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Abstract—We have designed and fabricated an out-of-plane cou-
pler for butt-coupling from fiber to compact planar waveguides.
The coupler is based on a short second-order grating or photonic
crystal, etched in a waveguide with a low-index oxide cladding.
The coupler is optimized using mode expansion-based simulations.
Simulations using a 2-D model show that up to 74% coupling effi-
ciency between single-mode fiber and a 240-nm-thick GaAs–AlO
waveguide is possible. We have measured 19% coupling efficiency
on test structures.

Index Terms—Integrated optics, optical planar waveguide com-
ponents, waveguide coupler.

I. INTRODUCTION

FUTURE large-scale photonic integrated circuits will
probably use photonic crystal waveguides or other com-

pact planar waveguides. One of the major problems to be
solved is the interface between the compact waveguide and
the outside world. Coupling to a standard single-mode fiber
using edge-coupling is a daunting task, because of the small
dimensions of the waveguides (photonic crystal waveguides
[1]–[3] are typically an order of magnitude smaller than
conventional integrated optical waveguides). In particular, in
high-vertical-index-contrast structures, such as silicon-on-in-
sulator (SOI) or GaAs–AlO, the light is strongly confined in a
few hundred nm thin layer and coupling light into these wave-
guides is a problem. We propose the use of a grating coupler to
butt-couple light from a single-mode fiber, perpendicular to the
surface, into planar waveguides. This coupling scheme allows
dense integration and wafer-scale testing because there is no
need to cleave the devices. A sketch of the device is shown
in Fig. 1. For this coupling scheme to work, two problems
have to be solved. The light has to make a 90-degree turn
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Fig. 1. Out-of-plane fiber coupler principle. The dimensions are not to scale
for clarity. Only the core of the fiber is shown.

from the fiber to the waveguide and a broad (approximately
10 m) waveguide has to be tapered into a narrow photonic
crystal waveguide, preferably over a short distance. In the latter
section, only a lateral spot-size convertor is needed, which is
easier to achieve than a vertical spot-size convertor. In this
paper we focus on the 90-degree bending problem.

Several grating couplers have been demonstrated that couple
light out of [4]–[5] or into [6] waveguides. These couplers
achieve high efficiencies (50%) but have a narrow bandwidth
and they use relatively long (100 m), weak gratings. In our
design, the grating is much shorter (10m long) to be able to
butt-couple to fiber. Therefore, the grating has to provide strong
coupling and a relatively large overlap between the grating and
the waveguide mode is needed. In a high-vertical-index-contrast
structure, it is possible to achieve this with a shallow grating
because of the strong vertical confinement.

II. COMPUTATIONAL METHOD AND STRUCTUREMODEL

A rigorous electromagnetic method is needed to design the
coupler. Traditional grating theory which treats the grating
as a small perturbation or of infinite extent is not accurate
because our grating has only approximately 20 periods. A
popular method to simulate photonic crystal structures of finite
extent is the finite difference time-domain (FDTD) method
[7]. Because we are using a waveguide structure and FDTD
is rather slow, we prefer the eigenmode expansion technique
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Fig. 2. Computational model used in simulations.

[8]. The boundary conditions are of utmost importance in our
calculations because a lot of light is coupled out of a waveguide
and heading straight for the boundaries of the computational
domain. Perfectly matched layers (PMLs) [9] perform well and
have also been introduced in mode expansion recently [10].
We used the CAMFR-simulation tool [11], which is based on
eigenmode expansion and propagation with PML boundary
conditions. In this work we consider only 1-D gratings in
2-D simulations and TE-polarization (E-field parallel to the
grating grooves). This polarization also has a large bandgap for
triangular lattices of air holes in a high index material [12] and
is, therefore, interesting for photonic crystal based integrated
circuits. It is expected that in a real 3-D configuration, the
coupling efficiency will be lower than obtained with 2-D
model-based simulations.

We calculate the coupling from waveguide to fiber, because
this is easier with mode expansion. The coupling efficiency from
fiber to waveguide is the same as from waveguide to fiber be-
cause we consider the coupling from one mode of a waveguide
to one mode of another waveguide and the materials used are
reciprocal. This powerful reciprocity principle is well known
[13] and a mathematical proof based on Maxwell’s equations is
given in [14] for example. To avoid any doubt, we have also cal-
culated the coupling from fiber to waveguide with 2-D FDTD
simulations for the final designs and verified that it is the same
as the calculated coupling from waveguide to fiber.

