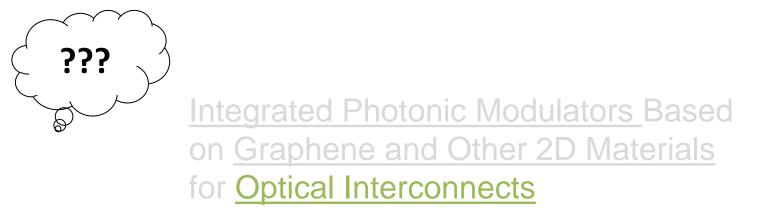
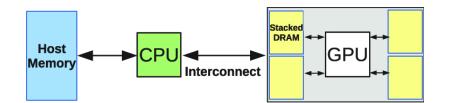
INTEGRATED PHOTONIC MODULATORS BASED ON GRAPHENE AND OTHER 2D MATERIALS FOR OPTICAL INTERCONNECTS

Chenghan (Kenny) Wu


WHAT IS ...?

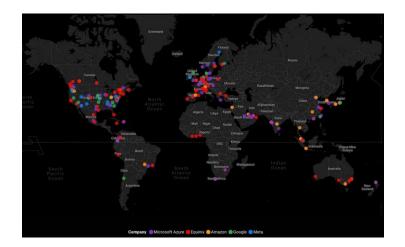
Integrated Photonic Modulators Based on Graphene and Other 2D Materials for Optical Interconnects



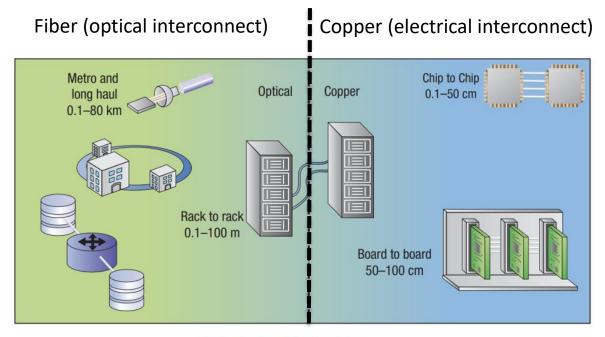
INTERCONNECT

INTERCONNECT NETWORK

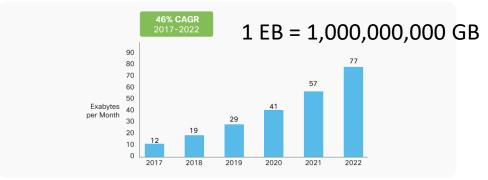
This interconnected network enables seamless communication and access to various online services.



DATA CENTER



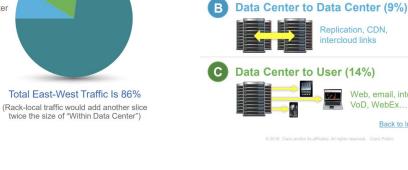
COMMUNICATION LEVEL



Decreasing transmisssion distances ——

INCREASED DATA TRAFFIC

Figure 2. Cisco Forecasts 77 Exabytes per Month of Mobile Data Traffic by 2022



Source: Cisco VNI Mobile, 2019

twice the size of "Within Data Center")

CISCO

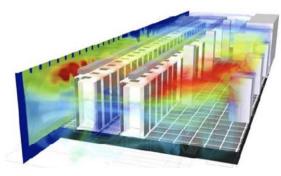
Within Data Center (77%)

Storage, production and

Replication, CDN, intercloud links

> Web, email, internal VoD, WebEx..

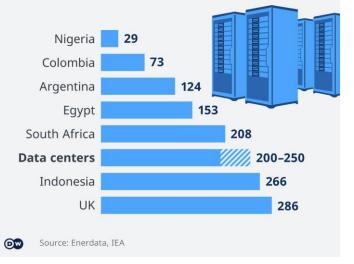
> > Back to Index


development data.

authentication

GHENT GRAPHENE unec FLAGSHIP UNIVERSITY

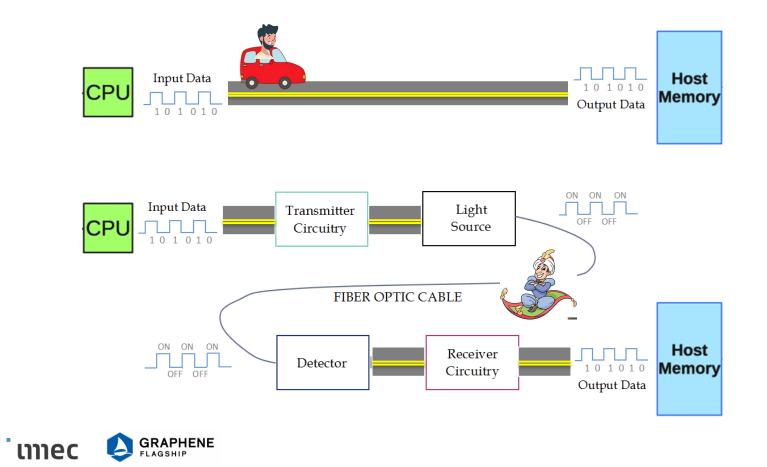
CHALLENGES FOR DATA CENTER



Data centers use more eletricity than entire countries

Domestic eletricity consumption of selected countries vs. data centers in 2020 in TWh

