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Confinement and Modal Gain
in Dielectric Waveguides

T. D. Visser, B. Demeulenaere, Member, IEEE, J. Haes, D. Lenstra, R. Baets, Member, IEEE, and H. Blok

Abstract—Two exact expressions are derived for the effective

mode indices of dielectric slab waveguides with complex refrac-
tive indices. One is for TE modes, the other for TM modes.
The identities are valid for any guided mode of any dielectric
slab waveguide and can be succesfully employed to check the
accuracy of mode solvers. They explain why TE gain can be much
greater than TM gain even when the confinement factors are
comparable. Also, it is shown that an often used approximation
for the TM gain is unreliable under practical conditions. A correct
approximation is given.

I. INTRODUCTION

N A recent study of active slab waveguides [1] it was

found that for certain configurations the gain (in dB/um)
for TE modes can be twice that for TM modes. Surprisingly,
the confinement factors did not differ substantially for the two
modes. The confinement factor I can be defined as [2]

’

factive layer |<S(:I,‘1>>| dxl
Joo (S (z1)) dzy

with (S(z1)) the time-averaged Poynting vector, and with the
integral in the numerator over the active layer. ‘An example
is given in Fig. 1. For this realistic configuration it is found
that the TEy gain is 3.83 dB/100 um, against 2.39 for TMj.
The confinement factors are 44.0% and 40.7%, respectively.
Obviously, this large difference in gain cannot be ‘explained’
by a difference of less than 10% in the confinement factors.
The aim of this study is twofold:

1) To clarify the relationship between the confinement
factors and the modal gain in TE and TM guided modes,
and ' :

'2) To show that an often used approximation for the TM
gain is invalid for practical configurations.
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Superstrate n3 = 3.16 — 50.0001

z1
21 = 150nm 3
T2
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Active Layer ny = 3.60 + 70.0020

Substrate 7y = 3.16 — 70.0001

Fig. 1. Example of a symmetric three layer dielectric waveguide. The
wavelength in vacuumAo = 1.3 pum. It was found that Imn.g =9.13293194
x10~* for the TEy mode, and Imn.g = 5.69870521 x10~* for TMy. The
confinement fators in terms of the Poynting vector are 44.0% and 40.7%,
respectively.

Planar waveguides are studied, i.e., the permittivity ¢ =
€(x1) is taken as piecewise constant (see Fig. 1). The configu-
ration is invariant in the directions of x5 and x3. We investigate
solutions that represent guided modes that propagate in the
positive x3-direction, i.e., solutions which are of the form

{E,H}(z1,z3; k3) = {E,H}(x1; k3) exp[—j(k3z3 — wt)]

: €))
with k3 the (complex) propagation constant (called 8 by
some authors) of the mode. The effective index of a guided
mode is defined as neg = ks/ko, where ko = w/c is the
free-space wavenumber. We derive exact expressions for the
effective permittivity e = (k3/ko)?, and approximations for
the modal gain coefficient gmoa = 2ko Im{neg}.

The media are assumed to be isotropic, nonconducting,
linear and nonmagnetic. Hence, the permeability p = g
everywhere. The fields are assumed to be independent of
T, that is, 8, = 0. The Maxwell equations for the steady
state for a source-free region now separate into two sets
of three relations. One describes TM guided modes, with
{H,, E1, E3} # 0. Eliminating E and Es from this set yields
the following wave equation for H,

. o .
[6% — kg + w2ep0] Hy — —1581]{2 =0. 3
€

Multiplying this with the complex conjugate of H, and
integrating from minus to plus infinity gives
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with € = €.€p, and ¢ the free-space permittivity. Concentrat-
ing on the first term on the right-hand side

/ ﬁ;@fﬁzdxl

/ 0y (H3 01 Ho)dwy — / 0\ H 381 Hodzy, (5)

~ % ~ +OQ 0 ~
— (0] - [ |ou oy ©
—o0
For the guided modes that we are c‘onsiden'ng,"both Hi(z1)
and 01 Ho(z1) vanish for |z1| — oo, so the first term on the
right-hand side of (6) is zero. Thq second term is positive
definite. Hence we conclude that

/ ” H38%Hydzy € R. )
‘Taking the imaginary part of Eq. (4) thus yields
Im{k%}/_o:o lﬂg(a:‘l)ﬁdml
— R f ™ Mnfes}| () Py
— Im{/ H2 ~81H2dz1} )

where we used ko = w eouo.’Next, we define the TM
confinement factor T'F M of the ith layer as ~

e o i Ha(e)Pday
' Jo [ Ha (@) ey

where the integral in the numerator is over layer ¢ only.
Analyzing the second term of the right-hand side of (8) we
notice, since we had assumed the permittivity € to be p1ecewxse
continuous, that

816

©

= 81(11’1 67») = AET(S(Jll — xl,i) (10)

here z1; stands for the zi-coordinate of the ith interface

between two layers. Ae, is the discontinuity of the derivative
of Ine, at the interface at z1 = 1,6 ie.,

an

Ae,(214) = hm Ine.(z1) —

lim Ine-(z1).
21 l®r,: z1Te1,;

The field ﬁ; (z1) is tangential and hence continuous at each -

interface. The last factor, 81 H is discontinuous at the interface
levels, as can be seen from the Maxwell equation

01 H, = jweks. (12)
If we introduce the average value as
261H2($171‘) E hm 81H2($1)+ hﬂ’l 81H2($1) (13)

and substitute (9), (10), and (13) into (8), we finally arrive at
Im{en} = ZF?MIm{eT7i}
= Iy Im{ A3 Ae, 5 Hy )}

T1,5

(14)
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where the abbreviation I stands for

Incidentally, from (12) it is seen that the second sum in (14) .
can also be expressed in field quantities that are continuous.
Notice that the first sum is over all Jayers that make up the
waveguide, whereas the second sum is over all interfaces.
Equation (14) is an exact expression. That is, any TM guided

“mode solution (cf. 2) must have a propagatlon constant ks

such that Im{(ks/ko)?} satisfies (14).

