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Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions
in photonic crystals
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We prove that an adiabatic theorem generally holds for slow tapers in photonic crystals and other strongly
grated waveguides with arbitrary index modulation, exactly as in conventional waveguides. This provides a
guaranteed pathway to efficient and broad-bandwidth couplers with, e.g., uniform waveguides. We show that
adiabatic transmission can only occur, however, if the operating mode is propagating~nonevanescent! and
guided at every point in the taper. Moreover, we demonstrate how straightforward taper designs in photonic
crystals can violate these conditions, but that adiabaticity is restored by simple design principles involving only
the independent band structures of the intermediate gratings. For these and other analyses, we develop a
generalization of the standard coupled-mode theory to handle arbitrary nonuniform gratings via an instanta-
neous Bloch-mode basis, yielding a continuous set of differential equations for the basis coefficients. We show
how one can thereby compute semianalytical reflection and transmission through crystal tapers of almost any
length, using only a single pair of modes in the unit cells of uniform gratings. Unlike other numerical methods,
our technique becomesmoreaccurate as the taper becomes more gradual, with no significant increase in the
computation time or memory. We also include numerical examples comparing to a well-established scattering-
matrix method in two dimensions.
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I. INTRODUCTION

Waveguides with strong ‘‘gratings,’’ i.e., large axial inde
modulation, are increasingly important components of o
cal devices, from filters to distributed-feedback lasers—th
especially arise in the context of photonic crystals, perio
dielectric structures with a band gap that forbids propaga
of light for a range of frequencies along some~possibly all!
directions@1#. Such waveguides can exhibit high transm
sion around sharp bends@2# or through wide-angle splitter
@3#, form a robust substrate for interacting with resonat
and filters@4#, may have dramatically slow group velocitie
and anomalous dispersion, and can greatly amplify nonlin
phenomena@5,6#. In all such applications, however, on
question that arises is how to couple them efficiently w
conventional~nongrated! waveguides; this is especially cha
lenging for slow-light waveguides~near band edges or from
coupled resonators@7#! due to their large ‘‘impedance’’ mis
match. In this paper, we prove that, as for conventio
waveguides@8#, an adiabatic theoremensures that suffi-
ciently slow transitions~tapered, or ‘‘apodized,’’ gratings!
produce arbitrarily good transmission between grated
nongrated waveguides. Although the general concept of s
transitions in grated waveguides has been previously im
mented on a trial-and-error basis@9–14#, the existence of the
adiabatic limit was unproven. We find that this theore
moreover, imposes two requirements on the taper that
directly to design principles.

~i! The operating mode mustnot be evanescent~cannot lie
in a band gap! for any intermediate point of the taper.

*Electronic address: stevenj@alum.mit.edu
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~ii ! The operating mode mustbe guided~i.e., not part of a
continuum! for every intermediate point of the taper.~Or, if
leaky, the leakage rate should be slow compared to the ta!

In fact, both of these common-sense criteria hold for tap
of nongrated waveguides as well: no one would expect h
transmission if a conventional waveguide were tapered to
narrower than the cutoff for guiding and then tapered ba
The conditions take on a new importance, however, for p
tonic crystals and strong gratings, because here the m
‘‘obvious’’ taper designs can inadvertently violate them. W
demonstrate how this occurs in an example two-dimensio
system, and how adiabaticity can be restored by sim
modifications ~varying the period and/or ‘‘unzipping’’ the
crystal! based on an inexpensive band-structure analysi
uniform gratings at intermediate points in the taper.

Furthermore, in order to prove the adiabatic theorem,
develop a generalization of coupled-mode theory@8,15# to
arbitrary grated waveguides, yielding a continuous set of
dinary differential equations for the coefficients of ‘‘insta
taneous’’ Bloch modes at each point in a taper. These eq
tions enable the semianalytical computation of reflection a
transmission through grating tapers not limited in index co
trast or geometry. We thereby demonstrate how accurate
sults are obtained by combining independent calculations
the unit cells of intermediate points in a taper, with the ba
so efficient that typically only a single pair of eigenstates
required. Unlike other numerical techniques such as fin
difference time-domain methods@16# or transfer/scattering
matrices@17–21#, these coupled-mode equations can yie
the transmission for many taper rates simultaneously w
essentially no additional computational effort. In fact, o
method becomesmoreaccurate~and no more expensive! as
the taper becomes more gradual, rather than requiring e
©2002 The American Physical Society08-1
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increasing spatial resolution and computational power.
Coupled-mode theory generally involves expanding

electromagnetic fields in some basis, typically the eig
modes of a waveguide, and then solving for the basis c
ficients as a function of position. There exist many variatio
on this theme, but they can broadly be divided according
the expansion basis and the method of solving for the c
ficients.~We do not consider coupled-mode theories for co
pling parallel waveguides, which have a special set of co
cerns such as nonorthogonality@22#.! The classic expansion
basis at each point is that of the ‘‘instantaneous’’ eigenmo
~or quasimodes! of an infinite straight/uniform waveguid
matching the cross section at that point. If the cross sectio
a continuously varying quantity, this yields a set of coup
differential equations for the mode coefficients, where
coupling is due only to the rate ofchangeof the cross section
@8,15#—thus, they efficiently express the low scattering th
occurs in slowly changing structures. In the presence o
grating, these equations are most commonly solved u
only the fundamental Fourier component of the index mo
lation, which is valid only in the limit of weak grating
@8,23–25#, but a more complete basis can also be emplo
at a greater computational expense.~In one dimension, an
exact theory can be formulated by forcing an equivalence
the analytical transfer matrices@26#.! Alternatively, if the
cross section is piecewise-constant, one obtains a scatte
matrix or transfer-matrix method as referenced above, a
called rigorous coupled-wave analysis, mode matching,
so on; there, the mode coefficients change discontinuous
a discrete set of points where the boundary conditions
matched. All such instantaneous eigenmode techniq
however, suffer in efficiency when faced with a strong gr
ing: the mode coefficients change rapidly with the cross s
tion, so a large basis is required even for a periodic gra
where, in principle, there is no scattering. A more natu
basis for strong gratings is that of the Bloch modes@1#,
which have constant coefficients for a periodic grating a
should therefore be an efficient representation in grati
with slow ~or rare! change. Such a basis has been emplo
for scattering-matrix formulations, in which the Bloch mod
of a discreteset of locally uniform gratings are matched
their boundaries@11,19#. Although this is an effective com
putational tool, it still involves a discontinuous change of t
basis coefficients and so it is suboptimal for slow tap
compared to thecontinuouslychanging grating representa
tion that we develop here. Our method is the natural ana
of the classical treatment of ordinary tapers in terms of
stantaneous eigenmodes. Moreover, the continuous repre
tation especially lends itself to analytic study~even beyond
the adiabatic theorem itself!. For example, we immediatel
find that the scattered/reflected power falls with the squar
the taper length, and oscillates at a rate given by the ph
velocity mismatch with the scattered mode. A related pr
lem has been studied in a continuous Bloch basis for qu
tum mechanics, that of a slowly modulated time-oscillato
Hamiltonian—there, the analysis is greatly complicated
the fact that the eigenvalue spectrum is unbounded and
comes dense in the presence of the oscillation@27,28#. Fi-
nally, we should mention that another possible basis is tha
06660
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the eigenmodes of afixedwaveguide or grating@15#, which
is useful to handle small deviations from an ideal wavegui
but not for transitions between greatly differing waveguid
The Bloch modes of a grating can then be straightforwar
employed, and this has been used to study, e.g., nonli
perturbations in periodic waveguides@29#.