Our waveguide consists of a 240-nm-thick GaAs core with an
oxide cladding on top of a GaAs substrate, as shown in Fig. 2.
The thickness of the oxide will be optimized. A grating is etched
into the GaAs layer. The top and bottom boundaries have PML
to avoid parasitic reflections. The waveguide mode is incident
from the left and is normalized so the input power equals 1. In
a first step, reflection and transmission of the entire structure
are calculated. Afterwards, the field is calculated from which
the power flux and overlap with a fiber mode can be calculated.
The coupling efficiency to fiber is the fraction of the power in
the waveguide mode that couples to the fiber.is the reflection
at the waveguide grating interface, andis the transmission
through the grating to the right.

Fig. 3. Reflection (solid line) and out-of-plane coupling (dashed line) versus
grating period for different etch depths. Out-of-plane coupling is defined as
1–R–T and consists of coupling to air/substrate and scattering at the interface.
Grating duty cycle= 50%.

III. SIMULATION RESULTS

The coupler is based on a so-called second-order grating
where the first-order diffraction couples light out of the
waveguide, producing a surface-normal propagating field. An
in-depth treatment of second-order gratings can be found in
[15]. Because we use this grating as a coupler (first-order
diffraction), we will use the term coupler grating instead of
second-order grating in the rest of this paper. In this section, we
describe the design and properties of the coupler grating and
optimizations of the structure for optimal coupling efficiency.
We start with a simple grating in part A and introduce enhance-
ments in part B. All structures are designed for the 1550-nm
wavelength.

A. Simple Coupler Grating

We can achieve 90-degree coupling with a grating when the
grating period equals the wavelength divided by the effec-
tive refractive index . As the grating changes the effective
index, the precise grating period has to be calculated numeri-
cally. Fig. 3 shows the reflection (solid lines) and out-of-plane
coupling (dashed lines) as a function offor different etch
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Fig. 4. Reflection versus grating period for different duty cycles. A 50% duty
cycle (triangles) has minimum reflection at resonance. Etch depth= 65 nm.

Fig. 5. Reflection (squares), transmission (triangles), top emitted power
(crosses), and overall coupling efficiency to fiber (thick solid line) for 580-nm
period, 65-nm etch depth grating of 20 periods.

depths. Out-of-plane coupling is defined as– – and con-
sists of the light that is coupled upwards and downwards and
scattered at the interface. The reflection curves show a peak
which corresponds to the resonance condition and 90-degree
coupling. As the etch depth increases,increases and the res-
onant period shifts to larger periods (because decreases).
The out-of-plane coupling curves have a minimum at resonance.
This minimum out-of-plane coupling has a maximum value for
65-nm etch depth. Previous results used a rectangular grating
with 50% duty cycle (equal tooth and groove widths). Reflec-
tion for different duty cycles is shown in Fig. 4. The duty cycle
has a major impact on the amount of reflection. The resonance
peak is smallest for the 50% duty cycle. For 65-nm etch depth
and 50% duty cycle, the resonant grating period is 580 nm. We
will use these values as a starting point for our design.

For this grating ( nm, etch depth 65 nm, duty
cycle 50%, 20 periods), we have calculated the power that is
coupled to the air and into the fiber in Fig. 5. To calculate the
coupling efficiency to fiber, we use a Gaussian profile with a full
width ( ) of 10.5 m as a model of the fiber mode. Overall
coupling efficiency to the fiber is 15% at 1550 nm. Around the
resonance wavelength, the outcoupling efficiency is rather low,
but the coupling to the fiber is high. Away from the resonance
wavelength, the outcoupling efficiency becomes higher but the
coupling to the fiber is worse because of the phase mismatch.
These two together cause a quite flat and large bandwidth. This
wavelength dependence is only an approximation and will de-
pend on the mode field diameter and NA of a particular fiber.

Fig. 6. Coupling efficiency and bandwidth (580-nm period, 50% duty cycle)
for different etch depths. Optimal etch depth= 65 nm (thick line).

Fig. 7. Coupling efficiency versus oxide cladding thickness.