Next we study TE solutions. For these {EQ, 0 H 3} # 0.
Eliminating Ay and Hs from the Maxwell equations yields
the following (Helmholtz) wave equatlon for Ey o

[87 — k3 + wiepo| Er = 0. @16)
Apart from one term ‘that is missing,‘this is identical with ,
(3) for Hs, in the TM case. Notice that.if we had allowed
for a varying permeability ', we would have introduced a
term containing 81 /. However, the technologically relevant
semiconductor materials are nonmagnetic. Therefore, in prac-
tice, the TE fields satisfy a wave equation that differs from that
for the TM fields. As we shall sée, it is this asymmetry that
explains: why, with similar confinement factors, the gain for .
TE modes can be, e.g., twice as great as that for TM modes.

We now proceed in a similar manner as for the TM modés.
That is, we multiply (16) by the complex conjugate of Es,, and
integrate the result from mlnus to plus infinity. This gives us

k3/ | By (1) 2day _/ EéafEdel

+w eo,uo/ eTiEZ(xl)l da:l,
\ (17)

Incidentally, (4) and (17) are variational expressidns (seee.g., .
[2], [3]), which' can be used to optimize initial guesses for the
field distribution [4]. Just as in(5); it follows- that

oo . .
/ E382Eydzy € R. (18)
So, taking the imaginary part of (17) yields
' Im{eeg} =Y ITFIm{e,;} a9
where we have now defined ;
TE _— Ji|E2 (1) Py 20)

=
J% S ,
Notice, in contrast with ,(14) for the. TM case, that the identity
(19) for TE polarization consists of a sum over the layers only.
Another difference is that the confinement factors I' for both
cases are in terms of |H|? and |E;|?, respectively. Only the
latter can easily be expressed in terms of the Poynting vector.
Equation (19) is an ‘exact relation that must be satisfied for each
TE propagation constant ks of a dielectric slab waveguide. It .
is interesting to see that, contrary to the TM case, Im{e.g} is
expressed in simple terms of the confinement factors only.

|Ba(z1)|2das -
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We remark that for the TE, mode of symmetric three-layer
structures, (19) reduces to an expression which was derived
by Buus [5] as a scalar approximation. The same expression
can also be found in [6], where it is not mentioned that its
validity is restricted to the TE case. It can also be found
in [2, ch. 5] where it is derived for both TE and TM under
the assumption of weak guiding. Together with an estimation
of the confinement factors [7] (also only valid for the TE,
mode of three-layer waveguides), (19) gives a rule of thumb
to estimate Im{e.q} for that particular case.

The identities (14) and (19) provide two easily performed
checks on the accuracy of mode solvers. As an example,
we have checked the results of a recently developed mode
solver [1] for the configuration of Fig. 1. It was found that the
effective index and the field distributions indeed satisfy (14)
and (19) to seven significant digits for both TEy and TM,.
Agreement to five significant digits was obtained for higher
order modes in more complex structures. This indicates the
degree of precision of the mode solver. We noted that the
second summation term in (14) can be of the same order of
magnitude as the first.

Next, we derive two approximations for the modal gain.
Starting from (19), while using gmod = 2koIm{nes} and
€eff = N2y, and assuming weak contrast, i.e.,

Re{nen} = Re{n;} (21)
immediately leads to

gmod & » T g, @2
with g; = 2kgIm{n;}. This is a well known result. It
can also be derived from a scalar theory starting from the
Helmbholtz equation for a scalar field. However, contrary to
conventional wisdpm, such a relation does not hold for TM
modes. This is immediately clear from (14). Making the
additional assumption -that

Re{n;} > Im{n;}

it follows that

> Re{ni}

- - GAIm{n;}
Imod & ZF?Mgi - (kOI) ! Zlm{H*J_‘HL{n—}alHQ}y.
7 T1,i

(24)
where Alm{n;} = Im{n;41} ~ Im{n;}. Unlike (22), this is
a new result. Just like before, the connection between gain
and confinement for TM solutions differs from that for TE
modes. Also, the sum in (24) can be of the same order of
magnitude as the first term on the right-hand side for realistic
configurations. Approximation (24) implies that if one starts
out from' a scalar theory and uses (22) for the modal gain,
then one is really restricting oneself to TE modes alone. In
other words, a scalar theory does not amount to ‘neglecting
polarization effects,” but is an approximation for TE modes,
rather than TM modes. Judging from the literature, this point
is not generally appreciated.

@3)

II. CONCLUSION !

We have found two identities for the complex propagation
constant for any guided mode of any dielectric slab waveguide.
The relations, which have different forms for TM and TE, are
in terms of field confinement factors. The confinement factors
pertain to |Hy|? and |E,|?, rather than the Poynting vector.
They can be used to check the accuracy of mode solvers. It
was found for several examples that the effective index and
the field distribution indeed satisfy the identities.

From these two identies, two approximations for the modal
gain were derived. It was shown that an often used approxima-
tion which expresses the modal gain in terms of confinement
factors, is not valid for TM modes.
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