In the following, we begin by introducing a Hermitia
eigenproblem formulation of the fully vectorial Maxwell’
equations for propagation of definite-frequency states, p
viding an abstract algebraic framework that greatly simplifi
the problem, and we point out some important differenc
compared to, e.g., quantum mechanics. Second, we re
the derivation of standard coupled-mode theory for no
grated waveguides in this framework. Section IV then ge
eralizes this treatment to arbitrary grated waveguides, ev
tually arriving at coupled-mode equations that are of alm
exactly the same form as the familar result—thus, the ad
batic theorem immediately follows~the proof is identical!.
Also discussed are important considerations in pract
computations with these coupled-mode equations. Finally
Sec. V we illustrate the theory by comparing it to an ‘‘exac
scattering-matrix method in two dimensions, and in Sec.
describe pitfalls and simple design criteria for construct
adiabatic transitions. There are also two appendixes, one
lining a proof of the adiabatic theorem and highlighting t
origin of the conditions it imposes, and the other discuss
important phase choices that arise in the Bloch basis~in ana-
log to Berry’s phase@30,31# from quantum mechanics!.

II. WAVEGUIDES AND DIRAC NOTATION

In this paper, we employ the Dirac notation of abstra
linear operatorsÂ and state ketsuc& @32,33# to cast Max-
well’s equations at a fixed frequencyv as a Hermitian eigen-
system in explicit analogy with quantum mechanics~with the
spatial propagation directionz taking the place oft). Here,
the analogs to the quantum-mechanical potential are the
electric function «(x,y,z) and the magnetic permeabilit
m(x,y,z). Unlike most previous work with photonic crystal
where one findsv eigenvalues at a fixed wave vector@1#, we
will find wave vectoreigenvalues at a fixedv: only fre-
quency is conserved in a nonuniform waveguide, and we
interested in the field profile as a function ofz.

By moving all of thez derivatives to one side and ex
pressing$Ez ,Hz% in terms of the transverse fields$Et ,Ht%,
the fully vectorial source-free Maxwell’s equations for tim
harmonic states are easily rewritten in the form@34,35#

Âuc&52 i
]

]z
B̂uc&, ~1!

whereuc& is the four-component column vector,

uc&[S Et~x,y,z!

Ht~x,y,z!
D e2 ivt, ~2!

and Â and B̂ are
8-2
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Â[S v«/c2
c

v
“ t3

1

m
“ t3 0

0 vm/c2
c

v
“ t3

1

«
“ t3

D ,

~3!

B̂[S 0 2 ẑ3

ẑ3 0
D 5S 1

21

21

1

D 5B̂21, ~4!

where“ t denotes the transverse (xy) components of“. Â

and B̂ are Hermitian operators~for real/lossless« and m)
under the inner product of two statesuc& and uc8& given by

^cuc8&[E Et* •Et81Ht* •Ht8. ~5!

Above, we havenot made any approximations, paraxial
otherwise; Eq.~1! represents the full Maxwell’s equations. I
this way, we can analyze and exploit the linear algebr
structure of electromagnetism without wading through
usual three-dimensional mire of curls and compone
Moreover, we show that many results such as orthonorma
relations~as well as, e.g., perturbation theory@34–36#! fol-
low automatically from well-known properties of Hermitia
eigensystems, without requiring cumbersome rederivatio
terms of explicit vector fields@8#.

The constant matrixB̂ couples theE and H fields and
plays the role of a ‘‘metric’’ in, e.g., the orthonormality rela
tions below, with Eq.~4! giving

^cuB̂uc8&5 ẑ•E Et* 3Ht81Et83Ht* . ~6!

Thus, ^cuB̂uc& is simply 4P, whereP is the time-average
power flowing in the ẑ direction. A key difference from
quantum mechanics is that neitherÂ nor B̂ is positive defi-
nite, which has important implications for the eigenstates
orthonormality relations below.

Bloch waves, eigenstates, and orthonormality

For a waveguide with uniform cross section (z invariant«
and m), the field uc&[ub& can be chosen to havez depen-
denceeibz @8#, in which case Eq.~1! becomes the eigenprob
lem,

Âub&5bB̂ub&. ~7!

More generally, suppose that« andm areperiodic functions
of z with period~‘‘pitch’’ ! L. In this case, the Bloch-Floque
theorem@1,37# tells us that the solutions can be chosen of
form of Bloch waveseibzub&, whereub& is now aperiodic
function with periodL satisfying the Hermitian eigenprob
lem,
06660
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Ĉub&[S Â1 i
]

]z
B̂D ub&5bB̂ub&, ~8!

defining Ĉ[Â1 i (]/]z)B̂. Such solutions satisfy all the
usual properties of Hermitian eigenproblems@32#, e.g., or-
thogonality: ^b* uB̂ub8&50 as long asbÞb8 (ub* & is the
eigenstate with conjugated eigenvalueb* ). Note the com-
plex conjugation: because the eigenoperators are not pos
definite, the eigenvaluesb are only real when̂buB̂ub&Þ0
~imaginary b corresponds to evanescent modes!—this is a
significant departure from the real eigenvalues of quant
mechanics, and requires such an extended form of the
thogonality relation. For the case of a uniform wavegui
(Ĉ5Â) where the eigenoperators are real symmetric, we
chooseub* &5ub&* and^b* uB̂ub8& becomes the well-known
unconjugatedEt3Ht power-orthogonality relation that is
usually derived from Lorentz reciprocity@8,15,54#. ~More-
over, in uniform waveguides, this orthogonality holds ev
for complex«, sinceÂ is then non-Hermitian but still com
plex symmetric.!

A corollary of Bloch’s theorem tells us that the eige
modes atb andb1(2p/L), are equivalent for any intege
,. In particular,

Ub1
2p

L
, L 5e(22p i /L),zub&, ~9!

which implies an extended version of the orthogonality re
tionship,

^b* uB̂e(22p i /L),zub8&50 ~10!

for bÞb81(2p/L),. Because of the equivalency of Eq
~9!, it suffices to consider eigenvalues whose real parts ar
the first Brillouin zone@1,37#, i.e., R@b#P(2p/L,p/L#.

Guided modes of a waveguide have finite spatial exte
and it follows that they have discrete eigenvaluesbn . We
denote such states byun& and normalize them to

^m* uB̂un&5dm,nhn , ~11!

where uhnu51 and hn is given by the phase angle o

^n* uB̂un&, while um* & denotes the state with eigenvaluebm* .
This corresponds to normalizing each real-b mode’s time-
averaged transmitted power to 1/4@34#. In order to have a
complete basis, one must generally include the continuum
nonguided statesub&, which are typically normalized to delta
functions: ^b* uB̂ub8&5d(b2b8)hb . We do not treat this
continuum explicitly here, as the algebraic generalization
straightforward~sums over states become integrals!; in fact,
the continuum can be thought of as a limit of a discrete se
states with conducting boundary conditions that go to infi
ity. In any case, most numerical implementations of coupl
mode theory must employ a discrete set of states and a fi
computational cell.
8-3
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III. COUPLED-MODE THEORY FOR NONGRATED
WAVEGUIDES

First, we review the well-known coupled-mode theory f
nongrated waveguides in the instantaneous eigenm
~‘‘quasimode’’! basis@8,15,32#, casting the notation and der
vation in a quantum-mechanics-like form that prepares
the generalization of the following section. Consider an
bitrary «(z) @and/orm(z), although we usually havem51],
where thexy dependence is implicit. At anyz, one can define
the instantaneous eigenstatesun&z and eigenvaluesbn(z) of
an imaginary uniform waveguide with that cross section, s
isfying

Âun&z5bn~z!B̂un&z . ~12!

