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Abstract—We have designed and fabricated an out-of-plane cou-
pler for butt-coupling from fiber to compact planar waveguides.
The coupler is based on a short second-order grating or photonic
crystal, etched in a waveguide with a low-index oxide cladding.
The coupler is optimized using mode expansion-based simulations.
Simulations using a 2-D model show that up to 74% coupling effi-
ciency between single-mode fiber and a 240-nm-thick GaAs—-AlD
waveguide is possible. We have measured 19% coupling efficiency
on test structures.

Index Terms—Integrated optics, optical planar waveguide com-
ponents, waveguide coupler.

. INTRODUCTION

UTURE large-scale photonic integrated circuits will

probably use photonic crystal waveguides or other com- , . . .
. . ig. 1. Out-of-plane fiber coupler principle. The dimensions are not to scale
pact planar waveguides. One of the major problems to R ciarity. Only the core of the fiber is shown.

solved is the interface between the compact waveguide and

the outside world. Coupling to a standard single-mode fiber ) . .
using edge-coupling is a daunting task, because of the s s M the fiber to the waveguide and a broad (approximately

. : . i . pm) waveguide has to be tapered into a narrow photonic
dimensions of the waveguides (photonic crystal waveguides ; .
. : crystal waveguide, preferably over a short distance. In the latter
[1]-[3] are typically an order of magnitude smaller than . . . S
) . . g . section, only a lateral spot-size convertor is needed, which is
conventional integrated optical waveguides). In particular, in_ . X . . .
) o . .easier to achieve than a vertical spot-size convertor. In this
high-vertical-index-contrast structures, such as silicon-on-i

n- X
sulator (SOI) or GaAs—AIQ, the light is strongly confined in a paper welfocug on the |90—d§gree bending problem. h |
few hundred nm thin layer and coupling light into these wave- Several grating couplers have been demonstrated that couple

guides is a problem. We propose the use of a grating couplerlg:at out of [4}-[5] or into [6] waveguides. These couplers

. ; ) . achieve high efficienciesx50%) but have a narrow bandwidth
butt—couple light from a smglg—mode _f|ber, pgrpendmular o thaend they use relatively long=(L00 1zm), weak gratings. In our
surface, into planar waveguides. This coupling scheme a”mggsign the grating is much shorter (/‘lm long) to be able to

dense integration and wafer-scale testing because there is n ) . .
need to cleave the devices. A sketch of the device is shos\‘/'i/lﬁ8 couple to fiber. Therefore, the grating has to provide strong

L . X coupling and a relatively large overlap between the grating and
in Fig. 1. For this coupling scheme to work, two problemﬁ_l pling an elylarg P entheg 9
. e waveguide mode is needed. In a high-vertical-index-contrast
have to be solved. The light has to make a 90-degree turn I : . 2 .
Structure, it is possible to achieve this with a shallow grating
because of the strong vertical confinement.
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$ 240nm GaAs

1 oxide
Fig. 2. Computational model used in simulations.
[8]. The boundary conditions are of utmost importance in our g 1 e 45nm
calculations because a lot of light is coupled out ofawaveguid((% 091 L : —e—55nm
and heading straight for the boundaries of the computations & -8 1. —sgf‘m

