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Bragg waveguide grating as a 1D photonic band gap 
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Abstract. Modal reflection, transmission and loss of deeply etched Bragg waveguide gratings were 
modelled by six European laboratories using independently developed two-dimensional (2D) numerical 
codes based on four different methods, with very good mutual agreement. It was found that (rather weak) 
material dispersion of the SiO2/Si3N4 system does not significantly affect the results. The existence of 
lossless Floquet Bloch modes in deeply etched gratings was confirmed. Based on reliable numerical re- 
suits, the physical origin of out-of-plane losses of ID or 2D photonic band gap structures in slab wave- 
guides is briefly discussed. 
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1. Introduction 

Photonic crystals (PC) and photonic band gap structures (PBG) are very 
promising building blocks of novel photonic components and devices rep- 
resenting the highest level of innovation in light generation, routing, and 
switching (Yablonovich 1987; Joannopoulos et al. 1995; Mekis et al. 1996). 
As the fully three-dimensional (3D) PCs working in the optical domain 
are still difficult to fabricate, two-dimensional (2D) PCs formed in a dielec- 
tric slab ('membrane') or in a slab waveguide represent an attractive alter- 
native (Benisty et  al. 1997) (Johnson et al. 1999). In these structures, light 
propagation is governed by diffractive effects in the two dimensions of the 2D 
photonic crystal, and by the classical 'refractive guiding' in the third (usually 
vertical) dimension. 
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It is known that 2D PCs in slab waveguides support lossless propagation of 
eigenmodes (Johnson et  al. 1999) (Bloch or Floquet modes) if the refractive 
index contrast is large enough, and the existence of separate band gaps for 
guided modes of TE and TM polarisations has been proven both theoreti- 
cally and experimentally (Benisty et al. 1997; Johnson et al. 1999). However, 
for technical applications, PCs of finite size are to be used, and their con- 
nection to the 'outer world' by classical refractive waveguides is of practical 
interest. Working Group 2 of the European Action COST 268 'Wavelength- 
scale photonic components for telecommunications' possesses a forum for 
interested researchers from several European labs to discuss these problems. 
Within this forum, a modelling task has been formulated that represents a 
simplified version of the problem, namely to calculate spectral properties of a 
deeply etched short Bragg grating in a comparatively high-contrast optical 
waveguide. The waveguide material structure was chosen to match closely 
with published work (Charlton et al. 1997) and with the expectation that test 
structures with this structure and the parameters modelled will be fabricated 
and measured. 

This task evolved from the recent modelling exercise formulated within 
COST 240 (Guekos 1998), the predecessor of COST 268. Although the 
problem is closely related to a simpler problem of a 1D PC, the task is essen- 
tially 2D, deals with a PC of a finite size, and accurately tackles the impor- 
tant problem of out-of-plane losses in a vertically asymmetric slab PBG 
structure. 

Originally, the exercise was aimed at the comparison of modelling ap- 
proaches and verification of computer codes used by different participating 
laboratories. Soon after an initial period, several independent methods based 
on very different principles (modal, finite-difference time-domain (FDTD), 
and grating methods) have been found to possess essentially identical results, 
and are thus believed to be very reliable. It opened the possibility of accurate 
2D numerical modelling of radiation losses of the slab PCs in more depth. 

2. Definition of the modelling task 

The present version of the modelling task was specified in June 2000 and 
posted on the web at the URL http://www.ure.cas.cz/dpt130/cost268/. Its 
aim is to calculate the spectral dependence of the (modal) power transmit- 
tance T(2), reflectance R(2) and loss L(2) = 1 - T(2) -R(2)  of the funda- 
mental TE mode in the waveguide Bragg grating with 20 rectangular grooves 
in a relatively broad spectral range from 0.8 to 1.6 gm. The waveguide is 
schematically depicted in Fig. I. 

