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Optical modelling of photonic crystals
and VCSELs using eigenmode expansion

and perfectly matched layers
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Abstract. We present a modelling approach for photonic crystal structures and vertical-cavity surface-
emitting lasers (VCSELs). This method is based on vectorial eigenmode expansion combined with per-
fectly matched layer (PML) boundary conditions. Compared to other methods, a relatively small com-
putational effort is required, while at the same time accurate results are obtained, even in the presence of
strong scattering and diffraction losses.
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1. Introduction

For the modelling of optical structures, a large variety of methods abound.
On one hand, there exist a number of approximate models that are
typically quite fast. However, they have a restricted domain of validity.
The beam propagation method (BPM) e.g. is mainly limited to structures
with small refractive index contrasts or that exhibit dominant paraxial
propagation.

On the other hand, there is a large class of models where Maxwell’s
equations are solved exactly, the only approximation being the finite mesh
size or the finite number of terms retained in a series expansion. Most of these
models are based on spatially discretising the structure under study. How-
ever, most interesting structures require a large number of grid points to
model accurately, so that they introduce a large number of unknowns to be
solved for. Needless to say that these models typically tend to be quite slow,
making them less suitable for use in a design process requiring a large number
of iterations. Models in this class include e.g. the finite-difference time-
domain method, other methods based on finite elements or finite differences,
or hybrid models like the method of lines (MoL). For an excellent overview
of these techniques, we refer to Scarmozzino et al. (2000) and the references
therein.
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In order to reduce the computational effort of these exact models, we can
use to our advantage the fact that most structures can be represented by a
refractive index profile that is piecewise constant. This fact is exploited in
eigenmode expansion methods (Sztefka and Nolting 1993) (also called mode-
matching methods), where the structures are sliced up in a number of layers
in which the index profile does not change in the propagation direction z
(Fig. 1). In each of these layers, the field is expanded onto the set of eigen-
modes of that particular layer. Since these can be calculated analytically,
no spatial discretisation is required, giving rise to only a small number of
unknowns and a therefore a fast model.

However, in order to get a discrete set of radiation modes, these methods
require the structure to be enclosed in a metal volume. This has been the
main problem plaguing eigenmode expansion techniques in the past, since the
radiated fields are completely reflected back into the structure.

To alleviate this, it was recently proposed to coat the metal volume with
a perfectly matched layer (PML) (Derudder 1998; Bienstman et al. 2001).
Contrary to traditional absorbers, PMLs give reflectionless absorption of the
incident field, regardless of wavelength, polarisation or incidence angle.

In this paper, we give an outline of our modelling approach, based on
eigenmode expansion and PMLs, and illustrate it with a number of examples
on periodically etched waveguides and oxide-confined vertical-cavity surface-
emitting lasers (VCSELs).

2. Description of the model

The modelling of an optical structure using this method proceeds in a number

of steps:

e In each layer, find the local eigenmodes that will be used to expand the
field.

Spatial discretisation Eigenmode expansion

Fig. 1. Spatial discretisation vs. eigenmode expansion.
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e For each interface between two layers, calculate the reflection and trans-
mission matrices that describe mode conversion and scattering at that in-
terface.

e For a given stack of layers, calculate the reflection and transmission ma-
trices of the entire stack.

Once we have this information, we can additionally also

e Look for resonator (laser) modes of a cavity defined by two stacks.

e Calculate the field profile inside a stack for any given excitation.

e Calculate the band diagram of the Bloch modes appearing for an infinite
repetition of given stack.

These steps will now be described in more detail.

2.1. EIGENMODES IN EACH LAYER

In each layer, any arbitrary field can be written as a linear combination of
the forward (‘+’) and the backward (‘—’) propagating eigenmodes of that
particular layer:

E(r,z) = Z {4 Ex(r) exp(—jpiz) + A Ex(r,) exp(ifz) }

k
1
H(r;,z) = Z {4 Hy(r,) exp(—jBiz) — 4; Hi(r:) exp(iBi2) } .
%

Here r, is the transverse coordinate, the direction of propagation is z and f§
represents the propagation constants of the eigenmodes. Theoretically, these
sums run from £ = 1 to infinity, but we terminate the series at a given index N.