domain. Perfectly matched layers (PMLs) [9] perform well and _E 0.7
have also been introduced in mode expansion recently [10]% 0'5 | o e
We used the CAMFR-simulation tool [11], which is based on 3 0'4 e
eigenmode expansion and propagation with PML boundar)g 0:3 |
conditions. In this work we consider only 1-D gratings in g 4, |
2-D simulations and TE-polarization (E-field parallel to the § 4 |
grating grooves). This polarization also has a large bandgap fcs ¢ ' : ‘ :
triangular lattices of air holes in a high index material [12] and 0550 0560 0570 0580 0590 0.600
is, therefore, interesting for photonic crystal based integrate«
circuits. It is expected that in a real 3-D configuration, the
coupling efficiency will be lower than obtained with 2-Drig. 3. Reflection (solid line) and out-of-plane coupling (dashed line) versus
model-based simulations. grating period for different etch depths. Out-of-plane coupling is defined as
_V\/_e calgulatg the coupling erm Waveguide_ to fib_e_r, becau _{;Tr%%%?ycg;;isgg%?uplmg to air/substrate and scattering at the interface.
thisis easier with mode expansion. The coupling efficiency from
fiber to waveguide is the same as from waveguide to fiber be-
cause we consider the coupling from one mode of a waveguide
to one mode of another waveguide and the materials used ar&he coupler is based on a so-called second-order grating
reciprocal. This powerful reciprocity principle is well knownwhere the first-order diffraction couples light out of the
[13] and a mathematical proof based on Maxwell’s equationswgveguide, producing a surface-normal propagating field. An
given in [14] for example. To avoid any doubt, we have also cdh-depth treatment of second-order gratings can be found in
culated the coupling from fiber to waveguide with 2-D FDT15]. Because we use this grating as a coupler (first-order
simulations for the final designs and verified that it is the sangtiffraction), we will use the term coupler grating instead of
as the calculated coupling from waveguide to fiber. second-order grating in the rest of this paper. In this section, we
Our waveguide consists of a 240-nm-thick GaAs core with #&tescribe the design and properties of the coupler grating and
oxide cladding on top of a GaAs substrate, as shown in Fig.@ptimizations of the structure for optimal coupling efficiency.
The thickness of the oxide will be optimized. A grating is etche¥e start with a simple grating in part A and introduce enhance-
into the GaAs layer. The top and bottom boundaries have PNRents in part B. All structures are designed for the 1550-nm
to avoid parasitic reflections. The waveguide mode is incidewavelength.
from the left and is normalized so the input power equals 1. In )
a first step, reflection and transmission of the entire structufe Simple Coupler Grating
are calculated. Afterwards, the field is calculated from which We can achieve 90-degree coupling with a grating when the
the power flux and overlap with a fiber mode can be calculategkating periodA equals the wavelength divided by the effec-
The coupling efficiency to fiber is the fraction of the power irtive refractive index:.«. As the grating changes the effective
the waveguide mode that couples to the fil#ers the reflection index, the precise grating period has to be calculated numeri-
at the waveguide grating interface, alidis the transmission cally. Fig. 3 shows the reflection (solid lines) and out-of-plane
through the grating to the right. coupling (dashed lines) as a function &ffor different etch

—85nm

.x.4*..".><.,‘K..-x“x--'x""x“x

ectio

grating period (um)

Ill. SIMULATION RESULTS
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Fig. 4. Reflection versus grating period for different duty cycles. A 50% dutlyig. 6. Coupling efficiency and bandwidth (580-nm period, 50% duty cycle)

cycle (triangles) has minimum reflection at resonance. Etch deph nm. for different etch depths. Optimal etch depth65 nm (thick line).
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Fig. 5. Reflection (squares), transmission (triangles), top emitted power

(crosses), and overall coupling efficiency to fiber (thick solid line) for 580-n
period, 65-nm etch depth grating of 20 periods.

rEig. 7. Coupling efficiency versus oxide cladding thickness.

depths. Out-of-plane coupling is defined Bsk—T" and con- Fig. 6 shows the coupling efficiency versus wavelength for
sists of the light that is coupled upwards and downwards aHte same structure, but for different etch depths (fabrication tol-
scattered at the interface. The reflection curves show a pé§Rnces). The 3-dB bandwidth is approximately 90 nm for the
which corresponds to the resonance condition and 90-degf@éimal etch depth (65 nm, thick curve). These results were ob-
coupling. As the etch depth increasésincreases and the res-tained for a structure with infinite oxide cladding thickness. We
onant period shifts to larger periods (becausg decreases). will now look at the more realistic structure with a finite oxide
The out-of-plane coupling curves have a minimum at resonané@ickness and a high-index substrate. The oxide cladding thick-
This minimum out-of-plane coupling has a maximum value fdtess should be at least Q.n, to avoid loss due to leakage of
65-nm etch depth. Previous results used a rectangular gratifig 9uided mode to the substrate. The oxide thickness has little
with 50% duty cycle (equal tooth and groove widths). Refle@ffect on the total amount of light that is coupled out, but has
tion for different duty cycles is shown in Fig. 4. The duty cyclé@ Serious impact on the air/substrate ratio [16]. A good choice
has a major impact on the amount of reflection. The resonarffeoxide thickness is important. From the coupling efficiency
peak is smallest for the 50% duty cycle. For 65-nm etch deptRrsus oxide thickness curve (Fig. 7), it can be seen that there is

and 50% duty cycle, the resonant grating period is 580 nm. \@&-dB difference between the minima and maxima. The spacing
will use these values as a Starting point for our design_ between two maxima is half a WaVeIength, which confirms that