The waveguide is formed by a Si3N4 layer of the thickness dg = 500 nm 
deposited onto a SiO2 substrate, with air as a superstrate. The refractive 
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Fig. I. Bragg grating in a planar waveguide. 

index ns of the substrate is given by the dispersion formula for silicon dioxide 
fabricated by the MCVD method, 

bl b3 
2 b0 + - -  + 2 ~ ,  (1) 

ns = 2 2 + b2 + b4 

with the coefficients b0 = 2.979864, bl = 8.777808 x 10 -3, b2 = 1.0609 x 
10 -2, b3 = 84.06224, b4 = -96.0,  2 is the wavelength in gin. The dispersion 
formula for the Si3N4 guiding layer is 

b2  2 
2 = a 2 4 ,,]2 (2) rtg _ C 2 , 

where a = 1.147, b = 2.578, c = 0.1472. It was derived from measured data at 
the University of Twente. The refractive index of the superstrate (air) is 1.00. 
The spectral dependence of the refractive indices of the substrate and the 
guiding layer is plotted in Fig. 2. 

The grating period was originally fixed to be 430 nm, the widths of the 
'tooth' and the 'groove' were chosen equal, i.e., 215 nm ('mark-space ratio' is 
1:1). The groove etching depth de varies from 0 to 750 nm in steps of 125 nm. 
(Groove depths greater than 500 nm mean that the groove is etched through 
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Fig. 2. Wavelength dependence of the refractive indices of the substrate and the guiding layer. 
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the guiding layer into the substrate.) The parameters of the grating were 
chosen so that the Bragg reflection for the shallow grating appeared close to 
the optical telecommunication wavelength of 1.55 ~tm. 

The modelling task was later generalised to the dispersionless case and to 
mark-space ratios different from unity, as will be briefly discussed below. 

3. Modelling methods and laboratories participating in the comparison 

Within the framework of the COST 268 Working Group 2, six laboratories 
participated in the modelling task with six independently developed computer 
codes based on four different modelling methods. Their overview is shown in 
Table 1. 

In the method of lines (MoL) the fields are discretised in the cross-section, 
and the derivatives with respect to the cross-section coordinates are ap- 
proximated by finite differences (FDs) (Pregla 1995). Combining the FD into 
an operator matrix and by computing the eigenvalues and eigenvectors of 
this matrix, the eigenmodes are determined. To model radiation, absorbing 
boundary conditions are introduced into the FD-scheme. Since there exist 
many papers dealing with this algorithm, (see, e.g. Scarmozzino et al. 2000) 
and the references herein) only a few remarks concerning the implementation 
are given here. To avoid the use of exponentially increasing terms, which lead 
to numerical problems in the case of long sections, an admittance transfor- 
mation concept was developed (Rogge and Pregla 1993; Pregla 1999). To 
model the grating the algorithm described in (Helfert and Pregla 1998) was 
used, where the admittance transformation was combined with the Floquet 
theorem leading to a very fast algorithm, even for a very high number of 
periods. 

The eigenmode expansion method BEP1 was implemented at Ghent 
University in the CAMFR modelling framework (Bienstman and Baets 

Table 1. Modelling methods and participating laboratories 

Method Laboratory References 

MoL 

BEPI 

BEP2 

BEP3 

GT 

FDTD 

Allg u. Theor. Elektrotechnik, 
FernUniversit~it Hagen, D 
Dept. of Information Technology/ 
IMEC, Ghent University, B 
Inst. of Radio Engineering and 
Electronics, Prague, CZ 
Dept. of Physical Engineering, Brno 
University of Technology, CZ 
Institut d'Optique Th~orique et 
Appliqu~e/CNRS, F 
MESA Research Institute, University 
of Twente, NL 

(Helfert and Pregla 1998) 

(Bienstman and Baets 2001) 

(Sztefka and Nolting 1993; 
(~tyrok~, et  al. 1998) 
(Sztefka and Nolting 1993) 

(Silberstein et  al. 2001) 

(Taflove 1995; Stoffer et  al. 2000) 
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2001). It can handle both slab waveguide geometries and circular symmetric 
structures. The boundary conditions are based on the complex coordinate 
formulation (Chew et  al. 1999) of perfectly matched layers (B+renger 1994). 
The local eigenmodes of each layer are found in the complex plane by the so- 
called root-tracking method (Bienstman et al. 2001). First, the propagation 
constants are located for the structure without any PML. These modes lie on 
the coordinate axes, where they are readily found. Subsequently, the ab- 
sorption in the PML is gradually increased to the desired value, and the 
propagation constants are tracked as they move into the complex plane. To 
calculate the scattering matrices of the entire finite periodic grating, the nu- 
merically stable S-matrix scheme is used, in combination with a recursive 
technique that makes the calculation time logarithmic in the number of pe- 
riods (Bienstman and Baets 2001). 