As long as the cross section changes continuously, thes
all continuous functions ofz ~perhaps only piecewise differ
entiable!. The actual fielduc(z)& can then be expanded i
these states at eachz,

uc~z!&5(
n

cn~z!un&z expS i Ez

bn~z8!dz8 D , ~13!

with z-varying coefficientscn(z). ~The integrated phas
choice @30# produces a convenient cancellation in t
coupled-mode equations.! These coefficients satisfy a linea
differential equation that can be found by substituting E
~13! into Maxwell’s equations, i.e., into Eq.~1!,

2 i
]

]z
B̂uc~z!&

5B̂(
n

F2 i
dcn

dz
un&z2 icn

]un&z

]z
1bncnun&zGexpS i E bnD

5Âuc~z!&5B̂(
n

bncnun&z expS i E bnD , ~14!

where we have used Eq.~12!. The equation for a given
]cm /]z is then found by multiplying both sides b
hm* ^m* uzB̂ and employing the orthonormality relation~11!,
which yields

dcm

dz
52hm* (

n
K m* UB̂]un&z

]z

3expS i Ez

@bn~z8!2bm~z8!#dz8 D cn . ~15!

This is still not entirely convenient, as it requires the deriv
tive of un&z . The derivative of an eigenstate, however,
given exactly from first-order perturbation theory@32#, and
so one finds
06660
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dcm

dz
52hm* (

nÞm

K m* U ]Â

]z
UnL

z

bn~z!2bm~z!

3expS i Ez

@bn~z8!2bm~z8!#dz8 D cn

2hm* ^m* uB̂
]um&z

]z
cm . ~16!

As described in Appendix B, this transformation can also
derived by differentiating the eigenequation, and the l
term in Eq.~16! can usually be set to zero by a simple pha
choice~e.g., making the real-b eigenstates purely real with
consistent sign!. The z-varying coupling coefficients of this
equation are now given in terms of the eigenstates of e
cross section and the rate of change of the eigenoper
]Â/]z. This inner-product integral~over the cross section!
can be written more simply in terms of the full six
component field state, after integration by parts inxy
@34,35#,

K m* U ]Â

]z
UnL 5

v

c E F]«

]z
Em*

* •En1
]m

]z
Hm*

* •HnG .
~17!

The m* andn subscripts denote the fields ofum* & and un&,
respectively. Note, however, that when the« or m variation
includes shifting high-contrast boundaries, special care m
be taken with this integral~and, in particular, with the result
ing surface integrals! because of the field discontinuitie
@34–36#.

Equation~16! is of precisely the same form in quantu
mechanics, and exactly the same methods and theorem
ply. In particular, in the limit where the cross-sectional var
tion becomes arbitrarily slow~and thus ]Â/]z becomes
small!, the well-known adiabatic theorem@8,38–43#, reca-
pitulated in Appendix A, states thatcn(z) goes tocn(0)—no
intermodal scattering occurs.~We discuss approximations fo
the intermediate case of finite slow tapers in Sec. IV E, o
we have developed the generalized theory.!

IV. COUPLED-MODE THEORY FOR GRATED
WAVEGUIDES

Above, the key to deriving a coupled-mode theory w
near-adiabatic coefficients was the identification of a slow
varying ‘‘instantaneous’’ waveguide at any givenz. That is,
at eachz we imagined an infinite, uniform waveguide and i
eigenmodes. The same idea carries over to gratings, ex
that here we imagine an instantaneous, infinite,periodically
grated waveguide. Because this instantaneous grated wa
guide has axial variation, we must explicitly identify avir-

tual coordinatez̃ in which the instantaneous waveguide e
tends infinitely, distinct from thephysicalcoordinatez of a
given cross section, as depicted in Fig. 1 and discusse
more detail below. This extension into a virtual coordina
system causes the algebra to be somewhat more intere
8-4
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than before, but we shall see that we arrive at almost exa
the same form for the result.

Moreover, the instantaneous grating has a periodL(z)
that may bez dependent~e.g., for a ‘‘chirped’’ grating!, as
described below. This makes it convenient to introduce
scaled virtual coordinatez̃[ z̃/L(z) so that the instantaneou
gratings always have unit period. We must also define a
responding ‘‘physical’’ scaled coordinatez[*zdz8/L(z8);
intuitively, z is the number of variable periods traversed
to z. ~The proper coordinate choice is critical to obtain
convenient form for the coupled-mode equations.!

A. The instantaneous virtual grating

Given our physical variation«(z) ~again leaving thexy
variation implicit and droppingm for simplicity!, we must
define at everyz a virtual unit-periodic grating«z( z̃), where
«z( z̃11)5«z( z̃). The connection to the physical system
that we require

«z~z!5«~z!. ~18!

That is, the virtual grating must coincide with the physic
waveguide cross section atz̃5z ~the analog toz in the vir-
tual space!; this also implies a choice of origin in virtua
space. Because«z( z̃) is defined by the entirez̃P@0,1) primi-
tive cell, but is only constrained at a singlez̃, the choice of
the instantaneous waveguide«z and L(z) is not uniqueas
shown in Fig. 1, unlike in the preceding section. This mer
indicates a choice of expansion bases, however, and for g
adiabaticity we should select«z andL(z) so that they vary
continuously and as slowly as possible withz.

Figure 1 points out that the virtual grating need not ev
resemble the physical structure in order to satisfy Eq.~18!,
but the more similar the physical and virtual structures a
the more adiabatic the basis choice is likely to be. Anot
example that directly illustrates the consequences of
choice of virtual grating is depicted in Fig. 2. Here, we ima
ine a taper to a grated waveguide of pitchL51, consisting
of blocks of widthw5wf , from a uniform waveguide~cor-
responding tow51), an example considered in more det
in Sec. V. The natural virtual waveguides are gra
waveguides with blocks of intermediate widthsw(z) ranging

FIG. 1. ~Color! For a physical nonuniform grating~top, black! at
a givenz5z0, we imagine~a! an infinite uniform grating with pitch

L(z0) extending in a virtualz̃ space, matching the physical cro

section at corresponding scaled coordinatesz̃/L5 z̃5z(z0). Such a
grating is not unique, and corresponds to a choice of basis—
alternate choice that also matches the requisite cross sectio
shown in~b!.
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from 1 to wf , but many choices ofw(z) lead to exactly the
same physical taper structure. The most adiabatic choice
linear variation, shown as the top graph of the figure. A
other possibility is a piecewise-constant sequence of unifo
grated waveguides, changing discontinuously after each
riod; this case, shown in the middle graph, leads to
scattering-matrix formulation based on the transfer matri
at each junction~a generalization of Ref.@19#!. A third
choice is that ofuniform waveguides (w51 or w50), just
as in the traditional theory of Sec. IV above; this will lead
the standard a set of transfer matrices at eachz interface. All
of these representations will produce thesamenumerical re-
sult for the transmission, if integrated with a complete ba
but are different basis choices that will have different~stron-
ger or weaker! scattering between the basis coefficients. T
first choice of a linear change is the best from an adiab
perspective, producing a continuous set of differential eq
tions~below! that can be integrated efficiently with few bas
functions for slow tapers; the third choice is the worst,
volving strong scattering even for a uniform grating and
quiring a large basis for accurate results.

Once a virtual grating«z( z̃) is chosen at eachz, we find
its Bloch eigenfunctionsun( z̃)&z , where we explicitly iden-
tify the virtual z̃ dependence inside the brackets, as oppo
to the variation withz as the instantaneous grating chang
denoted by the subscript. This eigenfunction satisfies

Ĉz~ z̃ !un~ z̃ !&z[S Âz~ z̃ !1
i

L~z!

