summarized in Tables IV and V.
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