The bi-directional mode expansion and propagation method BEP2 used by 
the IREE Prague is conceptually very similar to that developed at Ghent 
University. It is based on the original paper (Sztefka and Nolting 1993) and 
has been described in detail in (Ctyrok~ et  al. 1998). The boundary condi- 
tions in the form of the perfectly matched layers (B6renger 1994) using the 
formulation of complex coordinate stretching (Chew et al. 1999) have been 
implemented. Complex propagation constants of the eigenmodes of each 
waveguide section are calculated using the transfer matrix method. Zeros of 
the dispersion function in the complex plane are localised by the method 
similar to the root-tracking method (Bienstman and Baets 2001), too. The 
fact that the dispersion function is a regular function of the complex prop- 
agation constant (squared) is efficiently utilised in the application of the 
Newton method in the complex plane. The calculation of the modal reflec- 
tance, transmittance, and modal losses makes use of the Floquet-Bloch (FB) 
modes of the grating structure defined as eigenmodes of the transfer matrix of 
one period of the grating ((~tyrok~, et al. 1998). The corresponding eigen- 
values determine the relative phase shift of the Bloch modes after one period 
of propagation. Using the FB modes makes the computation time essentially 
independent of the number of grating periods and improves the numerical 
stability of the method. Numerical stability of the algorithm is attained by 
the application of the immitance method (Sudbo 1994) in the FB formalism. 

The BEP3 code developed independently at the Brno University of 
Technology is essentially similar to the BEP1 and BEP2 methods described 
above, except that longitudinal propagation along the grating is calculated in 
terms of the eigenmodes of the corresponding waveguide sections, without 
transition to the basis of FB eigenmodes. 

The method described by (Silberstein et al. 2001) used at the Institut 
d'Optique Th6orique et Appliqu6e (IOTA) is inspired by grating theory (GT) 
and belongs to the general class of frequency-domain modal methods. In 
every longitudinally uniform section of the waveguide, the modes are com- 
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puted as eigenvectors. The computation relies on analytical Fourier expan- 
sions of the permittivity and of the electromagnetic fields. Perfectly matched 
layers are used to bound the computational domain. 

The FDTD method is a very general and well-known method for calcu- 
lating electromagnetic field distributions in structures of arbitrary geometry, 
based on a direct discretisation of Maxwell's equations. The UT-implemen- 
tation is based on Yee's mesh and absorbing boundary conditions of the 
PML type have been applied. A very detailed and practical overview of 
the FDTD method is given in the book by (Taflove 1995). In order to obtain 
the spectral characteristics using FDTD, a very short (~1 fs) pulse, having 
sufficiently broad frequency content, is launched into the slab waveguide. Its 
time evolution is calculated and transmission and reflection spectra are ob- 
tained by Fourier transforming the resulting time series at appropriate lo- 
cations in the structure. Since transmission and reflection coefficients for the 
guided fundamental slab mode are sought, it is necessary to take the overlap 
integral of the local modal field with the field distribution calculated using 
FDTD. This is complicated due to the broad spectral range and the fre- 
quency dependence of the modal field distribution. A similar complication 
arises in launching a proper modal pulse. However, these complications are 
more than outweighed by the fact that the FDTD method offers a unique 
chance to compare results obtained by spectral-modal methods with those of 
the time-domain method. 

4. Results of the modelling task 

4.1. INFLUENCE OF MATERIAL DISPERSION 

Material dispersion was introduced into the calculations with the aim of 
making the anticipated comparison with experimental data more realistic. 
However, it significantly hampers the application of the FDTD method. To 
estimate the error introduced by neglecting material dispersion we calculated 
the results using one of the BEP methods (BEP2), both when including 
material dispersion and when keeping the refractive indices of the substrate 
and the guiding layer constant, corresponding to the wavelength of 1.55 ~tm, 
namely ns = 1.44409, ng=  1.97916. For brevity, the results for only three 
grating etching depths are presented in Fig. 3. 