]

]z̃
B̂D un~ z̃ !&z

5bn~z!B̂un~ z̃ !&z , ~19!

whereÂz( z̃) is the Â from Eq. ~3! with «z( z̃) instead of«
@so that Âz(z)5Â)], and we have defined a new operat
Ĉz( z̃) in analog to Eq.~8!. As described earlier, we only
consider eigenfunctions in the first Brillouin zone,R@b#

n
is

FIG. 2. ~Color! The same~constant-pitch! physical taper, from a
uniform waveguide to a grated waveguide of blocks with widthw
5wf , can be represented by different virtual tapersw(z): ~top! a
continuous linear change;~middle! sharp junctions at eachL of
uniform grated waveguides;~bottom! sharp junctions of uniform
waveguides given by the instantaneous cross section~traditional
coupled-mode theory!.
8-5
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P(2p/L,p/L#, whereR denotes the real part, since oth
modes are redundant~and are effectively reinserted below!.

B. A parametrized expansion basis

The question now is how to turn these eigenfunctions i
an expansion basis for the stateuc(z)&. We would like to
expand inun(z)&z , i.e., the z̃5z(z) slice of the instanta-
neous eigenstate atz, since this is theexactBloch eigenstate
basis in the limit of a uniform grating@wherez5z/L and
un(z)&z is the eigenstateun&]. In that basis, however, we n
longer have a separatez̃ dependence, and this is a problem
in order to employ the orthonormality relation to pick o
particular state coefficients~as in Sec. III!, we must integrate
over z̃ andnot overz ~andz). ~Equivalently, the Bloch basis
is overcompleteon a single cross section/slice, unlike th
conventional instantaneous basis of Sec. III, and must
disambiguated.!

We must therefore add an explicitz̃ dependence back int
the basis, and we do this by extending the coupled-m
equations to solve afamily of problems parametrized b
shifts in the virtual gratings. At the end, we will project ba
down to the physical problem to yield the desired result
the un(z)&z basis.

In particular, consider the stateun(z1 z̃)&z , which solves
the eigenproblem of Eq.~19! for the operatorÂz(z1 z̃) in
«z(z1 z̃) @with the same eigenvaluebn(z)]. Up to now, we
have imagined that for eachz, we have a virtual grating inz̃
space—z parametrizes thez̃ gratings. The converse is als
possible, however: for everyz̃, «z(z1 z̃) as a function ofz is
a different variable-grating structure, coinciding with o
physical system«(z) only for the shiftz̃50 ~not z50). For
eachof these systems, parametrized~periodically! by z̃, we
can imagine solving for the field evolutionuc(z)& z̃ , expand-
ing the fields atz in the basis ofun(z1 z̃)&z ,

uc~z!& z̃5(
n

cn~z,z̃ !un~z1 z̃ !&z expS i Ez

bn~z8!dz8 D .

~20!

Because thez̃ coordinate is unit periodic, we can choo
cn(z,z̃11)5cn(z,z̃), and thus thecn can be expanded as
Fourier series inz̃,

cn~z,z̃ !5(
,

cn,,~z!e22p i , z̃ ~21!

for some coefficientscn,,(z). The physicalz̃50 solution is
then simplycn(z)5(,cn,,(z).

C. Coupled-mode equations

To solve for the parametrized field evolution, we subs
tute uc(z)& z̃ into Maxwell’s equations~1! for «z(z1 z̃),
06660
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:

e

e

-

2 i
]

]z
B̂uc~z!& z̃5B̂(

n
F2 i

dcn

dz
un&z2 icn

]un&z

]z

2
i

L
cn

]

]z̃
un&z1bncnun&zGei *bn

5Âz~z1 z̃ !uc~z!& z̃

5B̂(
n

F2
i

L
cn

]

]z̃
un&z1bncnun&zG ei *bn,

~22!

where un&z denotesun(z1 z̃)&z , and]un&z /]z is the partial
derivative with respect to thez subscriptonly ~not acting on
z1 z̃). @We have used the fact that (d/dz) f z(z1 z̃)
5(]/]z) f z(z1 z̃)1„1/L(z)…(]/]z̃) f z(z1 z̃).# Just as in Sec.
III, several terms cancel due to our choice of eigenstate b
~and the proper coordinate system!. Given the remaining
terms, we can find the equation fordcm,k /dz by multiplying
with hm* ^m* (z1 z̃)uze2p ik z̃B̂, which involves an integral

over z̃—that is, we must integrate over thefamily of field
solutions at a fixedz. The generalized orthonormality rela
tion of Eq. ~10! thereby yields

dcm,k

dz
52hm* (

n,,
K m* ~z1 z̃ !UB̂e22p i (,2k) z̃

]un(z1 z̃)&z

]z

3expS i Ez

@bn~z8!2bm~z8!#dz8 D cn,, . ~23!

Here, the inner-product integral is over the virtual coordin
z̃ shifted byz; we can eliminate thisz dependence by the
coordinate changez̃→ z̃2z,

dcm,k

dz
52hm* (

n,,
^m* uB̂e22p i (,2k) z̃

]un&z

]z

3expS 2p i ~,2k!z1 i E ~bn2bm! D cn,, , ~24!

where um* &z and un&z now denote simplyum* ( z̃)&z and
un( z̃)&z . Finally, we employ the method of the Appendix B
as in Sec. III, to re-express]un&z /]z in terms of the deriva-
tive of the eigenoperator from Eq.~19!,

dcm,k

dz
52hm* (

n,,Þm,k

K m* Ue2p ik z̃
]Ĉz~ z̃ !

]z
e22p i , z̃UnL

z

Dbn,,;m,k~z!

3expS i Ez

Dbn,,;m,k~z8!dz8 D cn,,

2hm* ^m* uB̂
]um&z

]z
cm,k , ~25!
8-6
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where the phase mismatchDb is given by

Dbn,,;m,k~z![bn~z!2bm~z!1
2p

L~z!
~,2k! ~26!

and]Ĉz( z̃)/]z is

]Ĉz~ z̃ !

]z
5

]Âz~ z̃ !

]z
1 i

dL21

dz
B̂

]

]z̃
. ~27!

As discussed in Appendix B, the final^m* uB̂]/]z um&z ‘‘self-
interaction’’ term can be set to zero~at least for any real-b
mode! by an appropriate phase choice for the eigensta
um&z , and we therefore drop it in most of the the followin
discussion.

In deriving the numerator of Eq.~25!, we have used the
fact that the commutator ofe22p i , z̃ with ]/]z̃ is a constant,
which integrates to zero thanks to the orthonorma
relation—so, we are free to move the phase terms to ei
side of ]Ĉz( z̃)/]z. We have also used Eq.~9! in order to
interpret the combination of the phase terms with the eig
statesun&z and um&z as the eigenstates ofbn12p,/L and
bm12pk/L. Note that in the limit ofdL21/dz50 andL
→0, we reproduce the standard result of Sec. III.

D. The adiabatic theorem

The generalized coupled-mode equation of Eq.~25! can
be simply understood as the ordinary coupled-mode eq
tions in the basis of the Bloch states plus all of their 2p/L
equivalents. There are only a few new aspects, mainly:~i! the
inner product is over the three-dimensional~3D! unit cell in
z̃ space, not over the cross section;~ii ! there is an additiona
term from the rate of changedL/dz of the period; and~iii !
thek label is ‘‘fictitious,’’ and must be summed at the end v
Eq. ~21!. None of these variations affects the proof of t
adiabatic theorem~e.g., in Appendix A!, which only depends
on the basic form of the system of equations and on
decreasing coupling as the system changes more slowl
we can immediately conclude that it holds here as well: If
system changes arbitrarily slowly withz andbn remains real
~propagating! and discrete~guided!, the Bloch modes trans-
form adiabatically andcn(z) approachescn(0). The key
conditions that the mode always be propagating and gu
are discussed in further detail in Sec. VI, where we sh
how they can be satisfied by computing the band diagram
all intermediate points in the taper and altering the ta
design accordingly.