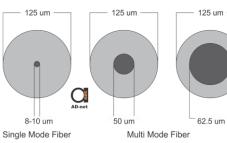
ELECTRICAL AND OPTICAL INTERCONNECT

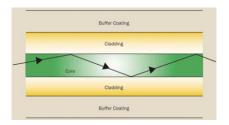

	Electrical interconnect	Optical interconnect
Bandwidth / data rates	•••	0
Power consumption	•••	6
Cost	$\overline{\mathbb{C}}$	
Compatibility with existing data center	$\overline{\bigcirc}$	•••

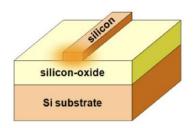
OPTICAL INTERCONNECT

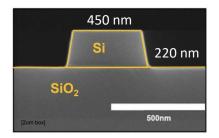
I GHENT

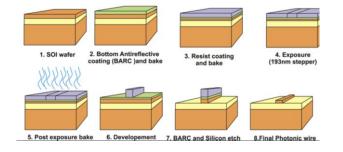
UNIVERSITY


Integrated Photonic Modulators Based

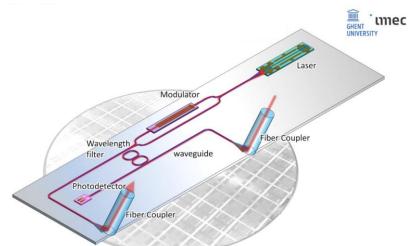

on <u>Graphene and Other 2D Materials</u> for <u>Optical Interconnects</u>


SILICON WAVEGUIDES = FIBERS IN CHIP





Waveguides:



INTEGRATED SILICON PHOTONICS

Circuits connect elements together with waveguides

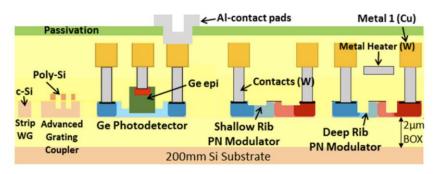
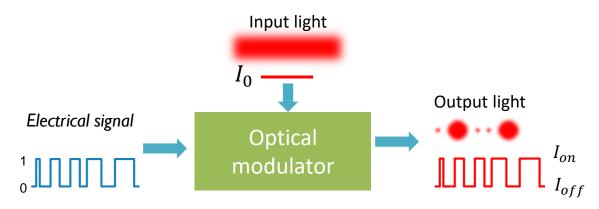
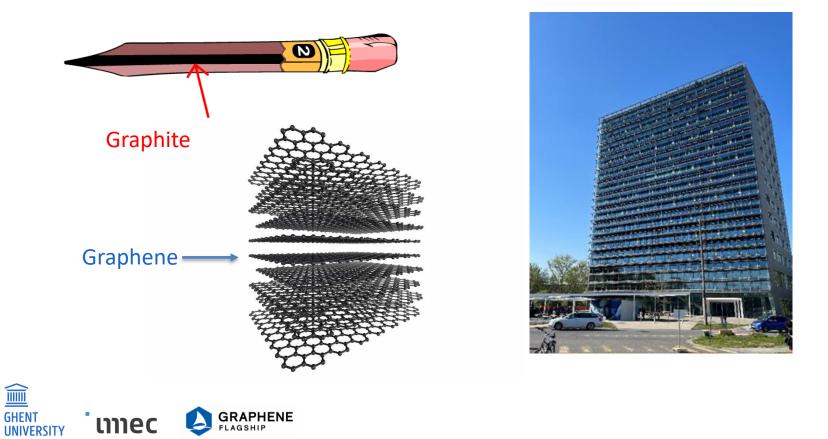



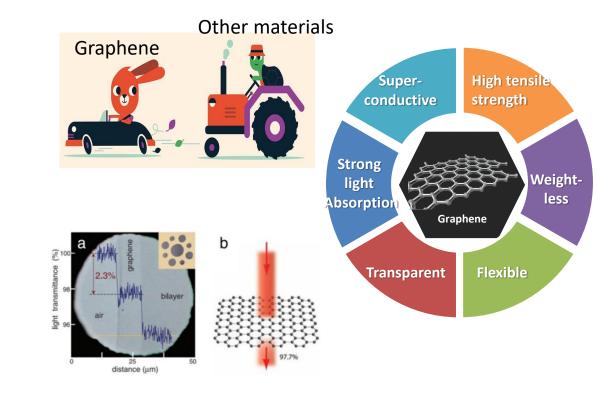
Figure 1.2: Schematic cross-section of imec's silicon photonics platform, with the basic passive and active devices. Taken from [2].