From the comparison of results in Fig. 3 it clearly (and rather surprisingly) 
follows that material dispersion of the material system SiO2/Si3N4 has only a 
very small effect on the spectral curves of modal reflectance and transmit- 
tance of the waveguide Bragg grating, the spectral interval of which spans 
more than one octave, even though the characters of the material dispersion 
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Fig. 3. The influence of material dispersion on the spectral dependence of the modal reflectance R, 
transmittance T and loss (L = 1 - R - T) of the waveguide Bragg grating. Groove depths: (a) 125 nm, (b) 
375 nm, (c) 625 nm. Curves with dispersion; solid curve reflectance, dashed transmittance. Points 
without dispersion, circle reflectance, triangle transmittance. 

of the substrate and the guiding layer are rather different, as follows from 
Fig. 2. The influence of the material dispersion manifests itself by a small 
spectral shift that is observable only in regions where the curves exhibit sharp 
changes or oscillations due to interference effects, especially in the long- 
wavelength ('dielectric') side of the band gap. One can thus expect that the 
predictions of the 'dispersionless' FDTD method might be used for the 
comparison with experimental data just as well as the results of modal 
methods in which the material dispersion is fully taken into account. 

4.2. C O M P A R I S O N  O F  RESULTS O B T A I N E D  BY D I F F E R E N T  M E T H O D S  

The spectral dependences of the modal transmission, reflection, and losses of 
the same gratings as in Fig. 3 were calculated using four modal methods (the 



4 6 2  J. CTYROKY E T  AL. 

(a) 

O, lO-  

0.05 

~'~ 0"00 

-0.05 

-0.10 
0.8 

. . . . .  BEP1 . . . . . .  BEP2 . . . . . .  BEP3 
- -  MoL . . . . .  GT . . . . . .  FDTD 

' 1;0 " 1~2 ' 1;4 ' 1;6 ' 1;8 

Wavelength ~, 

(c)  

o,2 

0 . 1  

t 

~ :  0 . O  

-0.1 

(b )  

0 . 2 -  

0.1 

-0"1 

:= !! 

- - -  BEP1 M o L  
. . . . .  BEP2  . . . .  G T  
. . . . . .  BEP3  . . . . . .  F D T D  

~' i~ . . . .  

-O,2 I 
0 .8  1'.0 ' 1~2 " 1'.4 1',6 1',8 

W a v e l e n g t h  ~. 

- - -  BEP1 MoL 
. . . . .  B E P 2  . . . .  GT  
. . . . . .  B E P 3  . . . . . .  F D T D  

0"6 110 112 1~4 116 1'.6 
W a v e l e n g t h  ~. 

Fig. 4. Comparison of spectral dependencies of the modal reflectance R or transmittance T of Bragg 
waveguide gratings calculated by six modelling methods. (a) Transmittance, etching depth 125 nm, (b) 
reflectance, 375 nm, (c) reflectance, 625 nm. 

MoL and all three BEPs), the grating technique method GT, and the FDTD 
method. The graphs in Fig. 4 represent differences between the transmit- 
tances (a) and reflectances (b, c) calculated by the individual methods and the 
averaged results of the methods MoL, BEP1, BEP2, BEP3, and GT. These 
methods work in the spectral region and are thus naturally able to take into 
account the dispersion. The differences among the results of different meth- 
ods are thus much more clearly visualised. 

It can easily be concluded from the graphs that all methods possess very 
similar results that typically differ only by a few percent. Larger deviations 
are observed only in spectral regions where the curves exhibit abrupt changes 
or periodic oscillations. For deeply etched gratings, (Fig. 4(b), (c)) deviations 
occur mainly in the region close to the long-wavelength band gap edge. 
Closer inspection reveals that the differences are in most cases due to very 
small spectral shifts between the curves. Quite naturally, the FDTD method 
is the most susceptible to such spectral shift because it neglects dispersion. It 
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Table 2. Important characteristics of the modelling methods 

463 

Method Hardware/software Number of RAM Computing 
modes/ memory time (s) 
steps in x/z (MB) 

Equiv. time 
(w~ 1 GHz (s) 