E. Approximations for slow tapers

Solving the coupled-mode equations in general, for fin
tapers, involves setting boundary conditions on the incom
waves at both ends of a waveguide segment and then
grating the full coupled-mode system@8,15#, in principle,
requiring expansion in infinitely many modes andk values.
For slowly varying systems, however, several simplificatio
apply. First, it is clear from Eq.~25! that nearby-b modes
give the greatest contribution, so the basis can be trunca
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Second, for near-adiabatic evolution starting with power i
single mode,cm,k(0)5dm,ndk,0cn(0) @55#, one can integrate
the equationsapproximately, to first order in]Ĉz /]z,

cmÞn~z0!>2cn~0!hm* E
0

z0
dz(

k

K m* Ue2p ik z̃
]Ĉz~ z̃ !

]z
UnL

z

Dbn,0;m,k~z!

3expS i E
0

z

Dbn,0;m,k~z8!dz8D , ~28!

with ucmu2/ucnu2 being the scattered power fraction; this a
proximation should be accurate as long as the total scatt
power is small~e.g., ,0.1 is often sufficient!. The lowest-
order losses in moden are then found by conservation o
power: ucn(z)u25ucn(0)u22(mÞnucm(z)u2. This technique
works even to compute reflections: ifc2m denotes a
backward-propagating wave, then the boundary condition
c2m(z0)50 at the end of a taper can be satisfied to fi
order by setting the reflected wavec2m(0) equal to21
times thec2m(z0) computed from Eq.~28!.

In single-mode grated waveguides~e.g., in photonic crys-
tals!, the scattering losses for slow tapers will often be co
pletely dominated by reflection, for several reasons. First
an omnidirectional photonic crystal, there are no other pro
gating states in the band gap to couple to; this not tr
however, for transitions between photonic crystals and c
ventional waveguides. Second, if one operates near
guided-band edge, the smallestDb will typically be for the
reflected mode~which lies just on the other side of the ban
edge!. Third, recall that the fields in the coupling-coefficie
integrals are normalized—equivalently, one divides the co
ficients by u^n* uB̂un&u terms, which are proportional to th
power and thus to the energy density times the group ve
ity. The group velocity in a photonic crystal, however,
often small due to Bragg scattering~going to zero at the band
edge!, and thus the coupling to reflected modes~which are
also slow! can be greatly amplified~inversely with the group
velocity! relative to, e.g., radiating modes~above the light
line!. We demonstrate this domination of reflection nume
cally in Sec. V, and its fortunate consequence is that
typically only needs to compute the scattering from Eq.~28!
between asingle pairof guided modes.

One can gain additional insight from this first-order a
proximation because the coupling coefficients andDb values
are usually slowly varying. As a crude simplification, su
pose that we simply replace them byconstants: their values
at some intermediate point in the taper. Furthermore, c
sider only thek with the largest contribution, i.e., thek for
which uDbn,0;m,ku is minimum. In this case, Eq.~28! can be
integrated analytically to yield a scattered power,

ucmÞn~z!u2

ucn~0!u2
'4U ^m* ue2p ik z̃

]Ĉz

]z
un&

Dbnm
2

U 2

sin2~Dbnm̄z/2!,

~29!
8-7
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where the bar above theDbnm̄, etc., indicates whateve
average/intermediate value is chosen. Such an approxima
actually works surprisingly well to predict the qualitativ
behavior of a taper with a large taper lengthz5L: as we
demonstrate in Sec. V, the scattering as a function ofL os-
cillates sinusoidally with period;2p/Db and overall de-
creases as 1/L2 ~from the taper rate]Ĉz /]z;1/L).

F. Coupling-factor evaluation

The coupling factor, i.e., the]Ĉz( z̃)/]z inner product in
Eqs. ~25!,~28!, can be expressed in a derivative-free fo
that is more convenient to evaluate. First, theB̂]/]z̃ term in
Eq. ~27! can be rewritten in terms ofÂz and a constant term
~which integrates to zero! via the eigenequation~19!. Sec-
ond, as in Sec. III and Refs.@34,35#, we can integrate by
parts inxy to yield an integral~over thez̃ unit cell! in terms
of the full six-component fields of the instantaneous Blo
states atz,

K m* Ue2p ik z̃
]Ĉz~ z̃ !

]z
UnL

z

5
v

c E e(2p i /L)kz̃F S ]«z~ z̃ !

]z
2

dL21

dz
«zDEm*

* •En

12
dL21

dz
«zEm* ,z̃

* En,z̃

1S ]mz~ z̃ !

]z
2

dL21

dz
mzDHm*

* •Hn

12
dL21

dz
mzHm* ,z̃

* Hn,z̃Gdxdydz̃, ~30!

where we have recast the integral in terms of the unscalz̃
coordinate, and have included the generalization ofmÞ1
and an instantaneousmz grating analogous to«z . ~The fields
are assumed to be normalized,^n* uB̂un&z5hn , which can-
cels thez̃→ z̃ Jacobian factorL as long as we are consis
tent.! Them* andn subscripts, as before, denote the fields
um* & and un&. Again, ]«z( z̃)/]z ~or ]mz( z̃)/]z) must be
handled specially for moving boundaries in high-contr
systems—there, they yield well-defined surface integrals
volving only the continuousEi andD' ~or Hi andB') field
components at the boundaries@36#. We also note that Eq
~30! involves]«z( z̃)/]zu z̃5 z̃/L , not ]«z( z̃)/]z ~similarly for
mz): it is the rate of change of theunit-periodvirtual grating.

In order to drop the inconvenient^n* uB̂(]/]z)un&z self-
interaction term from the coupled-mode equations, as
scribed in Appendix B, we must choose a consistent ph
for the eigenstates as a function ofz. As described in the
Appendix, there are several ways to enforce such phase
sistency in practice, the simplest being in the common c
where the dielectric structure has inversion symmetry,
which case the Fourier transform can be chosen as pu
real with a canonical sign. Finally, as described below,
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cause the coupling factors are continuous functions ofz, it
suffices to compute them only at a few intermediate poi
and then interpolate.

V. NUMERICAL EXAMPLE

Despite the contortions of the derivation, our end res
~25! is straightforward to apply: a set of coupled different
equations in the Bloch eigenmodes withz-varying coeffi-
cients. A key feature is that once these coupling coefficie
are computed for a given taper lengthL, with a computation
involving only the unit cells of intermediate virtual
waveguides, they can then be reapplied to anyL ~any degree
of gradation! by scaling them with the rate of change. Unlik
most numerical methods, the computation becomes ea
and smaller as the taper becomesmoregradual, since fewer
basis functions are required for accuracy in the adiab
limit. To illustrate this, we apply the coupled-mode equatio
above to a waveguide transition in an example tw
dimensional system, depicted with their dispersion relatio
in Fig. 3: a conventional dielectric waveguide («512, thick-
nessh50.4a) and a grated waveguide consisting of a s
quence of w3h50.4a30.4a blocks («512, period L
5a), both surrounded by air («51). We focus on the fun-
damental TM-polarized modes of each waveguide, for wh
E5Eŷ is perpendicular to the 2D (x2z) plane and the field
is even with respect to thex50 waveguide axis. The mode
in both waveguides are confined in the lateral (x) direction
by index-guiding~they lie beneath the light line!, and the
grated waveguide has a band gap in its guided modes@44#.
We emphasize that our theory is fully three dimensional; i
only the limitations of the second numerical method that
use here for comparison that limits us to two dimensio
~other 3D methods typically require enormous comput
power to calculate transmission through very gradual tape!.

