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OUTLINE

Introduction:

» Technique to improve: flow cytometry

* Approach: machine learning and neural networks

Problem: microparticle classification algorithms limit the speed of flow cytometry
Solution: a hardware-based machine learning approach

White blood cell hologram classification
Dimensionality expansion with dielectric scatterers
Development of flow cytometry experiment

Final experiment results
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INTRODUCTION
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AWORLD OF INTERESTING MICROPARTICLES

Liquids can host huge numbers and varieties of microscopic objects and life forms, for example:

cells in blood

microbes in water and food

pollutants (e.g. microplastics) in water
plankton in the ocean
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NUMBERS MATTER

Statistical validity of scientific studies or detection of rare objects often require a large number of single-
object measurements
- Flow cytometry allows to analyse microscopic objects one by one, in a flow at high speed

277

Wikipedia.org
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NUMBERS MATTER

Statistical validity of scientific studies or detection of rare objects often require a large number of single-
object measurements
- Flow cytometry allows to analyse microscopic objects one by one, in a flow at high speed

Applications:

* Biological analysis of heterogeneous
cell populations

* Cell sorting, to automatically isolate
specific cell types

» Detection of circulating tumor cells in
blood

* Blood analysis to monitor immune
status

* Monitoring of waterborne microbes for
water treatment and reuse

* Bacteria viability in probiotic products

i
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The related scientific community aims to make cytometers more compact, cheap, easy to use and fully

i

T automatic, to enable versatile and in-situ implementations
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POWERFUL AUTOMATIC ANALYSIS WITH MACHINE LEARNING

Machine learning (1959): algorithms learn to carry out a task through experience

Example task: written digits classification

Class1 0]1010]0]9)6]0 e 20l 200 o

class 2 AN MNZAZNZ TN NIENZR 0 6 1
Class 3 [2][2][X[2][@][2][2[Z[&][2][2][2][3][[2[X &

class 4 [3/12](313(31313][%2)(3][3](&][3][3][3]3 7 ¢ 5
Class5 Y # # 4449 49 ¢ 44494 M\¥4 1) ) &
Class 6 [5][5)[5][&1[s][sl[s][5]5)[5ls]8[S5][£ls 9 3 Z
Class 7 [0][G][6][6][G][C)[&][6][6][£][¢][¢][6|[C][6[T 3

class 8 [T2lZI@EIEIHZARIDIRIREZEZZ o 7 2
Class9 §1/8) 5 ® 8|8 P £ 8|# % T L8 T 3
Class109 € 4 9 9 99949494499 9

Training samples Test samples l

Training of machine . Test of machine
T learning model learning model
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INSPIRED BY THE BRAIN

Neural network (NN) models have grown more and more powerful in the past
decade, outperforming humans in complex tasks such as image and speech
recognition, lip reading, chess, etc...
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The larger the network, the higher the
computational cost
> trade-off between speed, compactness and cost

Hardware-based NNs can greatly improve
efficiency and speed

However they are usually difficult to train... we take
a shortcut



CONVENTIONAL FLOW CYTOMETRY

Cell sample

Dichroic
mirror

-
-

Cell
—_— 5

Filter

Obscuration bar

Flow sheath

Image: https://commons.wikimedia.org/wiki/File:Cytometer.svg

_—~~ License: https://creativecommons.org/licenses/by/3.0/deed.en
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Image:
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metrie.jpg
License: https://creativecommons.org/licenses/by-sa/2.5/deed.en

High throughput (~100,000 cell/s)

Fluorescent labels:
often hinder live cell analysis
* additional cost and effort

Analysis workstation
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LABEL-FREE IMAGING FLOW CYTOMETRY

Monocytes

5“?;1‘_@ Cell sorter Monocytes

T cells '/

' |=> . |=> T cells
Granulocytes |magiensor \ ‘

e { Granulocytes
“ & © + "
® : machine learning

classification

Medical-Labs.net

Hologram

Monocyte Granulocyte
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LABEL-FREE IMAGING FLOW CYTOMETRY
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LABEL-FREE IMAGING FLOW CYTOMETRY