MoL 
BEP1 
BEP2 
BEP3 
GT 
FDTD 

Pentium ll 333 MHz, Matlab 150/2 5 11500 3830 
Pentium Ill 933 MHz, C++ 70/2 10 432 403 
Athlon 1.33 GHz, Fortran 90/95 70/2 5 684 910 
Athlon 500 MHz, C++ 70/2 2 12000 6000 
PC 600 MHz, Matlab 70/2 2 4550 2730 
Athlon 600 MHz, C++ 250/1250 21 7200 4320 

is very probable that the difference between the FDTD and other methods 
could be strongly suppressed by a small change of the refractive indices used 
for the calculation. All important features of the spectral curves are never- 
theless well reproduced, both qualitatively and quantitatively, by all meth- 
ods, including the FDTD. The results can thus be considered a reliable and 
successful cross-check of the correctness of the algorithms. 

It is interesting to compare characteristic features of the modelling meth- 
ods that are important for their application in modelling PC structures in 
more detail. For this comparison we selected (rather randomly) the grating 
with the etch depth of 625 nm (see Fig. 3(c)). In Table 2 we present for each 
method the type of processor, its clock frequency and the programming 
environment used to write the code, the number of discretisation steps 
(modes for modal methods, waves for GT, and points for FDTD) in the 
transverse (x) direction, the number of discretisation steps (points or sec- 
tions) in the longitudinal (z) direction, the computer memory (RAM) occu- 
pied by the programme, the total computing time required to calculate data 
shown in Fig. 4(c) with the spectral resolution of 2 nm (i.e., for 501 wave- 
lengths), and the 'equivalent' time obtained by scaling the real computing 
time to the CPU clock frequency of 1 GHz. 

Due to the various computer systems and platforms used by different 
laboratories a detailed comparison of the efficiency and accuracy of different 
methods has limited significance. It should be also realised that the algo- 
rithms were not fully optimised to minimise the numerical effort (CPU time 
and RAM memory). One can easily learn from Table 2 that memory re- 
quirements are low for all methods, including FDTD. The longer 'equivalent' 
computing time for the MoL compared to BEP1 and BEP2 is attributable to 
the application of Matlab, while all other methods use compiled codes. The 
shorter times of BEP1 and BEP2 against BEP3 document the advantage of 
the application of the FB (or analogous) formalism for periodic structures. It 
is not easy to compare the speed of GT and FDTD methods with others as 
they use rather different principles; they are nevertheless both well applicable 
for practical implementation. 
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5. Discussion and comments 

All modelling methods have been shown to yield essentially equivalent re- 
sults. It is thus time to give more detailed physical interpretation of the results 
and discuss their possible consequences on the behaviour of devices based on 
waveguide PCs. 

Several general observations can be made from the spectral characteristics 
in Fig. 3. At the long-wavelength side of the band gap, the curves exhibit 
strongly oscillatory behaviour typical for low-loss regions. The oscillations 
are due to Fabry-Perot-type interferences in a grating of finite length. For 
shallow gratings, the resonances are less distinct due to lower reflection at 
the grating ends. The gratings with etching depths of 375 nm and more act 
as a nearly 100% low-loss reflector near the long-wavelength edge of the 
band gap. For shorter wavelengths, radiation (out-of-plane scattering) 
losses rise monotonously in the band gap and are never small at the short- 
wavelength side of the band gap. It has been found that the losses tend to 
remain moderate inside the band gap for gratings etched deeply (> 125 nm) 
into the substrate. To better understand the grating behaviour, we also 
modelled the gratings with different ratios of the tooth/groove widths. The 
spectral position of the band gap is strongly dependent on the choice of 
these parameters, however. To keep the spectral position of the band gap 
unchanged at least in a rough approximation, we choose the following 
approach. 

Neglecting the scattering into radiation modes, the Bragg wavelength of 
the waveguide grating with rectangular grooves is given by the expression 

2B = 2(NuLu + NeZe), (3) 

where Nu, Ne and Lu, Le are the effective indices of the (single) guided mode 
and the lengths of the unetched and etched sections of the grating (i.e., in the 
tooth and the groove), respectively. For the gratings described in the pre- 
ceding section, the lengths were equal, Lu -- Le -- L1 = 215 nm. As long as 
the etched section supports a guided mode, we can choose, e.g., the tooth 
width Lu and calculate the groove width as 