A. Computational methods

In order to compute the eigenmodes of these wavegu
~and of the intermediate instantaneous gratings in the tap!,
we employ preconditioned conjugate-gradient minimizat
of the block Rayleigh quotient for the fully vectorial Max
well’s equations in a plane wave basis with a lateral (x)
supercell, using a freely available software package@45#.
~This technique yields the frequencyv for a givenb, but
that relation was inverted using Newton’s method@46# with
the help of the group velocitydv/db computed via the
Hellman-Feynman theorem@32#.! The eigenmodes were the
used to compute the coupling constants by Eq.~30!, modified
for shifting boundaries as in Ref.@36#. All structures possess
inversion symmetry, allowing the field Fourier transforms
be taken as purely real@45# so that phase consistency~as
described in Appendix B! is maintained by a simple choic
of sign.

Coupling constants and eigenvaluesb were thereby com-
puted for 17 intermediate waveguides in the taper, linea
interpolated, and integrated by a trapezoidal rule. To in
grate the full coupled-mode equations, in principle, o
would employ a set of many guided, evanescent, and ra
8-8
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ADIABATIC THEOREM AND A CONTINUOUS COUPLED- . . . PHYSICAL REVIEW E66, 066608 ~2002!
tion modes~above the light line!. Here, however, we focus
on modes in the vicinity of the band gap where photon
crystal effects are strongest~and therefore of the greate
interest!, so the primary coupling is to the reflected mode
discussed in Sec. IV E. Moreover, since we desire mainly
achieve high transmission—i.e., near-adiaba
transitions—we employ the first-order integration~with re-
spect to the taper rate! approximation of Eq.~28!. In this
way, we need only compute the coupling-matrix eleme
between the incident (1b) and reflected (2b) modes, as
well as the various 2pk/L shifts; we found k5

FIG. 3. ~Color! Dispersion relation for a 2D uniform dielectri
waveguide~filled blue circles! and a grated waveguide consisting
a sequence of blocks~hollow red symbols!, with the structures
shown as insets. The grated waveguide is periodic inb, with the
periodic extension of the backward-propagating modes sh
~squares! after the dashed vertical line. Only TM-polarized (H in
plane! modes having even symmetry with respect to the wavegu
axis are shown.
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$21,0,1,2,3% to be more than sufficient@k51 gives the
smallestDb5b2(2b)22pk/L for b near p/L, and is
thus the largest contribution#. Moreover, once the coupling
matrix elements are calculated, the scattered/reflected po
can be found for many taper rates at a negligible added c
putational cost.

For comparison with the coupled-mode theory, we e
ployed a rigorous scattering~transfer! matrix method based
on eigenmode expansions at each cross section@18# and lat-
eral perfectly matched layer boundary conditions@47#, with a
freely available software implementation@21,48#. Given an
incident field in the fundamental mode of a uniform~non-
grated! waveguide, this method returns the transmitted a
reflected power in any desired modes of uniform input and
output waveguides. Moreover, if the input and outp
waveguides arez-uniform waveguides, this method induce
zero numerical reflections from those two boundaries.

Therefore, because of the limitations of this scatterin
matrix method, we compute the transmission through
double taper: starting with the uniform waveguide, trans
tioning to the grated waveguide, propagating for five unifo
periods, and then transitioning symmetrically back to t
uniform waveguide. This is done for both the ‘‘exac
scattering-matrix method and for the first-order integration

n

e

FIG. 4. ~Color! Three constant-period (L5a) linear tapers be-
tween a uniform waveguide and a grated waveguide of dielec
squares, and back again after five periods of uniform grating. Ta
lengthsL of 4a, 6.4a ~yielding an asymmetric on/off taper!, and
10a are shown.
.

e

.
e
-
-
es
-

FIG. 5. ~Color! Reflected
power at v50.232pc/a from
the constant-period tapers of Fig
4 as a function of taper lengthL.
‘‘Exact’’ scattering-matrix results
are shown as green circles, whil
the solid red line is the prediction
of our coupled-mode theory with
the first-order approximation
Blue squares are one minus th
transmission from the scattering
matrix calculation, and demon
strate that the transmission loss
are dominated by reflections ex
cept for L,3a. The inset is a
magnified view forL540•••50a,
showing the typical picture in the
slow-taper limit.
8-9
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JOHNSONet al. PHYSICAL REVIEW E 66, 066608 ~2002!
the coupled-mode equations, in order to compare the re
tion coefficients ~power into the fundamental backward
propagating mode of the input waveguide!. Because of the
proximity of the band edge, such reflections complet
dominate the losses—as seen below, the sum of transmi
reflected power into the fundamental output/input mode w
unity to within numerical accuracy for most taper lengths

B. A constant-period taper

As a first example, we make a transition between the
waveguides by linearly varying the widthw of the blocks,
from w51.0a for the uniform waveguide tow50.4a for the
grated waveguide, maintaining a constant pitchL5a, oper-
ating at a frequency ofv50.232pc/a. One could choose
the physical tapered waveguide structure«(z) and then de-
fine a corresponding set of virtual instantaneous grati
«z( z̃), but it was more convenient to do the reverse: cho
a continuously varying virtual grating and then define t
physical structure by Eq.~18!. Specifically, we choose th
virtual grating «z( z̃) to have blocks with a widthw(z)/L
5120.6z/L ~i.e., linearly varying! in the taper region of
length L. In order to find the corresponding physical stru
ture «(z), we must determine the block boundaries. T
leading/trailing edge of thenth block in the~uniform! virtual
grating is atz̃n

6(z)5n6w(z)/2L, so by Eq.~18! the physi-
cal leading/trailing edge is atzn

6 , satisfying

z̃n
6~zn

6![n6w~zn
6!/2L5z~zn

6![zn
6/L, ~31!

which is an easily solved linear equation. This results in
taper structures shown in Fig. 4 for three different values
L; note that by defining the physical structure in this way,
are not limited to integer values ofL/L ~with fractional val-
ues causing asymmetric on/off tapers!.

The resulting reflected power into the fundamental mo
shown in Fig. 5 shows excellent agreement between
scattering-matrix calculation and first-order coupled-mo
theory, even for fairly short tapers. Also plotted is one min
the transmission, to verify that the sum of reflection a
transmission is unity to numerical accuracy except for v
short (L,3a) tapers, as is expected in the vicinity of th
photonic band edge. Moreover, the curve exhibits the f
tures that one can predict from the even cruder approxi
tion of constant coupling in Eq.~29!: the power oscillates
with a period on the same order as 2p/Db̄>4a and overall
declines as 1/L2 towards the adiabatic limit of 100% trans
mission. Note that the phase of the oscillation is freque
dependent, much like a Fabry-Perot resonance oscillation
in order to obtain a broad bandwidth of high transmiss
one should ideally choose a taper long enough so that
maximaof these oscillations are within tolerable levels.

In the following section, we compute a similar illustratio
of coupled-mode theory for the case of a variable-per
taper, which is introduced in order to counter one comm
stumble in designing adiabatic grating tapers: a shifting b
gap.
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VI. PITFALLS TO AVOID

In designing adiabatic tapers, there are two ways in wh
the most straightforward transitions can actuallyworsen
transmission, but which are easily circumvented if one
aware of them. These pitfalls are related to the two crite
for adiabatic tapers given in the introduction, and we illu
trate both the problems and their solutions in this section

A. Shifting band gaps

The first pitfall is that, when one operates near a ba
edge, a straightforward taper will often shift the band g
over the operating frequency, violating the conditions on
adiabatic theorem and with disastrous results for transm
sion. This case is easily detected by computing the band g
of the intermediate points in the grating, and avoided
tapering theperiodas well as the grating strength in order
move the band gap out of the way.~A similar idea was pre-
viously demonstrated, without proof, for one-dimension
photonic crystals@13#.!