Monocytes

f“_}’ rY Cell sorter ~ Monocytes Inline digital holographic

'/ MmICroscopy Image sensor
) ¢ . T cells Pinhole
Granulocytes |magiensor \ ' m)>

9. * ‘ | /(/fj Granulocytes

Medical-Labs.net

. . Object
machine learning
classification

Hologram

e Grém{llocyte Main bottlenecks:

" « computational cost of classification

* camera frame rate (up to ~1000 particles/s)
> but several holograms could be acquired

in parallel
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HIGH THROUGHPUT IMAGING WITH OPTOFLUIDIC TIME-
STRETCH MICROSCOPY

Microfluidic Objective Diffraction
device grating

Diffraction
grating
Photo-
~ detector

Oscilloscope

Pulse laser Digital signal processor

Hirofumi Kobayashi, et al. “Label-free detection of cellular drug responses by high-throughput bright-field

imaging and machine learning”. Scientific reports, 2017
< License: Creative Commons Attribution: Attribution 4.0 International. https://creativecommons.org/licenses/

i by/4.0/. Accessed: 2021-04-30
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HIGH THROUGHPUT IMAGING WITH OPTOFLUIDIC TIME-
STRETCH MICROSCOPY

> Very high-throughput: up to

Microfluidic Objective Diffraction 100,000 cells/s
device lens grating
Diffraction _ But...
grating g <,
! . dI;Itmt?- « Relatively expensive and
' | €l complicated

e ~1Thit/s of continuous
measurement data!

> online operation is
desiderable!
necessary for cell sorting
Pulse laser Digital signal processor > need for computationally

cheap analysis

Hirofumi Kobayashi, et al. “Label-free detection of cellular drug responses by high-throughput bright-field
imaging and machine learning”. Scientific reports, 2017
< License: Creative Commons Attribution: Attribution 4.0 International. https://creativecommons.org/licenses/
W /4. 0 Accessed: 2021-04-30
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A SHORTCUT

TO EXPLOIT HARDWARE ‘COMPUTATION’

linear random transformation

Extreme learning
machine (ELM)

i
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HARDWARE-BASED RANDOM DIMENSIONALITY EXPANSION

nonlinear random transformation

Extreme learning
machine (ELM)

Map to a higher
dimensional space

-

_’
1
X Linearly separable X
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HARDWARE-BASED RANDOM DIMENSIONALITY EXPANSION

nonlinear random transformation

Extreme learning
machine (ELM)

Suitable for hardware

Map to a higher ) ¢
implementations

dimensional space
P

-

_’
: X | X'
S“F\II\IETRSITY nnec Linearly separable

Photonics: high-speed, efficient
parallel processing

*#
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WHITE BLOOD CELL HOLOGRAM
CLASSIFICATION

SHF\II\IETRSITY “mec

21



REAL CELL HOLOGRAMS Granuiocytes

Raw hologram

Reconstruction
&

Monocytes T-lymphocytes

WBC holograms from Imec collaborators:
* 20,797 monocyte
e 3,753 Tcell

B - - - -

Goal: fast classification

e
Ao “Fast and robust Fourier domain-based classification for on-chip lens-
GHENT

UNIVERSITY ; mmec free flow cytometry,” Bruno Cornelis et al, Optics Express (2018) ,,



ADDRESSING HOLOGRAM VARIABILITY (NOISE)

Single cell hologram Background

Two attached cells

SHF\II\IETRSITY “mec
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ADDRESSING HOLOGRAM VARIABILITY (NOISE)

Single cell hologram Background

2D hologram

& 2501 particle
= hologram
0]
> 200
c ¢
. a
Jr_D' E 150
S - £
a f .
E g’ 100
Q
o
0O 50
—~
E) 260 460 60‘(] 8(‘)0
Uncentered cell and reflection Two attached cells Transverse pixels
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ADDRESSING HOLOGRAM VARIABILITY (NOISE)