MODULATOR

Phase modulation (PM)

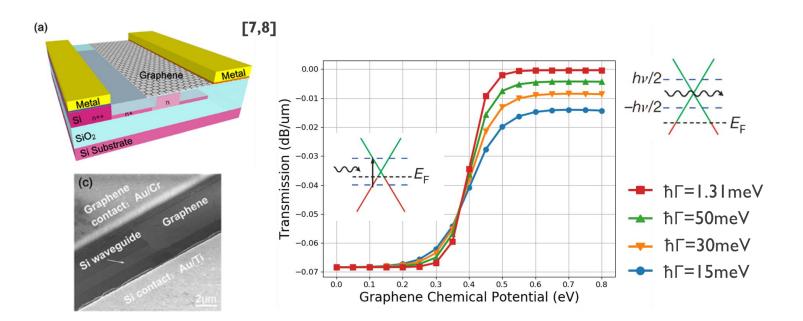
Amplitude modulation (AM)

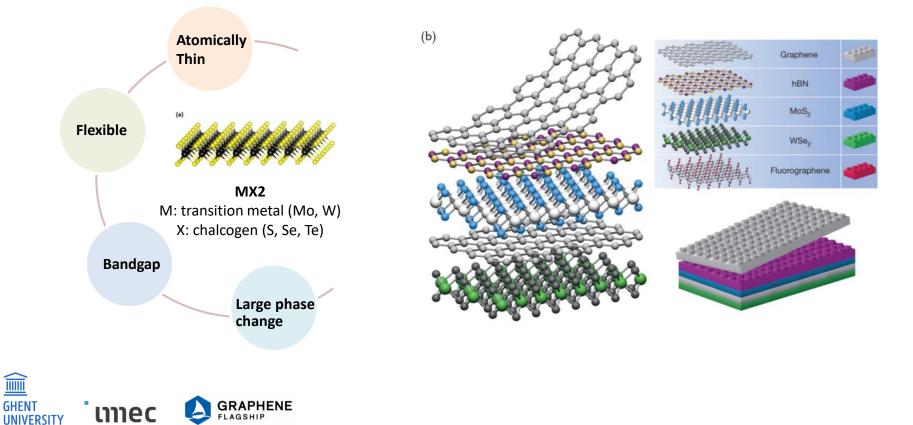




THE FIRST 2D MATERIAL : GRAPHENE

GRAPHENE: SUPER HERO IN MATERIALS



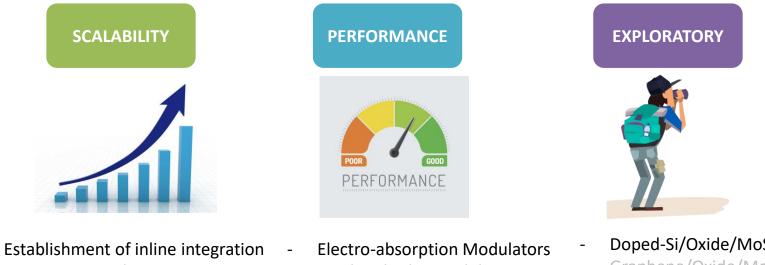


GRAPHENE + INTEGRATED PHOTONICS MODULATORS

OTHER 2D MATERIALS

WHAT IS ...?

Integrated Photonic Modulators Based on Graphene and Other 2D Materials for Optical Interconnects



RESEARCH OBJECTIVES

Can 2D material based photonic devices be adopted in industry for the next generation of data communication and telecommunications applications?

3 optimization directions

ເກກອດ

GRAPHENE

FLAGSHIP

-

 $\widehat{\blacksquare}$

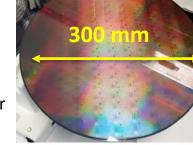
UNIVERSITY

- Mach-Zehnder Modulators _
- **Ring Modulators**

- Doped-Si/Oxide/MoS₂
- Graphene/Oxide/MoS₂
- MoS₂/Oxide/MoS₂

SCALABILITY! WAFER-SCALE INTEGRATION OF GRAPHENE EAM IN 300 MM CMOS PILOT LINE

Small coupons

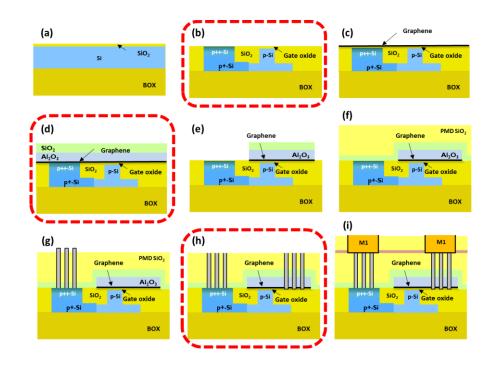

2x1 cm²

MOTIVATION

Most research studies on small coupons without CMOS-compatible technology, which are not compatible with high-volume industrial manufacturing.

Develop robust inline integration flow in a 300mm pilot CMOS foundry environment.

300 mm wafer (>50 dies)



CHALLENGES AND STRATEGY

The challenges:

- 1. Developing CMOS-compatible processes for lithography and contact.
- 2. Scaling up graphene growth and transfer methods for large-scale production.
- 3. Designing an efficient capping layer to safeguard graphene from delamination.
- 4. Minimizing contact resistance to enable high-speed performance in graphene-based devices.