The transition from a grated waveguide to a unifor
waveguide in the preceding section, for example, exhib
precisely this problem. Not only does the gap reduce in s
as the grating weakens, but it also shiftsdown in frequency
because the uniform waveguide has more high-index m
rial @1#. The instantaneous band-gap edges as a functio
taper position are shown in Fig. 6~blue circles!, and illus-
trate this phenomenon. Now, if one operates at a freque
of v50.2332pc/a, for example~just below the lower band
edge of the final grated waveguide!, there will be a region of
the taper where this frequency lies within the instantane
band gap, causing the transmission to drop exponentially
to thereforefall as the taper becomesmoregradual—this is
shown in Fig. 7, computed via the scattering-matrix meth
~There is a 56% resonance peak at a short taper length
this will not yield a broad bandwidth.!

To correct the problem, one merely needs to shift the b
gap back up, and this can be accomplished by reducing
pitch L. Here, we choose to keepw50.4a fixed and de-
crease 1/L linearly from 1/0.4a to 1/a to taper from the
uniform waveguide to the grated waveguide. The result
band gap edges are depicted in Fig. 6~red squares!: the band
gap moves quickly upward now as the gap closes. Thus,
adiabatic theorem holds and the reflection eventually falls
as ;1/L2; this is illustrated in Fig. 8.~As in the preceding
section, the sum of the reflection and transmission is ne
unity.! In this figure, we compare the exact scattering-mat
result to our first-order coupled-mode theory, this time with
variableL(z), and show that again it achieves accurate
sults once the taper is sufficiently long that the reflection
small (,0.1).

As with the constant-period taper, it was convenient
define our variable-period taper by first choosing the inst
taneous gratings~to vary linearly!, and then constructing the
physical grating«(z) by applying Eq.~31!. This time,z(z)
5*zdz8/L is quadratic, so solving for the taper’s bloc
edges involves a quadratic equation. We should also n
that, althoughw here is constant,w/L is not, so when evalu-
ating the coupling matrix element of Eq.~30! there is still a
8-10
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]«z /]z surface-integral term from the shifting boundary
the unit-periodvirtual grating.

B. Dodging the continuum

The second criterion of the adiabatic theorem is that
mode must be guided in all of the intermediate waveguid
it must never enter a continuum. This leads to a second
fall when one wishes to couple an index-guid
waveguide—such as a 1D sequence of dielectric rods
air—with a bandgap-guided waveguide—such as a li
defect waveguide in a square-lattice photonic crystal of r
with a TM band gap@1#. Two possible transitions betwee
these structures are depicted in Fig. 9. In the index-gui
waveguide, the operating mode is fundamental~there are no
modes below it!, but in the gap-guided waveguide the mo
lies above a continuum~the lower-band modes!. Somehow,
one must manage to transition the mode to lie above a c

FIG. 6. ~Color! The instantaneous band-gap edges as a func
of fractional grating widthw/L in the taper. Blue circles: fixedL,
in which case the gap shifts down as it closes. Red squares: dec
ing L ~so thatw is fixed!, making the gap shift up as it closes. An
frequency that intersects the gap at any point in the taper will h
low transmission.
06660
e
s;
it-

in
-
s

d

n-

tinuum without ever movingthrough the continuum, which
would cause it to become nonguided.

One straightforward transition is to slowly ‘‘turn on’’ the
crystal ~increasing the rod size!, as in Fig. 9~a!. This, how-
ever, causes the lower-band modes to be pulled down f
the light cone; inevitably, they will intersect the operatin
mode and it will become nonguided with poor transmissio
~Here, it is clear that the mode ceases to be guided when
bulk rods are the same size as the waveguide’s; the fai
does not depend upon this coincidence of shapes, howe!
Instead, one can simply bring the photonic crystal in from
away, as depicted in Fig. 9~b!. In this case, the lower-ban
modes, in principle, always exist below the operating mod
but are concentrated far away; when the crystal is sufficie
far away, it can be terminated abruptly with no significa
effect on the waveguided mode. Thus, adiabatic transfe

n

as-

e

FIG. 7. ~Color! Transmitted power atv50.2332pc/a through
the constant-period tapers of Fig. 4 as a function of taper lengtL,
as computed by the ‘‘exact’’ scattering-matrix method. Transm
sion drops rapidly~after an initial resonance! because this fre-
quency intersects the gap at some points in the taper~from Fig. 6!.
s

ile
-
.

om
n-
ted
FIG. 8. ~Color! Reflected power atv
50.2332pc/a from the variable-period taper
of Fig. 6 as a function of taper lengthL; the inset
shows theL510a structure. ‘‘Exact’’ scattering-
matrix results are shown as green circles, wh
the solid red line is the prediction of our coupled
mode theory with the first-order approximation
Blue squares are one minus the transmission fr
the scattering-matrix calculation, and demo
strate that the transmission losses are domina
by reflections.
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achieved. The transmission spectra for these two cases
pering slowly into the crystal and back out again, are sho
in Fig. 10 ~computed by the exact scattering method! @56#.
As expected, only the taper~b! that obeys the adiabatic prin
ciples demonstrates a wide bandwidth of high transmiss
whereas taper~a! yields uniformly low transmission. Nea
the edges of the guided-mode band, even~b! exhibits Fabry-
Perot oscillations due to the low group velocity in the
regions—the taper would have to be longer than 10a to in-
crease the transmission there.~We also computed the ban
diagrams of the intermediate structures for the taper des
to make sure there were not any unexpected interactions
surface states of the crystal that might cause the opera
mode to become nonguided or evanescent.!

VII. CONCLUDING REMARKS

We have developed a generalization of coupled-m
theory, a set of coupled linear differential equations~25!, to
describe nonuniform gratings and photonic crystals in
instantaneous Bloch-mode basis. Because our formula
involves no discontinuities and centers around an exp
small parameter~the rate of change of the grating!, it lends
itself to effective first-order approximation~28! and other
analytical study. It enables the computation of reflection a
transmission for tapered gratings, and, in particular, provi
an efficient method to determine how long a taper must b
order to achieve a desired level of transmission. Unlike ot
numerical techniques, which require more computatio
resolution and power as a taper becomes more gradual~and
is eventually prohibitive!, the coupled-mode approach b
comesmore accurate and efficient for more gradual tape
with roughly thesamecomputational resources.

Moreover, we have proved that an adiabatic theor
holds even for strongly grated waveguides~photonic crys-
tals!, exactly as for nongrated waveguides, ensuring 10
transmission for sufficiently slow tapers. This theorem, ho
ever, imposes the requirements that the operating mode
ways be guided~discrete! and propagating~nonevanescent!

FIG. 9. Two possible tapers between a 1D sequence of diele
rods ~radius r 50.2a, index n53.37) and anr 50.2a line-defect
waveguide in a square lattice ofr 50.3a dielectric rods in air.~a!
yields low transmission because an intermediate waveguide is
guided, whereas the ‘‘zipper’’ structure~b! approaches the adiabat
limit.
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for every intermediate point in the taper—requirements t
are easy to inadvertently violate for transitions in photo
crystals. Fortunately, such pitfalls are simple to avoid
computing the band diagrams of all the intermediate grati
and adjusting the period or shifting the crystal according
In this way, one can design efficient waveguide transitio
and couplers in photonic crystals by a sequence of sm
eigenmode calculations on independent unit cells of the
termediate waveguides, rather than large simulations of
tire tapers.