Single cell hologram Background
2D hologram
& 2501 particle
= hologram
g 200 4 background
< %
< a
Jr_D' E 150
S - 5
a —_
E g’ 100
o
~
0O 5o
—~
E) 260 460 GDIO SII)O
Uncentered cell and reflection Two attached cells Transverse pixels
Extracted
features .
Trained
weights
; Wy
Flowing cell Lige-scan Auto-correlation
image sensor W, Threshold
Laser light W;
1D hologram A e Wiy2 Sum
transform Wy
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SHORTCUT LEARNING!

GHENT
UNIVERSITY

WHBC classification

High accuracy!

True label

v *v " e
Predicted label

“mec
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SHORTCUT LEARNING!

GHENT
UNIVERSITY

WHBC classification

High accuracy!

@

True label

v *v " e
Predicted label
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SHORTCUT LEARNING!
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WHBC classification

True label

v *v " e
Predicted label
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True label

Only backgrounds

High accuracy!
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SHORTCUT LEARNING!
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WHBC classification

True label

v *v " e
Predicted label
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True label

Only backgrounds

High accuracy!
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SHORTCUT LEARNING!
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True label

WHBC classification

Predicted label
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True label

Only backgrounds

v 1
Predicted label

a
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o
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200
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Background intensity
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0 5000 10000 15000 20000
Holograms
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SHORTCUT LEARNING!

WHBC classification

True label

True label

Predicted label

Shortcut learning (measurement bias):
often ignored or underestimated

* Cross-validation does not help

Only backgrounds

Geirhos, R., et al. “Shortcut
learning in deep neural networks.”
Nat. Mach. Intell., 2020

» Background subtraction is not sufficient

i
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Background intensity
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TREATMENT OF MEASUREMENT BIAS

Measurement bias is a two-fold problem:

1) undermines learning
2) test results are inflated

lGJnIE\II\IETRSITY “mec

32



TREATMENT OF MEASUREMENT BIAS

Measurement bias is a two-fold problem:

1) undermines learning
2) test results are inflated

Intertwined class measurements address both:
A,B,A,B,A,B,A,,B, A, B, A, B, A B, ..

A, B[R, BJA, BJA. BYA, BJA, BYA, BI

1 1 2" T2 3" 73

e e a

Test set Validation set Training set

i
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TREATMENT OF MEASUREMENT BIAS

Effectiveness demonstrated in dedicated
experiment with microspheres:

25
&) %l
3

;@@

Measurement bias is a two-fold problem:

1) undermines learning
2) test results are inflated

N
o

=
w

Error rate (%)

10

Intertwined class measurements address both:

Al’ Bl’ A2’ BZ’ A3’ BS’ A4’ B4’ AS’ BS’ A6’ B6’ A7’ B?’ 0 0.02 0.04 0.06 0.08
Particle ratio R
65 UM test
A, B[R, BJA, BJA, BJJA, BJA, BJA BI ..
— 60 o
Test set Validation set Training set £ s
L
40
35
== 0.02 0.04 0.06 0.08
& . . Particle ratioR. .
GHENT
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DIMENSIONALITY EXPANSION WITH
DIELECTRIC SCATTERERS

SHF\II\IETRSITY “mec
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RANDOMIZED SIMULATIONS OF CELL ILLUMINATION

GHENT
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FDTD simulation !:ar ﬁe!d .
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RANDOMIZED SIMULATIONS OF CELL ILLUMINATION
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FDTD simulation !:ar ﬁe!d .
| | intensity monitor
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7200 FDTD simulations per scatterer configuration
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Task 1: nucleus size

Task 2: nucleus shape
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NONLINEARITY AND ELM EQUIVALENCE

eiel Azei(92+¢2) tunable

: +
3 3 : i(61+ .
Y elf3 Aqell B+ ) acquired |~ SUm
Rada, o A3ei(93+¢3) intensity
) noise
Physical ;

diagram

=

N
Extreme
learning

machine
diagram
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NONLINEARITY AND ELM EQUIVALENCE