Any 3D field distribution in that particular layer can therefore be repre-
sented very compactly by a vector A containing the expansion coeflicients,
without resorting to spatial discretisation.

To determine the propagation constants of the eigenmodes, one typically
has to solve a transcendental dispersion relation.

2.2. PML BOUNDARY CONDITIONS

We include the presence of PML boundary conditions when we formulate the
transcendental dispersion relation satisfied by the propagation constants of
the eigenmodes. It was shown in Chew et al. (1997) that a PML-layer could
be described as an isotropic, lossless layer, but with a complex thickness. The
imaginary part of this thickness provides for reflectionless absorption of the
incident field, regardless of its wavelength, incidence angle or polarisation.
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The advantage of such a formulation is that expressions derived in situations
without PML can be simply extended to include PML by allowing the outer
regions of the computational domain to have a complex thickness.

Fig. 2 shows the influence of PML on the distribution in the complex 7.¢¢-
plane of the propagation constants of a waveguide with a circular geometry.
The core has a radius » = 0.5 um and consists of AlAs with refractive index
n; = 2.9. The cladding is AlOx (n, = 1.55) and the metal cylinder has a radius
R=1.0-0.1jum. The wavelength is 1 um, and the modes shown have
Bessel order 1.

It can be seen from Fig. 2 that the influence of PML on the guided modes is
negligible. They are still located on their original place on the real neg-axis.
The radiation modes on the other hand are no longer distributed along the
coordinate axes, but are located on four branches in the complex plane.

For more details on the mode structure and profiles of these eigenmodes in
the presence of PML, including on efficient numerical techniques to locate
them, we refer to (Derudder et al. 1998; Bienstman et al. 2001).

2.3. INTERFACES BETWEEN TWO LAYERS
The derivation of the scattering matrix of an interface proceeds by the well-

known mode-matching technique (see e.g. Zaki er al. 1988). Suppose an
interface between two waveguides I and II is placed at z = 0 and that a single
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Fig. 2. Influence of PML on the distribution of propagation constants in the ne-plane (circles: EH modes,
crosses: HE modes).
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mode p of waveguide I is incident upon this interface (Fig. 3). In both
waveguides we retain the same number N modes of modes. Expressing the
continuity of the tangential field components leads to:

11
ptan rt +ZR ]tan ZTEjtan

(2)
p tan Z R j tan = Z Hjltan( )
J

For every index i from 1 to N, we now take the right vectorial product of the
first equation with H! tan @nd the left vectorial product of the second equation
with ElI tan- Integrating over the transverse cross section and invoking
orthogonahty finally leads to a system from which the unknown reflection

and transmission coefficients can be determined:

S (o1 )« ()<, )

J

© sy 2 ()~ (8w
i 1 J

The scalar product is defined as an overlap integral over the cross-section:

(3)

<E~H>://E><H-uzdS (4)
N

This procedure is repeated for any incident mode p, until finally we arrive at
reflection and transmission matrices:

Transmitted
field

Ru, Tu,

s

Rin Tin

Incident Reflected
field field

Fig. 3. Interface between two waveguides.
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Areﬂ :RI,II 'Ainc (5)
Atrans = TI,II : Ainc

Similar expressions are derived for the case with incidence from medium II.

Together, these four matrices are submatrices of the scattering matrix, which
completely characterises the interface.

2.4. STACK OF LAYERS

A stack consists of a sequence of layers and each layer in turn consists of an
interface, whose behaviour is characterised by the reflection and transmission
matrices from (5), and a given length of waveguide, where the propagation of
the field is given by (1).