Standard CMP

Extra-CMP

14

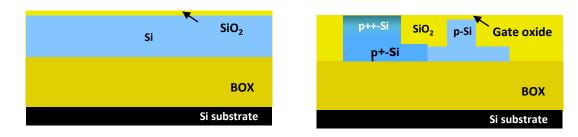
2.

0

Si Waveguide fabrication

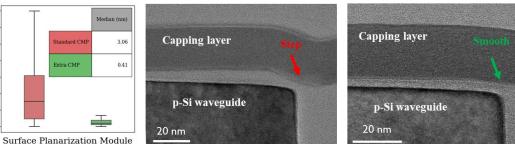
Study I: Surface flatness

Graphene transfer


Study 2: Encapsulation

Graphene patterning & Surface planarization

Contacts to Si


Study 3: **Damascene contact** to Graphene

Final Metal

Standard CMP

Extra CMP

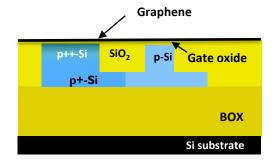
1)

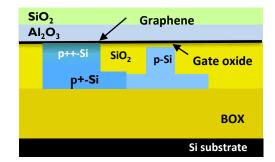
Si Waveguide fabrication

Study 1: Surface flatness

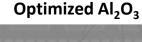
Graphene transfer

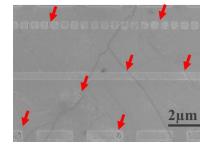
Study 2: Encapsulation

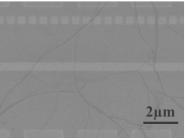

Graphene patterning & Surface planarization



Contacts to Si


Study 3: Damascene contact to Graphene


Final Metal

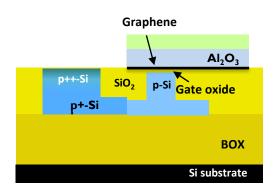


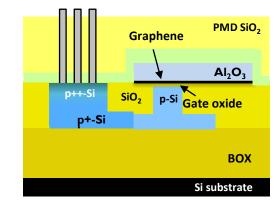
Non-optimized Al₂O₃

Si Waveguide fabrication

Graphene transfer

Study 2: Encapsulation


Graphene patterning & Surface planarization


Contacts to Si

Study 3: **Damascene contact** to Graphene

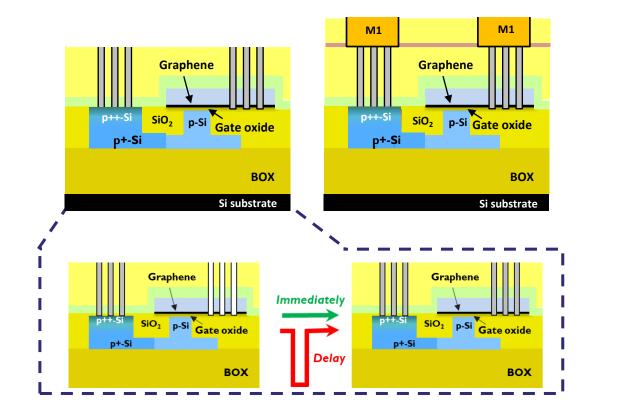
Final Metal

GHENT

UNIVERSITY

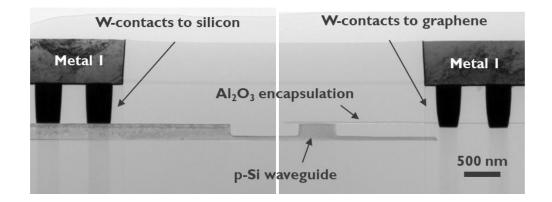
Si Waveguide fabrication

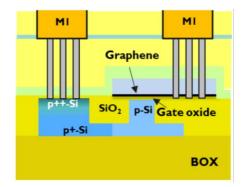
Graphene transfer

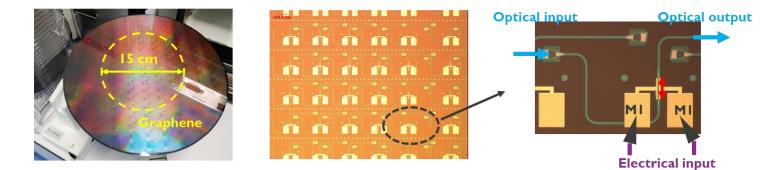

Study 2: Encapsulation

Graphene patterning & Surface planarization

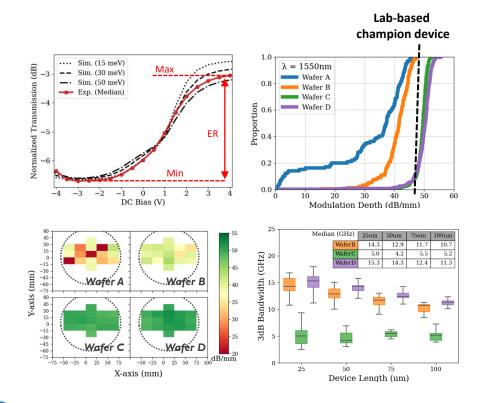
Contacts to Si


Study 3: Damascene contact to Graphene


Final Metal



DEVICES' LOOK



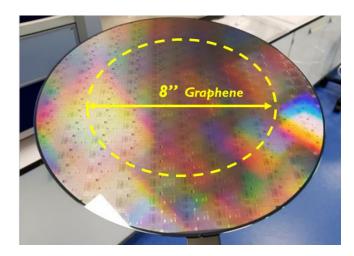
CHARACTERIZATION