Ayell(B2+d2) tunable
weights

sum

acquired

A3ei(93+¢3) intensity

noise

Physical
diagram

[_

N
Extreme
learning
machine
diagram

i Loc| Y Ane' @@ = C 4 3" [Au cos(O = Om) + Bum sin(6y, — )]
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NONLINEARITY AND ELM EQUIVALENCE

Small nucleus Big nucleus

a  Near field - no scatterers - 'normal’ cells b Near field - no scatterers - ‘cancer' cells

el61 Azei(92+¢2) tunable 0.6

. + 05
3 ¢ : i(61+ . -
X el®s AsellErt ) acquired sum S i
BRGaes ! intensity 2
AT A3e|( 03+0¢3) % 0.3
. noise 02 \
Physical ;
PN
0.0

Intensity (a.u.)

diagram
C Near field - scatterers - 'normal’ cells d Near field - scatterers - 'cancer’ cells
N
Extreme 12
learning 310
machine 208
diagram 2
£06
0.4
0.2
0'0—.15 ‘ : ) ; : 15 <15 =10 =5 0 5 10 15
X (um)
2
E i(6,+ E : .
GHENT = n m<mn
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EXPLORATION OF SCATTERER CONFIGURATION
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DEVELOPMENT OF FLOW CYTOMETRY
EXPERIMENT

SHF\II\IETRSITY “mec
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SETUP EVOLUTION

Syringe pump

Beaker with
particle mixture

Magnetic
stirrer

15um

IPINJOIA

-

I centrale Supélec

GHENT
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Image sensor

18um

UGent

Polarizer

— Jeremy Vatin Emmanuel Gooskens

particles

pinhole l

beam
splitter SLM

mrl
b

channel

optical attenuator

measurement bias
signal-to-background ratio
bubbles or dirt

vibrations

background detection and
subtraction

SLM flicker

feature selection
exploration and selection of
scattering media
few-samples estimation
motion blur

lens

linear
polarizer

CMOS sensor
(display splitin 2)

particles

microfluidic
channel

CMOS
sensor

scattering layers




HIGH SNR IN ACQUIRED PATTERNS

a particles

CMOS
15um sensor
scattering layers
microfluidic
channel
18um

e
& X g'.‘
A4}

N

i

- -
- -l
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EXPLORATION OF SCATTERING LAYERS

L N

More than 40 configurations
tested!
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FINAL EXPERIMENT

a s b laser beam
pinholel :irf;:ia:;ion microfluidic
channel
CMOS
sensor
 No focusing S icrofiuidic
* Large field of view i class separation 04
 Cheap and simple :
components
0
0.3
P=23283 :
=
LT}
47
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A SIMPLE, FAST AND VERSATILE CLASSIFIER

Image sensor

4
Diffract
laser lig

f
/
4
/
/

N

I
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Current
image

Background
subtraction

Ol 49,

Acceptance

threshold 6,

Previous
image

Accepted
background-
subtracted

Trained weights

Threshold
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PATTERNS FROM DIFFERENT CLASSES
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ERROR V.S. IMAGE RESOLUTION

50

40 -

Error rate (%)
NGoOw B ou, NoWw
© © o oo o o

s
o

=
o

a No diffractive grating o
=
——
== —— — = ==
b Diffraction grating :jf::
— e — === ==

0 . . - . :
316 x 254 pixels 127 x 102 pixels 64 x 51 pixels 32 x 26 pixels 16 x 13 pixels

I
GHENT

10354 features 10363 features 3264 features 832 features 208 features
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7x6 'pixels
42 features

2x2 'pixels
4 features
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COMPARISON WITH OTHER WORKS

[1]

[2]

[3]

of 15.2 and 18.6um
(our work)