For the determination of the R and T-matrices of the entire stack, one
can either use the transfer matrix formalism or the scattering matrix for-
malism (Li 1996). The transfer matrix formalism relates the forward and
the backward waves at the beginning of a substack to the forward and
backward waves at the end of the substack. Although this method is
conceptually simple, it is numerically unstable for evanescent modes, since
the expressions combine both increasing and decreasing exponentials
exp(£if).

It is therefore better to use a scattering matrix formalism, which relates the
incident fields (i.e. forward field at the beginning and backward field at the
end) to the outgoing fields (i.e. backward field at the beginning and forward
field at the end).

The procedure recursively determines the reflection and transmission (i.e.
scattering) matrices of the first p + 1 layers, given these matrices for the first p
layers:

First, the following matrices are calculated (Li 1996):

t:p+1.,p = :p+1,p : diag(exp(_jﬂp+ldp+l))

Fpp+1 =Rppii

Fpe1p = diag(exp(=if,11dps1)) - Rpiip- diag(exp(—jf,+1dp+1))

tp,p+1 = diag(exp(_jﬁp+ldp+l)) 4L pp+l

(6)

The diagonal matrices express the propagation of the modes in layer p + 1
over the distance given by its thickness d,,i. Note that only exponentials
with the same sign occur in the formulas. This accounts for its numerical
stability.
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Finally, the matrices describing the first p + 1 layers are given by:

_ _ _ .
p+1,1 =14 pl- [1 —Ipp+l 'RPJ} “Iptip

= -1 _ = =
1 [1 “Tpptl 'Rp,l} “Tpp+1 - Tip+Rip

EUH
by
+

I
~

_ o _
pr1l =lpprl - [1 —Rpi "”P,pﬂ] “Rp1 -ty 41p+ Tpiip

- - _ _ -1
Tl,p+1 =lpp+1 - {1 _Rp,l 'rp,p-H] : Tl,p

Of course, the same method can be applied to concatenate substacks. The R
and T matrices then represent the properties of a substack instead of those of
a single interface and the thicknesses ¢ should be chosen zero.

2.5. PERIODIC STRUCTURES

An important advantage of eigenmode expansion techniques is that they
allow for an efficient algorithm if some substacks exhibit periodicity. This is
especially useful when studying e.g. DBR mirrors or photonic crystals.

Suppose we have a basic stack S that is repeated N times. A straightfor-
ward way of calculating the properties of the entire stack would be to first
calculate the R and 7 matrices of S and then concatenate N copies of the
basic period:

Sy=S®S®---®S (N times) (8)

The operator ® stands for concatenation of two substacks using the scat-
tering matrix formalism.
A faster way is to make use of the following recurrence' relations

S =8®3;

= 9)
2it1 = 82 ® S

In this way, the calculation time is logarithmic in the number of periods
instead of linear. The time savings can be substantial, especially in the case of
a large number of periods. (The case of an infinite number of periods is
treated further in the text.)

! For computer implementation, it is of course advantageous to reformulate this recursive relation as an
iterative expression.
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2.6. LASER CAVITIES

We can now proceed to calculate the threshold material gain and lasing
wavelength of a resonator, e.g. a laser cavity. We first divide the resonator at
an arbitrary plane in a top and a bottom stack (Fig. 4). Then, we calculate
the reflection matrix Ry.p, of the top part as seen from the bottom and also the
reflection matrix Rpo of the bottom part as seen from the top. A laser mode
Alasing satisfies the condition that its roundtrip gain equals unity:

Etop ' ﬁbot : Iilasing = g]asing (10)

This means that we have to sweep wavelength and gain in the resonator in order
to get an eigenvector of the matrix Ryop - Rpor With an eigenvalue of one.

In Demeulenaere et al. (1999), we showed that for reasons of numerical
stability, it can be advantageous to reformulate this problem in terms of a
singular value decomposition (SVD) of the matrix

1: _ﬁtop . Rbot (1 1)

A singular value equal to zero of this new matrix corresponds to an eigen-
value equal to one of the original matrix.