(4) 

keeping the Bragg wavelength 2B unchanged. 
For deeply etched grooves, there is no guided mode in the groove. In this 

case, we suppose that the condition (3) is still valid for some 'equivalent 
index' Ne, which can be calculated from the condition (3) applied to the case 
of equal lengths, Lu = Le = L1 = 215 nm: 
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~B N e - - -  No. (5) 
2L~ 

We can then choose Lu and apply (4) to calculate Le as before. 
As is apparent from Fig. 4(c), the Bragg wavelength is difficult to determine 

for deeply etched gratings. We therefore chose the well-defined long-wave- 
length edge of the band gap, instead, namely, 2B = 1.418 ~tm. At this wave- 
length, the effective refractive index of the unetched guide is Nu = 1.7812677. 

For brevity, we present here only the results for the deeply etched (750 nm) 
grating. Using Equations (4) and (5), we arrived at the following set of tooth/ 
groove lengths Lu/Le: 350/56, 300/115, 200/233, 100/350, and 50/409 nm. The 
results of modal reflectance and loss calculations for such gratings are shown 
in Fig. 5. 

Fig. 5. Modal reflectance and losses of waveguide Bragg gratings with varying mark space ratio. (a) 
Modal transmittance, (b) modal losses. Tooth/groove widths shown in the legends. 
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It can be concluded from both the reflectance and loss spectra in Fig. 5 that 
deep gratings of the 'notch' type (with comparatively wide teeth and narrow 
grooves) exhibit relatively low losses inside the band gap. This is in agreement 
with the prediction made in (Krauss and De La Rue 1996). However, another 
prediction made in (Krauss and De La Rue 1996), viz. that retaining some 
guiding layer inside the teeth (i.e., not etching completely through the wave- 
guide) should be beneficial for reducing loss, could not be confirmed, cf. 
Fig. 3(a), (b) (guiding retained) and Fig. 3(c) (no guiding retained). 

Although the calculation of spectral characteristics of the waveguide 
grating yields its important 'integral' technical parameters like modal re- 
flectance and transmittance, for better understanding of underlying physical 
effects, the modal characteristics of the grating itself are helpful. They can be 
calculated by the methods discussed in this paper, too. Denoting the phase 
shift of the mth FB mode in the grating (see section 'Modelling methods' 
above) by q~m and the (total) period length by A, the corresponding wave 
number of the ruth FB mode can be calculated as 

kFB = qgm/A. (6) 

It is useful to define the effective refractive index neff, mFB of the mth FB mode by 
the relation 

kmFB FB 2re FB 
= koneff'm = - Z  neff'm" (7) 

The application of efficient absorbing conditions makes it possible to cal- 
culate correctly the complex phase shift q~m and correspondingly, the complex 
FB wave number (6), and the complex effective refractive index of the FB 
mode (7) in structures exhibiting out-of-plane radiation losses. In Fig. 6 we 
present results of such calculations of the lowest-order FB mode for two 
comparatively low-loss gratings, namely the shallow grating with the etching 
depth of 250 nm and the tooth/groove widths of 215/215 nm (i.e., with a 
period A = 430 nm), and the 750 nm deep etched grating with the tooth/ 
groove widths of 350/56 nm (A = 406 nm). 

The band diagram (photon frequency versus Re{kVB}) of the shallower 
grating is shown in Fig. 7 in the form more commonly used for PBG 
structures. On the horizontal axis, the real part of the FB wave number is 
normalised with respect to a half of the grating vector K -- 2rc/A - the limit 
of the first Brillouin zone of the 1D PC. Above the light line (given by the 
phase velocity of light in the substrate), the band structure of the real 
waveguide PC is continuous due to the continuous spectrum of radiation 
modes. The fundamental FB mode is denoted as 'non-leaky' in Figs. 6 and 7 
in the vicinity and inside the band gap, where its wave number is either real 
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Fig. 6. Complex refractive index of the fundamental FB mode of the deeply etched waveguide grating; (a) 
Etching depth of 250 nm, tooth/groove widths 215/215 nm, period A = 430 nm, (b) etching depth 750 nm, 
tooth/groove widths of 350/56 nm, period A = 406 nm. BG denotes the band gap. Modal reflectance R 
and loss L are also shown (solid and short dash lines, respectively). 