(log. regression)

raw hologram

along channel

Classification task Classifier Image Imaging Image Classification | Accelerator | execution time | Meas. bias
resolution method FoV performance / particle control
Beads with diameters CNN 21 % 21 Microscope Centered 93.3% mAP GPU <1 ms Unreported
of 7, 10 and 15um and cropped
3 white blood cell Rand. forest on 31 x 31 Lens-free - Unreported 96.8% GPU 0.2 ms Unreported
(WBC) types extracted features raw hologram accuracy
I WBC type and an Deep CNN Unreported | Time-stretch 25um 95.74% GPU 3.6 ms Unreported
epithelial cancer cell microscope along channel accuracy
Beads with diameters Linear 32 %26 Lens-free - ~ 300 um > 90% None 0.013 ms Yes

accuracy /

Potentially close to ~100,000 cell/s

[1] Heo, Young Jin, et al. “Real-time image processing for microscopy-based label-free imaging flow cytometry in a microfluidic chip”. Scientific Reports, 2017.
[2] Cornelis, B., et al. “Fast and robust Fourier domain-based classification for on-chip lens-free flow cytometry.” Optics Express, 2018.
[3] Li, Yueqin, et al. “Deep cytometry: deep learning with real-time inference in cell sorting and flow cytometry.” Scientific Reports, 2019.
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CONCLUSIONS

* Asimple linear classifier can be applied to particle holograms to provide ultra-fast classification in label-free flow
cytometry

* On condition that:
> the extreme learning machine paradigm is considered

> the shortcut learning due to varying measurement conditions is properly treated (we demonstrated a suitable
methodology)

* The demonstrated approach is simple to employ, versatile and require few cheap components

i

i
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CONCLUSIONS

* Asimple linear classifier can be applied to particle holograms to provide ultra-fast classification in label-free flow
cytometry

* On condition that:
> the extreme learning machine paradigm is considered

> the shortcut learning due to varying measurement conditions is properly treated (we demonstrated a suitable
methodology)

* The demonstrated approach is simple to employ, versatile and require few cheap components

FUTURE PERSPECTIVES

* High-throughput with high-speed event-based camera (Muhammed Gouda in Neoteric project)

* Apply our method to cell classification (e.g. WBC)

* Apply method to existent high-throughput imaging systems (e.g. time-stretch microscopy) to enable online
operations

= Can scattering layers improve classification in single-pixel configuration?

sy Lmec 53



INTERPRETATION OF “DIMENSIONALITY EXPANSION”

Dimensionality expansion — Possible meanings: 1) more features per samples
2) more uncorrelated features

Enhanced linear separability

o
L1111}

GHENT
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r o © 5

Error rate (%)

N

=
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Far field

|
B
iffffffl

o
>

N

Error rate (%)

N

L...—-

Near field

Overall class separartion

Overall class separartion

3) more relevant and

uncorrelated features

redundancy
noise

Relevance measure - far field

Redundancy measure - far field

_S ¥ classA
© “{_ classB
o
5
: i
el
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| 3 £I:11 %
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A SHORTCUT LEARNING EXAMPLE

Seabird examples Crow examples

Task to learn:
distinguish seabirds from crows in a picture

In our case: Image sensor

Pinhole
=) )
Object

hi — hi_1 = 0h> 8" + N(RD®' ;)

/

Nonlinear interaction between cell
information and background
> need to act on measurements!

lGJIIZIuE\I/\lETRsnY “mec o



TRADE-OFFS

Complexity of the

. o model
T dimensionality/parameters

T # required samples

Number of samples

| # samples

i

Cversry  LIMeC

* Training hindered by local optimum
points

* 1 complexity T comp. cost

Computational cost

T # comp. cost

(e.g. k-fold cross-validation)

56



TREATMENT OF MEASUREMENT BIAS

: Conventional validation methods do not solve the problem
Sample generation

Measurement bias is an elusive, two-fold problem:

|

|

| . .. . .
Training set Validation set i Test set 1) sidetracks the training algorithm - undermines