In Demeulenaere et al. (1999), it was also shown that the two-dimensional
search for a laser mode in the (wavelength, gain) — domain can be successfully
done by first doing a wavelength sweep to achieve phase resonance and
subsequently a gain sweep to obtain amplitude resonance.

Fig. 4. A laser cavity.
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Fig. 5. Calculating field profiles inside a stack.

2.7. FIELD PROFILES

Suppose we excite a stack with an incident field /| coming from the left. This
will give rise to a reflected field By = Rgack total - F1 (Fig. 5). If we want to
calculate the forward and the backward fields at an interior position 2 inside
the stack, we can proceed in two ways.

A first way is to start from

By 21312'151 +f21 B,

- = (12)
F, =Ry -By+Tin-F
which gives for the unknown fields
= = = =1 5 18 ,5 &1
Py= [T =Ror- Ty - RulFy +Rar - T/ - By "~

_ =_1 = _ =_1 _
B, = _T21 “Rip-F +T21 - By

For a position deep inside the stack however, 75, can become numerically close
to singular. This is due to higher order modes, which will be totally internally
reflected and therefore have zero transmission. This introduces a number close
to zero on the diagonal of an otherwise diagonally dominant matrix.

An alternative therefore is to also consider the right part of the stack,
between positions 2 and 3.

12 21?21 - B, +f12 v

S T (14)
By =Ry3 -, +T3 B3

In the absence of an incident field B; in medium 3, we can therefore write

— = = = _1 = —
= [1 —Rzl'st] T -F (15)
By =Ry - B
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In this case, we avoid inverting 75;. The matrix that we now invert only
becomes singular in case the entire stack contains a lasing resonance. Note
that this is rarely a problem, not even when plotting field profiles of a lasing
mode. In this case we start from the field profiles in the middle of the stack
and propagate them through either the top or the bottom mirror, which by
themselves do not exhibit lasing resonances.

2.8. BLOCH MODES

With the knowledge of the R and T matrices of a given stack, it is also
straightforward to determine the Bloch modes that arise when infinitely
repeating this stack.

Starting from (12), we impose periodic boundary conditions in the
z-direction:

_ (16)

Combining (12) and (16) leads to an eigenvalue equation for the Bloch

modes:
1a] =l "

The eigenvectors give the field profiles of the Bloch modes, while their
propagation constants follow from

% = exp(—jpd) (18)

= = =_1 = = -1

Tio—Ry1-TH -Riz Ry -Ty
=_1 = =_1

_TZI ‘R T2l

with d the thickness of the basic period.

If we use for the transverse boundary conditions also periodic ones, or
suitable combinations of classical electric and magnetic walls, we can
calculate the band structure of photonic crystals that extend infinitely in both
the longitudinal and transverse direction. When using a PML transverse
boundary condition however, we are now also able to calculate e.g. the
radiation losses in Bloch modes of structures that are only periodic in the
z-direction. The presence of the PML will absorb the radiation losses instead
of reflecting them, giving rise to an imaginary component in the propagation
constants (without PML they would have been real for lossless materials).
The determination of radiation losses is something that is not possible using
other methods.
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3. CAMFR

From the previous discussion, it is clear that the algorithms outlined above
can be applied equally well to any geometry, be it a cartesian geometry or a
circular symmetric one. We can use this to our advantage when implementing
a CAD tool, since most of the algorithms do not need to be aware of the
specific geometry they are operating on. They can therefore be reused for any
geometry.

We have developed an abstract framework based on these principles called
CAMFR, short for CAvity Modelling FRamework. We are currently able to
deal with arbitrary 2D cartesian structures (for the modelling of photonic
crystal structures) and circular symmetric devices with a single radial index
step (for the modelling of VCSELSs).

