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INTERCONNECT
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INTERCONNECT NETWORK

This interconnected network enables seamless 
communication and access to various online services.
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DATA CENTER

The Citadel, Tahoe Reno, Nevada 
(USA) Size ~ 70 football fields
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COMMUNICATION LEVEL

Fiber (optical interconnect) Copper (electrical interconnect)
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INCREASED DATA TRAFFIC

1 EB = 1,000,000,000 GB
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CHALLENGES FOR DATA CENTER
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ELECTRICAL AND OPTICAL INTERCONNECT

Electrical interconnect Optical interconnect

Bandwidth / data rates

Power consumption

Cost 

Compatibility with 
existing data center
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OPTICAL INTERCONNECT
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SILICON WAVEGUIDES = FIBERS IN CHIP

220 nm

450 nm

Fibers:

Waveguides:
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INTEGRATED SILICON PHOTONICS
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MODULATOR
Input light

Electrical signal

1

0 𝐼𝑜𝑓𝑓

𝐼𝑜𝑛

Output light

Optical
modulator

𝐼0

Amplitude modulation (AM) Phase modulation (PM)
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THE FIRST 2D MATERIAL : GRAPHENE

Graphite

Graphene
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GRAPHENE: SUPER HERO IN MATERIALS

   Transparent

Super- 
conductive

High tensile 
strength

Weight-
less

Flexible

Strong 
light 

Absorption
Graphene 

Graphene
Other materials
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GRAPHENE + INTEGRATED PHOTONICS MODULATORS
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OTHER 2D MATERIALS

MX2
M: transition metal (Mo, W)

X: chalcogen (S, Se, Te)

Large phase 
change

Atomically 
Thin

Flexible

Bandgap
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RESEARCH OBJECTIVES

Can 2D material based photonic devices be adopted in industry for the next 

generation of data communication and telecommunications applications?

SCALABILITY PERFORMANCE EXPLORATORY

- Establishment of inline integration
- 3 optimization directions

- Electro-absorption Modulators
- Mach-Zehnder Modulators
- Ring Modulators

- Doped-Si/Oxide/MoS2

- Graphene/Oxide/MoS2

- MoS2/Oxide/MoS2
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SCALABILITY! 

WAFER-SCALE INTEGRATION OF 

GRAPHENE EAM IN 300 MM CMOS 

PILOT LINE
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MOTIVATION

Most research studies on small coupons without CMOS-compatible technology, 
which are not compatible with high-volume industrial manufacturing. 

Small coupons
2x1 cm2

Develop robust inline integration flow in a 300mm 
pilot CMOS foundry environment.

300 mm

300 mm wafer
(>50 dies)
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CHALLENGES AND STRATEGY

The challenges:
1. Developing CMOS-compatible processes 

for lithography and contact.
2. Scaling up graphene growth and transfer 

methods for large-scale production.
3. Designing an efficient capping layer to 

safeguard graphene from delamination.
4. Minimizing contact resistance to enable 

high-speed performance in graphene-
based devices.
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PHASE 1 STUDY: FAB-LEVEL INTEGRATION FLOW

p+-Si

p++-Si
p-SiSiO2

BOX

Gate oxideSi

BOX

SiO2

p+-Si

p++-Si

Si substrate Si substrate

Standard CMP Extra CMP
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PHASE 1 STUDY: FAB-LEVEL INTEGRATION FLOW

Al2O3

p+-Si

p++-Si
p-SiSiO2

BOX

Gate oxide

SiO2 Graphene

p+-Si

p++-Si p-SiSiO2

BOX

Gate oxide

Graphene

p+-Si

p++-Si

Si substrateSi substrate

Non-optimized Al2O3 Optimized Al2O3



28

PHASE 1 STUDY: FAB-LEVEL INTEGRATION FLOW

Al2O3
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PHASE 1 STUDY: FAB-LEVEL INTEGRATION FLOW

p+-Si

p++-Si
p-SiSiO2
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Graphene
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DEVICES’ LOOK
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CHARACTERIZATION

Lab-based 
champion device

Max

Min

ER

Study 1 on surface planarization: (Wafer B vs Wafer D)
Devices with Extra CMP modules results in a better 
modulation depth.