Table 1: DOE summary of four wafers reported in this paper

DOE	Wafer A	Wafer B	Wafer C	Wafer D
Surface planarization	Standard STI	Standard STI	Extra CMP	Extra CMP
Encapsulation soaking	Short	Long	Long	Long
Contact metal deposition	No delay	No delay	2 days delay	No delay

Study 1 on surface planarization: (Wafer B vs Wafer D) Devices with Extra CMP modules results in a better modulation depth.

Study 2 on encapsulation soaking: (Wafer A vs Wafer B)

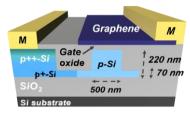

Devices with longer soaking results in a better device yield.

Study 3 on contact metal: (Wafer C vs Wafer D)

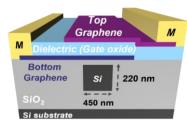
No difference is observed in static characterization. In dynamic characterization, Devices with no-delay contacts results in larger bandwidth.

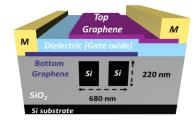
WRAP-UP

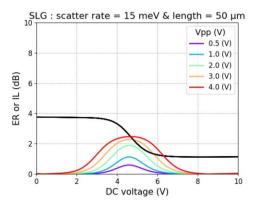
Graphene photonics devices are now fully integrated with CMOS technology on 300 mm wafers!

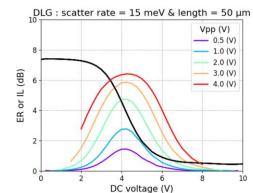

Technology		Wafer-scale SLGEAM - Wafer		Lab-based Champion SLGEAM	
		This work		[1]	
Active length	um	50	75	75	75
Working band & mode	-	C-band TE		C-band TE	
Oxide stack(s)	-	SiO2		SiO2	
Peak-to-peak Voltage	v	5		~5	
IL @highV	dB	2.0 ± 0.7	3.5 ± 1.5	~2.5	3
ER	dB	2.5 ± 0.1	3.7 ± 0.3	3.6	2.7
Modulation depth	dB/mm	50 ± 4.0		48	36
FOM(ER/IL)	-	1.28 ± 0.23	1.30 ± 0.31	1.52	0.87
Transmission Penalty	dB	7.39 ± 0.76 Best device: 6.44	7.90 ± 1.70 Best device: 6.76	8	9.4
3dB bandwidth	GHz	14.1 ± 1.4	12.6 ± 0.9	8.9	16.1
Number of devices	-	> 400		1	1