Fig. 6 shows the coupling efficiency versus wavelength for
the same structure, but for different etch depths (fabrication tol-
erances). The 3-dB bandwidth is approximately 90 nm for the
optimal etch depth (65 nm, thick curve). These results were ob-
tained for a structure with infinite oxide cladding thickness. We
will now look at the more realistic structure with a finite oxide
thickness and a high-index substrate. The oxide cladding thick-
ness should be at least 0.5m, to avoid loss due to leakage of
the guided mode to the substrate. The oxide thickness has little
effect on the total amount of light that is coupled out, but has
a serious impact on the air/substrate ratio [16]. A good choice
of oxide thickness is important. From the coupling efficiency
versus oxide thickness curve (Fig. 7), it can be seen that there is
a 3-dB difference between the minima and maxima. The spacing
between two maxima is half a wavelength, which confirms that
this behavior is caused by interference between the direct up-
ward wave and the reflection at the oxide/substrate interface.

The overall efficiency is 20% or 7 dB, for a 700-nm-thick
or 1200-nm-thick cladding. The efficiency is limited by reflec-
tion, transmission, and coupling to the substrate. To improve this
value, reflection and transmission of the grating should be re-
duced and the directionality (air/substrate ratio) improved.

B. Combined Coupler and Reflector Grating

To reduce and at resonance, we propose a structure con-
sisting of a grating coupler section and a first-order grating re-
flector [Fig. 8(a)]. It is possible to create a good reflector with
a few periods when etching completely through the waveguide
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Fig. 8. (a) Combined coupler and reflector grating. (b) Same structure with a
multilayer reflector under the waveguide.

Fig. 9. Optimal grating parameters. The grating is etched in the GaAs
waveguide core. Etch depthe: 38 nm. Period�2: 566 nm. Groove widthw2:
283 nm. Number of periodsN2: 20. Spacingd: 200 nm. Period�1: 280 nm.
Groove widthw1: 140 nm. Number of periodsN1: 70.

(1-D photonic crystal). However, it is necessary to design a re-
flector grating with the same etch depth as the coupler grating
because the spacing between the two gratings is critical and
therefore they have to be fabricated in one step. We use the
following procedure to optimize the lattice parameters. For a
given etch depth, the coupler grating period is determined by
the resonance condition as in part A. Afterwards, a first-order
reflector grating is designed with the same etch depth. Finally,
the spacing between the two gratings is optimized. This proce-
dure is repeated for different etch depths and the final result has
a maximum coupling efficiency to fiber of 38%. The grating pa-
rameters are summarized in Fig. 9. With this structure, almost
all light can be coupled out at the resonant wavelength, but the
efficiency is still limited by coupling to the substrate. The max-
imum efficiency is 3 dB larger than the simple coupler grating,
but the bandwidth is limited to 15 nm, as can be seen in Fig. 10.
However, this bandwidth is quite large compared to the band-
width of other grating couplers using long gratings.

To enhance the efficiency of grating couplers (avoid coupling
to substrate), a blazed or parallellogram-shaped grating [17] is
sometimes used. However, this makes simulation and fabrica-
tion much more difficult and the behavior of a blazed grating
in our structure is yet unknown. Another solution to avoid cou-
pling into the substrate is the addition of a distributed Bragg
reflector (DBR) under the waveguide [Fig. 8(b)]. It is obvious
that the spacing between the waveguide and the bottom reflector

Fig. 10. Comparison of efficiency and bandwidth of the simple coupler grating
(s1—diamonds), combined coupler and reflector grating (s2—squares), and the
same structure with a multilayer bottom reflector (s3—triangles).

Fig. 11. Layer structure with a multilayer bottom reflector (dark grey is GaAs
and light grey is AlO ).

will be important [15], but fabrication tolerances are reasonable
because we are using a wavelength of 1550 nm. Because of the
large index contrast between GaAs and AlO, only two mirror
pairs are needed and therefore we will use the term multilayer
reflector instead of DBR. In a first step, we design a multilayer
reflector for maximum reflectivity. Afterwards, we optimize the
thickness of the layer between the waveguide and multilayer re-
flector for maximum efficiency. The details of the layer struc-
ture can be found in Fig. 11, in which the grating is the same
as in the structure without a multilayer reflector (Fig. 9). At the
central wavelength, more than 95% of the light can be coupled
upwards. Because of the coupling loss to the fiber, the overall
efficiency is limited to 74%. The bandwidth is similar to the
structure without a multilayer reflector (Fig. 10). The most crit-
ical feature is the spacing between the coupler and the reflector
grating. An error of a quarter wavelength will reduce the effi-
ciency to almost zero (Fig. 12). Therefore, the fabrication of this
structure requires state-of-the-art electron-beam lithography.