Study 2 on encapsulation soaking: (Wafer A vs Wafer B)
Devices with longer soaking results in a better device yield.

Study 3 on contact metal: (Wafer C vs Wafer D)
No difference is observed in static characterization. In 
dynamic characterization, Devices with no-delay contacts 
results in larger bandwidth. 
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WRAP-UP

Graphene photonics devices are now 

fully integrated with CMOS technology 

on 300 mm wafers!
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PERFORMANCE! 

HIGH-EFFICIENCY DUAL SINGLE LAYER 

GRAPHENE MODULATORS WITH STRIP 

AND SLOT WAVEGUIDES
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MOTIVATION

Increase modulation
No need Si implantation

Any passive WG

More complicated integration

Strip waveguide-based
Slot waveguide-based
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LAB-LEVEL INTEGRATION FLOW
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DLG EAMS
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DLG EAMS DC PERFORMANCE

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝑑𝐵

=
𝑃1 − 𝑃0

2𝑃𝑖𝑛
= −10 𝑙𝑜𝑔10(

1 −
1

𝐸𝑅
2 𝐼𝐿

)

Max

Min

ER

IL

• Strip: MD = 0.125 dB/um; TP = 8.9 dB @ 2 Vpp

• Slot: MD = 180 dB/um; TP > 20  dB @ 2 Vpp

• TP = 8.9 dB is best reported for graphene-
based modulator and comparable with Ge 
device.
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DLG EAMS AC PERFORMANCE

WG Type Length f3dB Cgog Rtot

[um] [GHz] [fF] [Ω]

Strip WG
20 15.9 45 116

40 12.5 92 47

60 9.2 139 43

Slot WG 20 15.9 53 101
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DLG EAMS BENCHMARKING TABLE
Graphene-based EAMs DLGEAM  

Strip WG
DLGEAM 
Slot WG

High-speed 
DLG-EAM [1]

High-speed
DLG-EAM [2]

Peak-to-peak Voltage V 7 12 16 ~9

IL @highV dB 0.88 14.4 20 14.3 ~20

Modulation efficiency dB/V/um 0.0213 0.039 0.0367 0.0295 -

Modulation depth dB/mm 117 168 75 128 25

Transmission Penalty dB 5.69 >20 25 18 26

3dB bandwidth GHz 12.5 15.9 39 - 29

EAMs with different materials DLGEAM 
Strip WG

DLGEAM 
Slot WG

Ge FK EAM [3] III-V EAM [4]

Peak-to-peak Voltage V 2 2 2.2

IL @highV dB 1.71 15 4.9 4.8

Modulation depth dB/mm 52.2 71.5 115 >100

Transmission Penalty dB 8.90 >20 9.76 ~8.26

3dB bandwidth GHz 12.5 15.9 >50 >67

Optical bandwidth nm >80 Expected ~30 >30

Temperature Tolerance ºC >100 Expected <30 -

[3] Srinivasan, Srinivasan Ashwyn, et al. "56 Gb/s 
germanium waveguide electro-absorption 
modulator." Journal of Lightwave 
Technology 34.2 (2015): 419-424.
[4] Tang, Yongbo, Jonathan D. Peters, and John E. 
Bowers. "Over 67 GHz bandwidth hybrid silicon 
electroabsorption modulator with asymmetric 
segmented electrode for 1.3 μm 
transmission." Optics Express 20.10 (2012): 
11529-11535.