PERFORMANCE! HIGH-EFFICIENCY DUAL SINGLE LAYER GRAPHENE MODULATORS WITH STRIP AND SLOT WAVEGUIDES

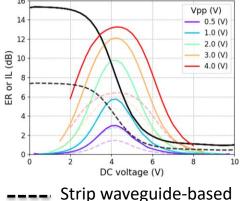


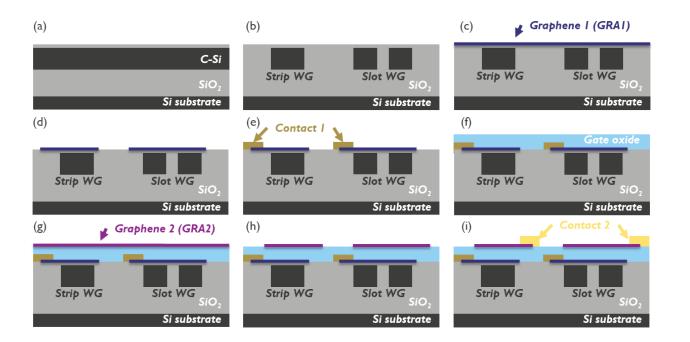

MOTIVATION



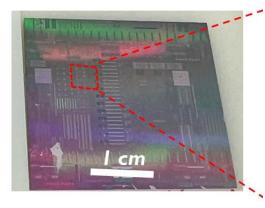

Increase modulation No need Si implantation Any passive WG

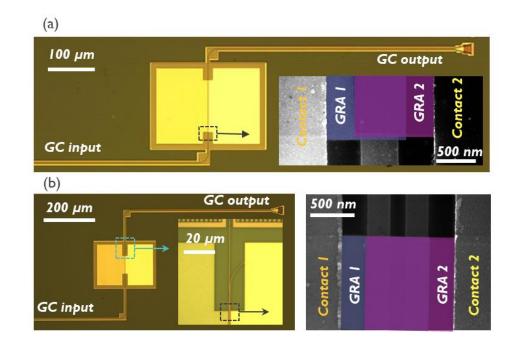
More complicated integration

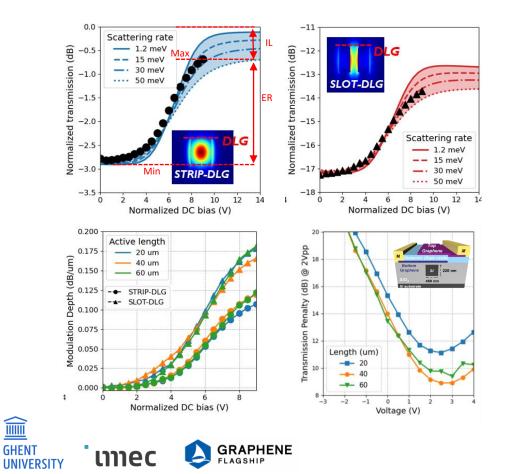


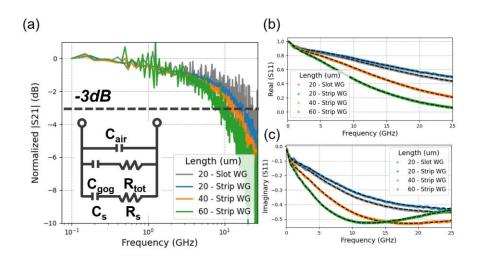

DLG : scatter rate = 15 meV & length = 50 μ m

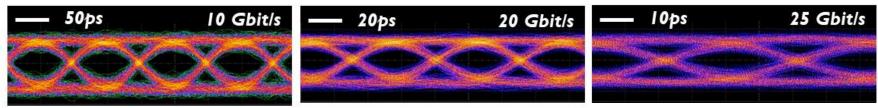
_____ Slot waveguide-based




LAB-LEVEL INTEGRATION FLOW


DLG EAMs


DLG EAMS DC PERFORMANCE


Transmission Penalty [dB] $=\frac{P_1 - P_0}{2Pin} = -10 \log_{10}(-10)$ $\frac{1-\frac{1}{ER}}{ER}$

- **Strip**: MD = 0.125 dB/um; TP = 8.9 dB @ 2 V_{nn}
- **Slot**: MD = 180 dB/um; TP > 20 dB @ 2 V_{pp} ٠
- TP = 8.9 dB is best reported for graphene-٠ based modulator and comparable with Ge device.

DLG EAMS AC PERFORMANCE

WG Type	Length	f _{3dB}	C _{gog}	R _{tot}
	[um]	[GHz]	[fF]	[Ω]
	20	15.9	45	116
Strip WG	40	12.5	92	47
	60	9.2	139	43
Slot WG	20	15.9	53	101

DLG EAMS BENCHMARKING TABLE

Graphene-based EAMs		DLGEAM <mark>Strip</mark> WG	DLGEAM <mark>Slot</mark> WG	High-speed DLG-EAM [1]		High-speed DLG-EAM [2]
Peak-to-peak Voltage	V	7		12	16	~9
IL @highV	dB	0.88	14.4	20	14.3	~20
Modulation efficiency	dB/V/um	0.0213	0.039	0.0367	0.0295	-
Modulation depth	dB/mm	117	168	75	128	25
Transmission Penalty	dB	5.69	>20	25	18	26
3dB bandwidth	GHz	12.5	15.9	39	-	29

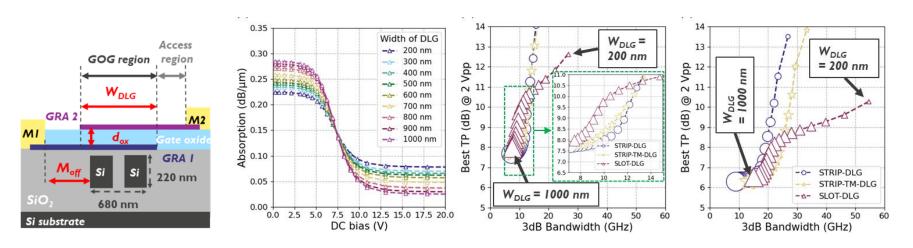
[1] Agarwal, Hitesh, et al. "2D-3D integration of hexagonal boron nitride and a high-κ dielectric for ultrafast graphene-based electro-absorption modulators." Nature communications 12.1 (2021): 1-6.

[2] Giambra, Marco A., et al. "High-speed double layer graphene electro-absorption modulator on SOI waveguide." Optics express 27.15 (2019): 20145-20155.