For this grating {f = 580 nm, etch depth= 65 nm, duty this behavior is caused by interference between the direct up-
cycle= 50%, 20 periods), we have calculated the power thateard wave and the reflection at the oxide/substrate interface.
coupled to the air and into the fiber in Fig. 5. To calculate the The overall efficiency is 20% o7 dB, for a 700-nm-thick
coupling efficiency to fiber, we use a Gaussian profile with a fuffr 1200-nm-thick cladding. The efficiency is limited by reflec-
width (1/¢) of 10.5,m as a model of the fiber mode. Overalfiion, transmission, and coupling to the substrate. To improve this
coupling efficiency to the fiber is 15% at 1550 nm. Around thaalue, reflection and transmission of the grating should be re-
resonance wavelength, the outcoupling efficiency is rather lodticed and the directionality (air/substrate ratio) improved.
but the coupling to the fiber is high. Away from the resonance . .
wavelength, the outcoupling efficiency becomes higher but the €0mbined Coupler and Reflector Grating
coupling to the fiber is worse because of the phase mismatchTo reducel? and7” at resonance, we propose a structure con-
These two together cause a quite flat and large bandwidth. Thisting of a grating coupler section and a first-order grating re-
wavelength dependence is only an approximation and will diéector [Fig. 8(a)]. It is possible to create a good reflector with
pend on the mode field diameter and NA of a particular fiber.a few periods when etching completely through the waveguide
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Fig. 10. Comparison of efficiency and bandwidth of the simple coupler grating
(s1—diamonds), combined coupler and reflector grating (s2—squares), and the
same structure with a multilayer bottom reflector (s3—triangles).

Fig. 8. (a) Combined coupler and reflector grating. (b) Same structure with a
multilayer reflector under the waveguide.
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Fig. 9. Optimal grating parameters. The grating is etched in the Gakig. 1_1. Laye_r structure with a multilayer bottom reflector (dark grey is GaAs
waveguide core. Etch depth 38 nm. Period\2: 566 nm. Groove widthy2: ~ and light grey is AlQ).

283 nm. Number of periodd/2: 20. Spacingi: 200 nm. Period\1: 280 nm.

Groove widthw1: 140 nm. Number of periodd1: 70. . . L.

will be important [15], but fabrication tolerances are reasonable
because we are using a wavelength of 1550 nm. Because of the

(1-D photomc crystal). However, itis necessary to design a .rlea'rge index contrast between GaAs and Al©nly two mirror
flector grating with the same etch depth as the coupler gratmg.

. : . . rs are needed and therefore we will use the term multilayer
because the spacing between the two gratings is critical 6{?1?‘ Y

therefore they have to be fabricated in one step. We use it ector instead of DBR. In a first step, we design a multilayer

. _ . reflector for maximum reflectivity. Afterwards, we optimize the
following procedure to optimize the lattice parameters. For_ a. : :
. : o ; ickness of the layer between the waveguide and multilayer re-
given etch depth, the coupler grating period is determined

e ; ) ctor for maximum efficiency. The details of the layer struc-
the resonance condition as in part A. Afterwards, a first-ord 2l e can be found in Fig. 11, in which the grating is the same
reflector _gratlng is designed with _the same _etc_h depth_. Fmalals in the structure without a multilayer reflector (Fig. 9). At the
the spacing between _the two gratings Is opt|m|zeq. This IO ntral wavelength, more than 95% of the light can be coupled
dure is repeated for different etch depths and the final result has '

a maximum coupling efficiency to fiber of 38%. The grating paL_lpwards. Because of the coupling loss to the fiber, the overall

rameters are summarized in Fig. 9. With this structure, alm ef{lmency 's limited to 74%. The bandwidth is similar to the

Q : . : :
all light can be coupled out at the resonant wavelength, but tﬁéucture WIFhOUt a mul'tllayer reflector (Fig. 10). The most crit
ical feature is the spacing between the coupler and the reflector

efficiency is still limited by coupling to the substrate. The max- rating. An error of a quarter wavelength will reduce the effi

Imum efﬂmengy IS 3 d.B _Iarger than the simple COUP'GT gra}tm iency to almost zero (Fig. 12). Therefore, the fabrication of this
but the bandwidth is limited to 15 nm, as can be seenin Fig. 1Q. . .
structure requires state-of-the-art electron-beam lithography.

However, this bandwidth is quite large compared to the ban “All our simulation results are for TE-polarization, and the

width of other gratlng gouplers using long gratings. . . coupling efficiency for TM is low (less thar-20 dB) for all
To enhance the efficiency of grating couplers (avoid coupli . oo
e structures described in this paper.

to substrate), a blazed or parallellogram-shaped grating [17]iS
sometimes used. However, this makes simulation and fabrica-
tion much more difficult and the behavior of a blazed grating
in our structure is yet unknown. Another solution to avoid cou- In this section, we describe our first experimental results.
pling into the substrate is the addition of a distributed Braggevices were fabricated in GaAs—AlGaAs material grown
reflector (DBR) under the waveguide [Fig. 8(b)]. It is obvioudy metal-organic vapor phase epitaxy (MOVPE) on a
that the spacing between the waveguide and the bottom refledB@As substrate (240-nm GaAs core/290-nmy AlGay s AS