(outside the band gap) or imaginary (inside the band gap). We want to stress 
that this FB mode remains localised close to the guiding layer without any 
coupling to radiation modes. 

From Figs. 6 and 7, the behaviour of the Bragg grating can be better un- 
derstood. The spectral position of the band gap is accurately defined by the 
character of the wave number (or the effective refractive index) of the funda- 
mental FB mode: as far as the fundamental FB mode is non-leaky, its wave 
number is real outside the band gap and purely imaginary inside the band gap. 
When the real part of the effective index of the fundamental FB mode is smaller 
than the refractive index of the substrate (for 2 < 1.35 pm in Fig. 6(a) and for 
2 < 1.27 lam in Fig. 6(b), the FB mode becomes leaky and starts to radiate into 
the substrate. In terms of the 'classical' integrated optics, the Bragg grating 
now couples light into the substrate and acts as a grating coupler. 
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Fig. 7. Band diagram of the waveguide grating of Fig. 6(a) (etching depth 250 nm, tooth and groove 
widths 215 nm). BG denotes the band gap. 

Two mechanisms are responsible for out-of-plane losses by diffraction or 
scattering in the substrate and in the air. If the fundamental FB mode is not 
leaky, the losses (L = 1 - R -  T) originate only from a mode mismatch be- 
tween the fundamental guided mode and the fundamental FB mode. As 
shown in (Palamaru and Lalanne 2001) where an accurate and analytical 
model for the losses is proposed and tested against electromagnetic theory, 
the losses in the band gap vary linearly with the square of the integral overlap 
between the fundamental guided and FB modes. For the two waveguide 
gratings considered in Fig. 6, this mode mismatch is responsible for the losses 
in the long-wavelength region and in the gap. In the short wavelength region, 
the situation is more complex. Losses originate from the mode mismatch and 
from the leakage of the fundamental FB. Moreover, for shorter wavelengths, 
higher-order leaky FB modes are substantially excited at the front and back 
grating interfaces, which contributes to increased loss. 

Fig. 8 shows the comparison between the fundamental guided mode at 
2 = 1.43 (solid curve) and the fundamental FB modes computed at several 
wavelengths. For simplicity, we present here the graph for the shallower 
grating in which the lossless behaviour is more pronounced. For frequencies 
inside the band gap, it is understood that the integral overlap decreases with 
decreasing wavelengths. Correspondingly, the losses increase and the reflec- 
tance inside the band gap decreases. It is the reason why the loss reaches its 
minimum (very close to zero) on the long-wavelength side of the band gap. 
This mode mismatch is also responsible for the deformation of the reflectance 
spectral curves inside the gap, (cf. R and L curves in Fig. 6(a) and (b). The 
fact that the overlap integral decreases with decreasing wavelengths can be 
understood if we realise that light is more confined in the air gap for shorter 
wavelengths. Consequently, the FB mode 'sees' less material and the fun- 
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Fig. 8. Field distributions of the guided mode in the input waveguide and of the FB modes in the middle 
of the tooth of the waveguide grating of Fig. 6(a). Solid waveguide mode at 2 = 1.43 ~tm (i.e., at the 
centre of the band gap; the wavelength dependence of the mode field distribution is rather weak); other 
curves stand for the fundamental FB mode at the wavelengths indicated in the legend. 

damental FB mode differs from the fundamental guided mode. This is also 
reflected in the real part of the refractive index of the FB mode that decreases 
inside the band gap as the wavelength decreases. 

6. Conclusions 

The spectral behaviour of a waveguide Bragg grating was modelled using five 
spectral methods and one FDTD method developed independently in dif- 
ferent European laboratories. Very good mutual agreement indicates that all 
methods work well. It has been found that material dispersion of the 
SiO2/Si3N4 system does not significantly affect the results. Light propagation 
in the waveguide grating was physically interpreted using the concept of FB 
eigenmodes of the grating as a 1 D photonic crystal. The existence of a lossless 
FB mode in gratings with grooves etched deeply into the substrate was 
confirmed. Two basic sources of out-of-plane losses of the waveguide PC 
were identified, namely the coupling of FB modes in the waveguide grating to 
radiation modes (light 'outcoupling' by a periodic structure of the PC), and 
mismatch between field distributions of a FB mode in the grating and the 
eigenmode of the input waveguide. 