We will now illustrate the model with two examples. The first one deals
with a periodically etched waveguide grating, while the second treats the
position dependent effects of thin oxide apertures in VCSELSs.

4. Example: waveguide grating

Consider the following structure, originating from the European COST 268
action (Fig. 6). It is a Si3N4 waveguide on a SiO, substrate, with a 20 period
grating etched into it. For the details on the material parameters, we refer to
Ctyroky.

For a shallow etch of 125 um, Fig. 7 shows the calculated reflection R and
transmission 7" of the fundamental mode of this waveguide, as well as its loss
L=1—R—T. The thickness of the substrate was chosen to be
7.5 —0.15j um, with the imaginary part providing PML absorption. Simi-
larly, the thickness of the air cladding was chosen to be 5 — 0.157 pm.

The formation of a stop band around 1.5 pm is clearly visible.

Fig. 6. Waveguide with etched grating.
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R, T and L for fundamental mode
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Fig. 7. Reflectivity, transmittivity and radiation losses for fundamental mode.
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Fig. 8. Radiation losses for varying imaginary thickness (in pm) of the PML.

To illustrate the effect of PML, we now plot in Fig. 8 the radiation losses
for different values of the imaginary part of the cladding layer thickness. For
dimag = 0, 1.e. the case without PML, it is obvious that the parasitic reflections
at the metal walls give rise to very large oscillations, ranging almost between
zero and unity radiation loss. The inclusion of PML significantly damps these
oscillations, and allows for a correct calculation of the radiation losses.

The number of modes used in the calculation of Fig. 8 equals 120/4. To
investigate the series truncation error, we plot in Fig. 9 the radiation loss at
0.9 um as a function of the number of modes retained in the series expansion,
both without PML and with dinae = —0.15. The two curves exhibit very
similar convergence behaviour. However, without PML the loss converges to
an erroneous value due to the influence of parasitic reflections. Without
resorting to PML, this error can only be reduced by increasing the distance
between the metal walls, at the expense of requiring a higher number of
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Radiation loss at 0.9 um
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Fig. 9. Convergence properties of radiation loss, both with and without PML.

modes. We can conclude therefore that PML allows for a significantly faster
model, because the computational domain can be chosen much smaller with
the benefit of a reduced number of modes required.

5. Example: oxide confined VCSEL

We now investigate a GaAs/AlGaAs 980 nm VCSEL structure with circular
symmetry (Fig. 10). A thin oxide aperture is placed in five different positions
in the cavity, ranging from a node position (1) to an antinode position (5).

For more details on the material and geometry parameters of this device,
also a modelling exercise from the COST 268 action, we refer to COST 268
working group.

In Fig. 11, the threshold material gain for a 4 pm radius VCSEL is plotted
as a function of the oxide position. The lowest thresholds are observed for an
antinode oxide. Indeed, when placed at the field maximum, the waveguiding
effect of the oxide is very effective in counteracting diffraction.

If the radius of the VCSEL becomes too small however, diffraction and
scattering losses at the aperture will increase, leading to a large increase in

25 period 1
DBR 2 A
— 3
! s 4
| 5
5 nm QW R
. iti
30 period ; ;l:::i:“l:(;’:‘ o
DBR '

Fig. 10. Oxide confined VCSEL.
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Fig. 11. Threshold material gain for fundamental and first order mode as a function of oxide position.
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Fig. 12. Threshold material gain as a function of VCSEL radius.

threshold (Demeulenaere et al. 1999). This is illustrated in Fig. 12, showing
the threshold gain for an antinode oxide as a function of device radius.

6. Conclusion

We presented a modelling approach for photonic crystal structures and
VCSELs. Due to the use of eigenmode expansion instead of spatial discret-
isation, this model is computationally efficient. Thanks to the incorporation
of PML boundary conditions, the influence of parasitic reflections can be
minimised and radiation losses can be calculated accurately.
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