A number of future extensions are possible for this wo
First, in the examples above, we showed tapers at unif
rates, whereas a more efficient transition would employ v
able rates. Qualitatively, one would like to taper more slow
whenDb is small and coupling is strong, and more quick
in the opposite case. Quantitatively, the optimal varia
taper rate could be determined by solving a nonlinear o
mization problem based on Eq.~28! ~without recomputing
the coupling coefficients!. Moreover, one could design
taper that shifts the gap edge away as quickly as possib
order to address the difficult problem of coupling to slo

ric

ot

FIG. 10. Transmitted power as a function of frequency throu
the two taper transitions of Fig. 9 to/from a photonic-crystal lin
defect waveguide.~a! exhibits the predicted low transmission~note
log scale! due to intermediate points being nonguided, whereas~b!
recovers the adiabatic limit of high transmission over broad ba
width. The frequency axis ranges over the bandwidth of the gui
mode~in the TM gap!; i.e., the left and right edges of the graph
correspond to the band edges, where the low group velocity ma
coupling difficult in a short taper.
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ADIABATIC THEOREM AND A CONTINUOUS COUPLED- . . . PHYSICAL REVIEW E66, 066608 ~2002!
light states near the band edge.~Much previous effort has
been invested in the optimization of conventional tap
@49–52#.! Numerical computations in three-dimensional sy
tems are an application we are already addressing with
other publication. Finally, our coupled-mode formulatio
need not be restricted to gratings in electromagnetism
could be applied to any periodic Hermitian system~in time
or space! for which the periodicity is slowly changing.
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APPENDIX A: THE ADIABATIC THEOREM

Although the adiabatic theorem has been proven be
for equivalent algebraic systems@8,38–43#, we sketch a
proof of it here in order to highlight its essential features, a
also to point out where it fails. Suppose that we have a se
coupled linear differential equations incn(z) describing the
solution to somez-varying system,

dcn

dz
5 (

mÞn
Cmn~z!K ]X̂

]zL expS i Ez

Dbmn~z8!dz8 D cm~z!,

~A1!

for somez-varying coefficientsCmn , a matrix element in
terms of some operatorX̂, and phase mismatchesDbmn . Let
Cmn , X̂, andDbmn be independent of the rate of change
the system.~Our coupled-mode equations, as well as tho
from quantum mechanics, fall into this form.! We wish to
understand the limit as the lengthL of a taper becomes long
so we introduce a scaled coordinates5z/L to separate theL
dependence, in which case the equations become

dcn

ds
5 (

mÞn
Cmn~s!K ]X̂

]sL expS iL Es

Dbmn~s8!ds8 D cm~s!.

~A2!

The key point here is that the onlyL dependence appears
the exponent. It is now straightforward to take theL→`
limit, because in that limit we have exp@iLf (s)#→0 in the
sense of generalized functions@53# for any real-valued func-
tion f (s) with nonzero first derivative—it is a sinusoid th
oscillates infinitely rapidly, and so integrates to zero aga
any smooth localized function. If the coefficients of such
differential equation over a finite domain (s50•••1) go to
zero in the sense of generalized functions, then the solut
are constantscn(z)5cn(0), which is the desired result.

It is clear from the above discussion, however, that
order to prove the adiabatic theorem here we restricted
problem in two ways:Db must be real and nonzero. Requ
ing thatDb be nonzero is equivalent to saying that the mo
must be guided—if it is not guided, it is part of a continuu
of radiating modes and no finite taper length will suffice
prohibit losses. Strictly speaking, an adiabatic limit may e
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ist even for such continua, but its approach is~in general!
arbitrarily slow@40#. ~Note that theDb50 degeneracies tha
can arise for finitely many guided modes can typically
handled by the usual methods of degenerate perturba
theory, i.e., by choosing linear combinations that diagona
the coupling matrix. Discrete eigenvalue crossings also
not present a problem@40#.! Of course, all physical
waveguides have some losses, which will prevent the fu
adiabatic ideal, but this is not a concern as long as the ta
length of interest is much less than the decay length of
mode. The usual adiabatic theorem also fails if the init
mode is itself exponentially decaying (I@b#.0), or be-
comes thus at some point in the taper; in this case, all of
power is reflected in the adiabatic limit.

APPENDIX B: PHASE CONSISTENCY

In our development of the coupled-mode equations,
transformed the matrix elementŝm* uB̂•]un&/]z into an
equivalent expression in terms of the~known! derivative of
the eigenoperator instead of the~difficult to compute! deriva-
tive of the eigenstate.~We have dropped thez subscripts for
convenience.! This transformation can be understood
terms of first-order perturbation theory@32#, but we instead
derive it here by explicitly differentiating the eigenequatio
Moreover, we show that the remaining^n* uB̂•]un&/]z self
term may typically be dropped by requiring an easily sa
fied phase-consistency condition.

Let us operate]/]z on both sides of the eigenequatio
Ĉzun&5bn(z)B̂un&, and then take thêm* u inner product
with both sides. Noting that̂m* uĈz5bm(z)^m* uB̂ and em-
ploying the orthonormality relation~11!, one obtains

K m* U ]Ĉz

]z
UnL 1~bm2bn!^m* uB̂

]un&
]z

5
]bn

]z
dm,nhn .

~B1!

For mÞn, this equation yields the desired result,

^m* uB̂
]un&
]z

5

K m* U ]Ĉz

]z
UnL

bn2bm
. ~B2!

For m5n, on the other hand, one obtains only a trivial r
sult. In order to eliminate this inconvenient term, however
is often possible to choose

^n* uB̂
]un&
]z

50 ~B3!

merely by a proper phase-consistency convention for the
stantaneous eigenstates as a function ofz. In particular, con-
sider the real-b modes that are of primary interest for adi
batic tapers; for these modes,un* &5un& and ^n* uB̂un&5hn
is a constant (61) independent ofz, and thus
8-13
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]

]z
^n* uB̂un&505S ^n* uB̂

]un&
]z D1S ^n* uB̂

]un&
]z D *

,

~B4!

which implies that ^n* uB̂•]un&/]z is purely imaginary.
Then, one can select a new phaseun&→eiu(z)un& to fulfill the
condition ~B3!, whereu is purely real and satisfies

du

dz
5 ihn* ^n* uB̂

]un&
]z

. ~B5!

~This phaseu is closely related to ‘‘Berry’s phase’’ from
quantum mechanics@30,31#.!

There are two cases in which the phase-consistency
dition is trivial to satisfy. First, in the ordinary coupled-mod
theory for nongrated waveguides, assuming real« andm, the
real-b eigenstates can be chosen to be purely real~the eigen-
operators are real symmetric!, in which case the phase i
automatically consistent~given that the overall sign is cho
sen in a continuous fashion!. For grated waveguides, on th
nd

a

u

D

an

co

,

-

-

06660
n-

other hand, the fields~Bloch modes! are not in general purely
real. If the dielectric function~andm) satisfies the common
inversion symmetry«(2x)5«(x) ~for all intermediate grat-
ings!, however, then theFourier transform of the real-b
eigenfields can be chosen as purely real@45#. In this case,

because B̂ is real-symmetric, the inner produc

^n* uB̂•]un&/]z is a convolution of real functions and i
therefore purely real, and thus zero from Eq.~B4! above. So,
again the phase requirement reduces merely to a consi
choice of sign.

When the phase-consistency requirement is not trivia
can still be approximately satisfied numerically in a straig
forward way. In the numerical implementation of couple
mode theory, one computes the eigenstatesun&z at a discrete
set ofz values separated by someDz, and need therefore to
choose the phase ofun&z1Dz relative to that ofun&z . Using
these states to compute the finite-difference approximatio
Eq. ~B3!, this equation can then be best satisfied
eiuun&z1Dz , whereu52arg@hn* ^n* uzB̂un&z1Dz#.
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