[1] Agarwal, Hitesh, et al. "2D-3D integration of 
hexagonal boron nitride and a high-κ dielectric 
for ultrafast graphene-based electro-absorption 
modulators." Nature communications 12.1 
(2021): 1-6.
[2] Giambra, Marco A., et al. "High-speed double 
layer graphene electro-absorption modulator on 
SOI waveguide." Optics express 27.15 (2019): 
20145-20155.
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ROADMAP

• Safe metal offset is required to prevent extra losses caused by metal contacts.

• Balanced EOT for tradeoff between efficiency and bandwidth.

• A narrower DLG width leads to enhanced performance in slot-based devices.
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EXPLORATORY! 

OTHER 2D-MATERIALS (MOS2) FOR LOW 

LOSS INTEGRATED PHOTONICS PHASE 

SHIFTERS
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MOTIVATION

WS2: |∆n/∆k|~125

1.8

[1] Yu, Yiling, et al. "Giant gating tunability of optical refractive 
index in transition metal dichalcogenide monolayers." Nano 
letters 17.6 (2017): 3613-3618.
[2] Datta, Ipshita, et al. "Low-loss composite photonic platform 
based on 2D semiconductor monolayers." Nature Photonics 14.4 
(2020): 256-262.

• TMDC (MX2) exhibit strong index modulation 
at the excitonic peak.

• Also, it has strong index modulation within 
the C-band with low loss!
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SINGLE-LAYER MOS2 (SL-MOS2)
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Propagation loss
[dB/cm]

P-type N-type

Before MoS2 109 106

After MoS2 108 100

SL-MOS2 EXPERIMENTAL PERFORMANCE

p-type: VπL = 0.53 Vcm

n-type: VπL = 0.57 Vcm
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DUAL-LAYER MOS2 (DL-MOS2)
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DL-MOS2 EXPERIMENTAL PERFORMANCE

~40 dB/cm

~6 dB/cm

➢ DL-MoS2 have lowest loss reported in this thesis. 
▪ 50 and 6.4 dB/cm for HfO2 and Al2O3 device, respectively. 

➢ FOMPM outperform Si-based and 2D-materials based modulators.
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BENCHMARKING TABLE

MZMs EOT Loss VπL FOMpm 3dB bandwidth

nm dB/cm Vcm dBV GHz

Si-oxide-Si [1] 5 & 10 60 & 54 0.25 & 0.4 15 & 22 5.6 & 11.2

SLG [2] 10 ~236 0.28 66.1 5

DLG [3] 11 746 0.3 223 24

WS2-ITO [4] - 135 0.8 108 0.33

SL-MoS2 This Work 5 100 0.57 57 0.91

DL-MoS2 This Work 9.5 6.4 0.97 6 0.3

[1] Abraham, A., et al. "Evaluation of the performances of a silicon optical modulator based on a silicon-oxide-silicon capacitor." 11th International 
Conference on Group IV Photonics (GFP). IEEE, 2014.
[2] Sorianello, V., et al. "Graphene–silicon phase modulators with gigahertz bandwidth." Nature Photonics 12.1 (2018): 40-44.
[3] Watson, Hannah. Graphene Modulators for Silicon Photonic Optical Links. Diss. University of Cambridge, 2021.
[4] Datta, Ipshita, et al. "Low-loss composite photonic platform based on 2D semiconductor monolayers." Nature Photonics 14.4 (2020): 256-262.
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CONCLUSION
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CONCLUSION

SCALABILITY

PERFORMANCE

EXPLORATORY

➢ The CMOS integration of graphene based 

photonics devices is established.

➢ The knowledge can be extended to other 

sophisticated building blocks.

➢ The Figure of merits outperform state-of-the-art 

graphene-based modulators.

➢ Slot waveguide offers a new platform with greater 

design trade-off flexibility. 

➢ MoS2 emerges as a promising material option for 

low-loss phase shifters.

➢ The exploration of other 2D materials remains an 

exciting subject for investigation .

Can 2D material based photonic devices be adopted in industry for 
the next generation of data communication and 
telecommunications applications? YES! THEY CAN!
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