[3] Srinivasan, Srinivasan Ashwyn, et al. "56 Gb/s germanium waveguide electro-absorption modulator." Journal of Lightwave
Technology 34.2 (2015): 419-424.
[4] Tang, Yongbo, Jonathan D. Peters, and John E.
Bowers. "Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3 μm transmission." Optics Express 20.10 (2012): 11529-11535.

unec

GRAPHENE

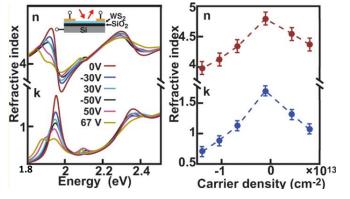

FLAGSHIP

IIII GHEN1

UNIVERSITY

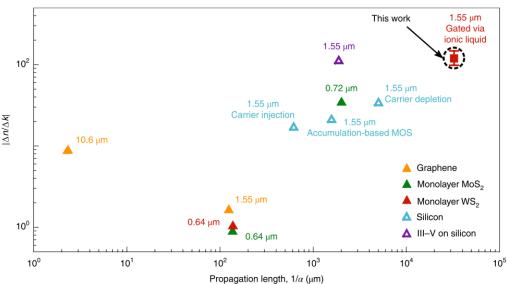
EAMs with different materials		DLGEAM <mark>Strip</mark> WG	DLGEAM <mark>Slot</mark> WG	Ge FK EAM [3]	III-V EAM [4]
Peak-to-peak Voltage	V	Ź	2	2	2.2
IL @highV	dB	1.71	15	4.9	4.8
Modulation depth	dB/mm	52.2	71.5	115	>100
Transmission Penalty	dB	8.90	>20	9.76	~8.26
3dB bandwidth	GHz	12.5	15.9	>50	>67
Optical bandwidth	nm	>80 Ex	pected	~30	>30
Temperature Tolerance	₽C	>100 Expected		<30	-
3dB bandwidth Optical bandwidth	GHz nm	12.5 15.9 >80 Expected		>50 ~30	>67

ROADMAP

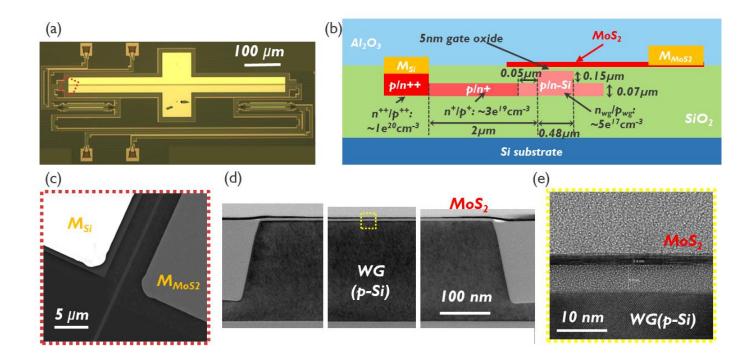

- Safe metal offset is required to prevent extra losses caused by metal contacts.
- Balanced EOT for tradeoff between efficiency and bandwidth.
- A narrower DLG width leads to enhanced performance in slot-based devices.

EXPLORATORY! OTHER 2D-MATERIALS (MOS₂) FOR LOW LOSS INTEGRATED PHOTONICS PHASE SHIFTERS

MOTIVATION

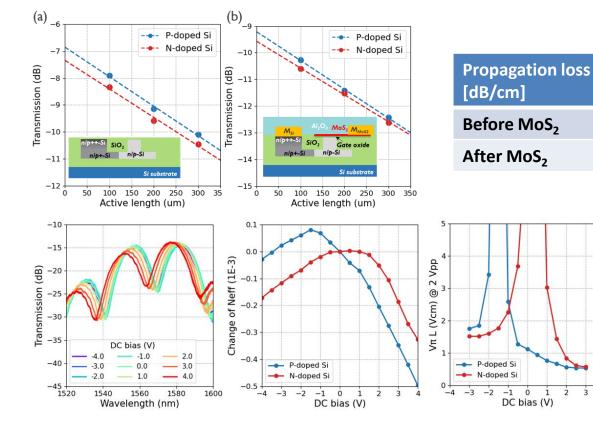


[1] Yu, Yiling, et al. "Giant gating tunability of optical refractive index in transition metal dichalcogenide monolayers." *Nano letters* 17.6 (2017): 3613-3618.


[2] Datta, Ipshita, et al. "Low-loss composite photonic platform based on 2D semiconductor monolayers." *Nature Photonics* 14.4 (2020): 256-262.

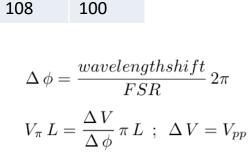
- TMDC (MX₂) exhibit strong index modulation at the excitonic peak.
- Also, it has strong index modulation within the C-band with low loss!

WS₂: $|\Delta n/\Delta k|^{-125}$



SINGLE-LAYER MOS2 (SL-MOS2)