IV. PRELIMINARY EXPERIMENTAL RESULTS
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Fig. 13. Measured coupling efficiency versus wavelength. This is the optical
Fig. 12. Efficiency versus spacing between the coupler and reflector gratingower at the detector divided by the input power from the fiber.

cladding/115 nm GaAs/240 nm #Gay psAS/115 nm 5 P . — 1dB
GaAs/240 nm Al 9.Gay 0sAS). This layer structure has a mul- . o .
tilayer reflector under the waveguide, but the thickness of the '," ‘\ --- 3dB
cladding layer differs from the optimized structure in Fig. 11. 3 7 5
Because this difference is approximately half a wavelength, th ¢ 2 ,," 5
calculated efficiencies are comparable. ? { { “=

The grating consists of a coupler and a reflector sectior 0 i i
(Fig. 9) and the calculated efficiency is 74%. The gratings = i !
were fabricated using electron-beam lithography and reactiv ! "\ !
ion etching. Afterwards, ridge waveguides were defined usin¢ -2 . 2
optical lithography and etching. The width of these waveguide: \.,. ,"'
is 10 um and the etch depth is 150 nm. A last step was the - "“'---0---""’2 ;

4

etching of 20upm-wide and 1500-nm-deep oxidation trenches
and wet thermal oxidation of the AbsGay osAs layers. The _ o o _
oxidized layers are mechanically stable and remain robusﬁg- 14. Measured lateral alignment sensitivity. Thexis is the waveguide
propagation direction and the axis is parallel to the grating grooves; 1- and
attached to the GaAs layers. _ 3-dB contour lines are shown.
For the measurements, we use a widely tunable laser source

V.V'th 1-mW output power a_md pplan_zanon-mamtammg Outm'i'f'he grating reflection is not known but can be estimated from
flper (PMF)Z Th_e TE-polarized I'.ght is coupled fr(_)m the PM Prax/Pmin. Without any reflection at the grating, there is no
via the gratlng |n.to .the waveguide. The output “g.ht from thg vity and 64% of the incoupled power reaches the detector. In
waveguide facet is imaged onto a detector or an infrared (I%Er measurement resultB., / P IS approximately 1.4 and
ﬁs:nti?w[;l\]/gn%igglzl ilt'g_rl‘_?:gb tW Etusgvflr: :/zéir:igg\fglgnno{h—]e Fabry—Perot peaks cgl?;(esl;gzd to 75% of the power that is
guide Spot. utput p - gl:oupled into the waveguide. Therefore, we estimate the actual
for a 10um-wide ridge waveguide is shown in Fig. 13. A maxboupling efficiency to be 19%0.14/0.75)
imum efficiency of 14% (0.14 mW on detector) is measured in hqn advantage of the out—of—pléne c.oupller compared to edge
:Egtlig1;;2?32;3ni]svﬁvlecl)er?r%tr:);igiigct}etﬁzc:ir;?if;t\?(; ivilr?r: ctéupling is the relaxed lateral alignment sensitivity. The mea-
: o 5 red optical power as a function of the position of the fiber is
tuning range of the Iaser._The_S-dB ba_ndW|dth 'S larger than sfgown in Fig. 14. A lateral deviation of 2m in any direction
nm. The fiber-to-waveguide distance is approximately.@ results in less than 1 dB of additional coupling loss.

We have measured the coupling efficiency from fiber to wave-_, . . . _
. . . .~ This preliminary experimental result shows that it is pos-

guide and not from waveguide to fiber because the latter require, . - . )
sible to obtain a reasonable efficiency with the out-of-plane fiber

coupling light into the waveguide at the edge, which is dlmcu“c':gypler. Further experimental work is in progress to improve

The peaks in the measurements are similar to Fabry—Petli1

fringes and are caused by a cavity formed by the grating ape(g uelgslmency and achieve better agreement with the theoretical

a cleaved facet. The spacing between the peaks depends on
the cavity length (30Q:m in this case). To estimate the actual
coupling efficiency, we must take into account these cavity ef-
fects because the fiber-to-waveguide coupling efficiency is theWe have presented the design of an out-of-plane coupler for
power that would be measured when there is no reflection @tupling between single-mode fiber and compact planar waveg-
the facet. When neglecting the waveguide propagation losseisles. Using a 2-D model, we have shown coupling efficiencies
the two parameters of the cavity are the facet reflection and E38% for a 240-nm-thick GaAs—AlDwaveguide or even 74%
grating reflection. The facet reflection is 0.36 for our waveguidethen adding a multilayer reflector under the waveguide. We

X position (um)

V. CONCLUSION
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have measured 19% coupling efficiency on test structures. T
proposed structure is a good candidate for solving the coupli
problem to ultra-compact, high-vertical-index-contrast wavei:
uides.
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