All our simulation results are for TE-polarization, and the
coupling efficiency for TM is low (less than 20 dB) for all
the structures described in this paper.

IV. PRELIMINARY EXPERIMENTAL RESULTS

In this section, we describe our first experimental results.
Devices were fabricated in GaAs–AlGaAs material grown
by metal–organic vapor phase epitaxy (MOVPE) on a
GaAs substrate (240-nm GaAs core/290-nm AlGa As
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Fig. 12. Efficiency versus spacing between the coupler and reflector grating.

cladding/115 nm GaAs/240 nm Al Ga As/115 nm
GaAs/240 nm Al Ga As). This layer structure has a mul-
tilayer reflector under the waveguide, but the thickness of the
cladding layer differs from the optimized structure in Fig. 11.
Because this difference is approximately half a wavelength, the
calculated efficiencies are comparable.

The grating consists of a coupler and a reflector section
(Fig. 9) and the calculated efficiency is 74%. The gratings
were fabricated using electron-beam lithography and reactive
ion etching. Afterwards, ridge waveguides were defined using
optical lithography and etching. The width of these waveguides
is 10 m and the etch depth is 150 nm. A last step was the
etching of 20- m-wide and 1500-nm-deep oxidation trenches
and wet thermal oxidation of the Al Ga As layers. The
oxidized layers are mechanically stable and remain robustly
attached to the GaAs layers.

For the measurements, we use a widely tunable laser source
with 1-mW output power and polarization-maintaining output
fiber (PMF). The TE-polarized light is coupled from the PMF
via the grating into the waveguide. The output light from the
waveguide facet is imaged onto a detector or an infrared (IR)
camera. During initial alignment, we use the IR camera to mon-
itor the waveguide spot. The output power versus wavelength
for a 10- m-wide ridge waveguide is shown in Fig. 13. A max-
imum efficiency of 14% (0.14 mW on detector) is measured in
the 1515–1520-nm wavelength range. The shortest wavelength
that is measured is 1510 nm because of the limitation on the
tuning range of the laser. The 3-dB bandwidth is larger than 25
nm. The fiber-to-waveguide distance is approximately 10m.
We have measured the coupling efficiency from fiber to wave-
guide and not from waveguide to fiber because the latter requires
coupling light into the waveguide at the edge, which is difficult.

The peaks in the measurements are similar to Fabry–Perot
fringes and are caused by a cavity formed by the grating and
a cleaved facet. The spacing between the peaks depends on
the cavity length (300 m in this case). To estimate the actual
coupling efficiency, we must take into account these cavity ef-
fects because the fiber-to-waveguide coupling efficiency is the
power that would be measured when there is no reflection at
the facet. When neglecting the waveguide propagation losses,
the two parameters of the cavity are the facet reflection and the
grating reflection. The facet reflection is 0.36 for our waveguide.

Fig. 13. Measured coupling efficiency versus wavelength. This is the optical
power at the detector divided by the input power from the fiber.

Fig. 14. Measured lateral alignment sensitivity. Thez axis is the waveguide
propagation direction and thex axis is parallel to the grating grooves; 1- and
3-dB contour lines are shown.

The grating reflection is not known but can be estimated from
. Without any reflection at the grating, there is no

cavity and 64% of the incoupled power reaches the detector. In
our measurement results, is approximately 1.4 and
the Fabry–Perot peaks correspond to 75% of the power that is
coupled into the waveguide. Therefore, we estimate the actual
coupling efficiency to be 19% (0.14/0.75).

An advantage of the out-of-plane coupler compared to edge
coupling is the relaxed lateral alignment sensitivity. The mea-
sured optical power as a function of the position of the fiber is
shown in Fig. 14. A lateral deviation of 2m in any direction
results in less than 1 dB of additional coupling loss.

This preliminary experimental result shows that it is pos-
sible to obtain a reasonable efficiency with the out-of-plane fiber
coupler. Further experimental work is in progress to improve
the efficiency and achieve better agreement with the theoretical
results.

V. CONCLUSION

We have presented the design of an out-of-plane coupler for
coupling between single-mode fiber and compact planar waveg-
uides. Using a 2-D model, we have shown coupling efficiencies
of 38% for a 240-nm-thick GaAs–AlOwaveguide or even 74%
when adding a multilayer reflector under the waveguide. We
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have measured 19% coupling efficiency on test structures. The
proposed structure is a good candidate for solving the coupling
problem to ultra-compact, high-vertical-index-contrast waveg-
uides.
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