SL-MOS2 EXPERIMENTAL PERFORMANCE



GRAPHENE

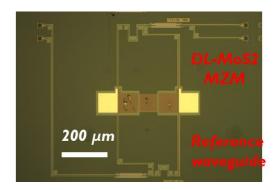
GHENT

UNIVERSITY

ເກາຍc

N-type

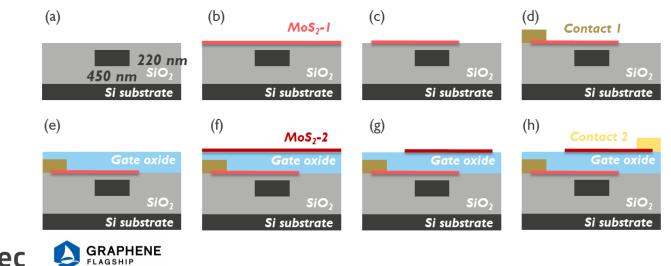
106

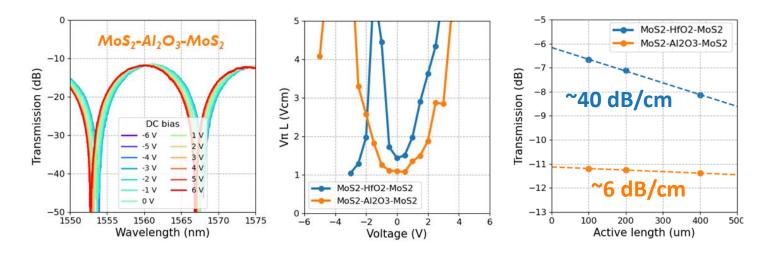

P-type

109

2 ġ. **p-type**: $V_{\pi}L = 0.53$ Vcm

n-type: $V_{\pi}L = 0.57$ Vcm


DUAL-LAYER MOS2 (DL-MOS2)


GHENT

UNIVERSITY

ເກາຍc

DL-MOS2 EXPERIMENTAL PERFORMANCE

- DL-MoS₂ have lowest loss reported in this thesis.
 - 50 and 6.4 dB/cm for HfO₂ and Al₂O₃ device, respectively.
- FOM_{PM} outperform Si-based and 2D-materials based modulators.

BENCHMARKING TABLE

MZM	ls	ΕΟΤ	Loss	V _π L	FOM _{pm}	3dB bandwidth
		nm	dB/cm	Vcm	dBV	GHz
Si-oxide-Si	[1]	5 & 10	60 & 54	0.25 & 0.4	15 & 22	5.6 & 11.2
SLG	[2]	10	~236	0.28	66.1	5
DLG	[3]	11	746	0.3	223	24
WS ₂ -ITO	[4]	-	135	0.8	108	0.33
SL-MoS ₂	This Work	5	100	0.57	57	0.91
DL-MoS ₂	This Work	9.5	6.4	0.97	6	0.3

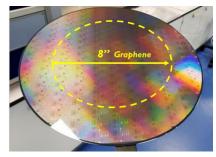
[1] Abraham, A., et al. "Evaluation of the performances of a silicon optical modulator based on a silicon-oxide-silicon capacitor." 11th International Conference on Group IV Photonics (GFP). IEEE, 2014.

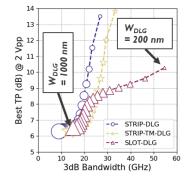
[2] Sorianello, V., et al. "Graphene-silicon phase modulators with gigahertz bandwidth." Nature Photonics 12.1 (2018): 40-44.

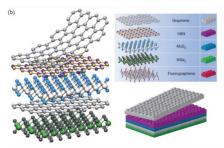
[3] Watson, Hannah. Graphene Modulators for Silicon Photonic Optical Links. Diss. University of Cambridge, 2021.

[4] Datta, Ipshita, et al. "Low-loss composite photonic platform based on 2D semiconductor monolayers." Nature Photonics 14.4 (2020): 256-262.

CONCLUSION


SCALABILITY	The CMOS integration of graphene based photonics devices is established.
SCALADILITY	The knowledge can be extended to other sophisticated building blocks.
PERFORMANCE	The Figure of merits outperform state-of-the-art graphene-based modulators.
PERFORIMANCE	Slot waveguide offers a new platform with greater design trade-off flexibility.
EXPLORATORY	MoS ₂ emerges as a promising material option for low-loss phase shifters.
	The exploration of other 2D materials remains an exciting subject for investigation.


Can 2D material based photonic devices be adopted in industry for the next generation of data communication and telecommunications applications?



YES! THEY CAN!

ACKNOWLEDGMENTS

Thank you all for the attention!

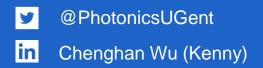
• 3D and Silicon Photonics team at imec

- Didit Yudistira, Rafal Magdziak, Jeroen De Coster, Joris Van Campenhout, Philippe Absil, and Marianna Pantouvaki
- Multiple great teams at imec
 - Rudy Verheyen, Nicolo Pinna, Patrick Verdonck, Hung-Chieh(Jack) Tsai, Julien Jussot, Vivek Koladi Mootheri, Alexey Milenin, Kevin Vandersmissen, Inge Asselberghs, Daire Cott, Steven Brems, Christian Haffner, and Cedric Huyghebaert
- Photonic Research Group at Ghent University
 - Tom Reep, Yishu Huang, Wang Zheng, and Dries Van Thourhout
- Graphenea

٠

٠

Arantxa Maestre, and Alba Centeno


GHENT UNIVERSITY UNIC STADSHIP

PHOTONICS RESEARCH GROUP

Chenghan Wu

E chenghan.wu@ugent.com; chenghan.wu@outlook.com

T +886 929 321 722

www.photonics.intec.ugent.be

AND ARCHITECTURE