Acknowledgements 

This work was carried out within Working Group 2 of European Action 
COST 268. Financial support by the Ministry of Education, Youth and Sport 



4 7 0  J. CTYROKY E T A L .  

of the Czech Republic under contract no. COST 268.10 is appreciated by J.(~. 
One of the authors (P. B.) also acknowledges support from the Flemish 
National Fund for Scientific Research (FWO-Vlaanderen) for a doctoral 
fellowship. Parts of his work were also carried out in the framework of the 
Belgian DWTC project IUAP IV-13. The work of J.P. has been supported by 
the Grant Agency of the Czech Republic (contract 202/98/P274). 

References 

Benisty, H., C. Weisbuch, D. Labilloy, M. Rattier, C.J.M. Smith, T.F. Krauss, R.M. De La Rue, R. 
Houd6, U. Oesterle, C. Jouanin and D. Cassagne. J. Lightwave Technol. 17 2063, 1997. 

B6renger, J.-P. J. Comp. Phys. 114 185, 1994. 
Bienstman, P. and R. Baets. Opt. Quant. Electron. 31, 2001. 
Bienstman, P., H. Derudder, R. Baets, F. Olyslager and D.D. Zutter. IEEE Trans. Microwave Theory 

Tech. MTT49, 2001. 
Charlton, M.D.B., S.W. Roberts and G.J. Parker. Mat. Sc. Eng. B 49 155, 1997. 
Chew, W.C., J.M. Jin and E. Michelsen. Microwave Opt. Technol. Lett. 16 363, 1999. 
(~tyrok~,, J., S. Helfert and R. Pregla. Opt. Quant. Electron. 30 343, 1998. 
Guekos, G., ed., Photonic Devices: How to Model and Measure, Pages, Photonic devices: How to Model and 

Measure. Springer, Berlin, 1998. 
Helfert, S.F. and R. Pregla. J. Lightwave Technol. 16 1694, 1998. 
Joannopoulos, J.D., R.D. Meade and J.N. Winn. Photonics Crystals, Molding the Flow of Light. 

Princeton, Princeton University Press, Pages, 1995. 
Johnson, S.G., S. Fan, P.R. Villeneuve and J.D. Joannopoulos. Phys. Rev. B 60 5751, 1999. 
Krauss, T.F. and R.M. De La Rue. Appl. Phys. Lett. 68 1613, 1996. 
Mekis, A., J.C. Chen, I. Kurland, S. Fan, P.R. Vileneuve and J.D. Joannopoulos. Phys. Rev. Lett. 77 3787, 

1996. 
Palamaru, M. and P. Lalanne. Appl. Phys. Lett. 78 1466, 2001. 
Pregla, R. MoL-BPM Method of Lines Based Beam Propagation Method. Methods for Modeling and 

Simulation of Guided-Wave Optoelectronic Devices (PIER 11). W.P. Huang. EMW Publishing, Cam- 
bridge, Massachusetts, USA, p. 51. 1995. 

Pregla, R. The Impedance~Admittance TransJormation - an Efficient Concept .for the Analysis of Optical 
Waveguide Structures. Integrated Photonics Research, Santa Barbara, USA, OSA. 1999. 

Rogge, U. and R. Pregla. J. Lightwave Technol. 11 2015, 1993. 
Scarmozzino, R., A. Gopinath, R. Pregla and S.F. Helfert. IEEEJ. Sel. Top. Quan. Electron. 6 150, 2000. 
Silberstein, E., P. Lalanne and J.-P. Hugonin J. Opt. Soc. Am. (in press) 2001. 
Stoffer, R., H.J.W.M. Hoekstra, R.M. de Ridder, E.v. Groesen and F.P.H.v. Beckum. Opt. Quant. 

Electron. 32 947, 2000. 
Sudbo, A.S. Pure Appl. Opt. 3 381, 1994. 
Sztefka, G. and H.-P. Nolting. IEEE Photonics Technol. Lett. 5 554, 1993. 
Taflove, A. Computational Electrodynamics: The Finite-Difference Time-Domain Method, Norwood, MA, 

Artech House Inc., Pages, 1995. 
Yablonovich, E. Phys. Rev. Lett. 58 2059, 1987. 