. learning

: 2) performance evaluation is also biased - test

i accuracy is inflated

|

|

: Intertwined class measurements address both:
Training of Hyperparameters : Test of the model Al’ Bl’ AZ’ BZ’ A3’ BS’ A4’ B4’ AS’ BS’ A6’ BG’ A?’ B?’ Tt
the network selection 1

|

; A,, B,

YOne-way barrier
In Chapter 5: Test set Validation set Training set

* both aspects of meas. bias demonstrated
* removed by intertwined measurements

1. class - noise correlation is broken in training set
P 2. training, validation and test sets do not share the
AL, same measurement conditions
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TRADE-OFF BETWEEN FIELD OF VIEW AND NUMBER OF
SAMPLES

25 - -
20 e
S T 1

g 15 :
% .
5 - il
£ 101 -
LLl A
T 1
5_
0 : : : :
0.02 0.04 0.06 0.08

Particle ratio R
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RELATIVE LOSSES WITH 4 SCATTERING LAYERS

wn
(9]

—t——————— o o—

A =200 nm

un
o

B
o

Relative to the case

A = 300 nm without scatterers

——o—+» - — o ® ®

i
o

A =400 nm

w
o

A=532nm
*r—eo—=e ———=9- @, O P Y

w
o

% relative losses from scatterers

1.2 1.4 1.6 1.8 2.0 22 24
Nucleus size (um)
11

sy Lmec 50



INTENSITY IS MORE SPREAD OVER THE IMAGE SENSOR
USING SCATTERERS

a) b) C)

Sassssssssmmssnnnnmnnd 2

Far field intensity

-60 -40 -20 0O 20 40 60 -60 -40 -20 O 20 40 60 -60 -40 -20 O 20 40 60
Far field angle (deg) Far field angle (deg) Far field angle (deg)
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MANN-WHITNEY U STATISTIC AND KENDALL CORRELATION

0.35 4
noom o
U= E E S(Xzalfj)s 3 ] é“
=1 j—1 5 o £
> > 0.6
. = 020 =
with 2 5
‘:l:"" 0.15 g 0.4
L, Y <X, £, 8
1 . =
S(X,Y)= 39 1fY=X, = 0054 Class B Eo‘z
. _ (@]
0, ifY > X. 0.00{ 0.0
45‘50 46‘00 45‘50 RTI[)U 4750 45‘50 45‘00 45‘50 47‘00 47‘50
Pixel index Pixel index

Correlation calculated on pixel pairs

Ne — Ng
Tp = ————
no

ng =n(n—1)/2
n. = Number of concordant pairs
ng = Number of discordant pairs

Source: Wikipedia
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FIELD OF VIEW...

particles b

laser beam

pinhole l diffraction

grating microfluidic

channel

Possible improvements: kR ey
. . icrofluidi
* higher background-to-noise channel

class separation

ratio 0.4
* measure more samples
* explore scattering

configuration on morphology-

based classification task (e.g.

WBC) 03
* partially automatized setup

0
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INTERFERENCE PATTERN

Fresnel diffraction (near field)

1kz . . . -
E(z,y,z) = ° 833(3’2”2)}—{E(m',y’,O)eEE(“’ +y )}

IAZ oz Y
p__aq_/\_

Az z
U(z,y,z) < f[A(q;’, y’)]fzfy Fraunhofer diffraction (far field)
Mie scattering is most suitable when the micorparticle dimension is comparable with the wavelength

Inline digital holographic

MICroscopy Image sensor
pnhole ))DI
Object

QLTI Emmanuel Gooskens
UGent

lGJHF\II\IETRSITY “mec
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DEPENDENCY ON CAMERA POSITION

o
L1111}
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FOV ESTIMATION

from k particles in the FoV can be considered as the Poisson process describing
the occurrence of & events t;,,, with a time rate Ry, in a time interval 7 + FoV /v,
with probability:

k
— [Rf(T + FOV/U)] e*Rf(T{»FOV/”U)

Pr(k, 7+ FoV/v, Ry) i

(5.4)

In our case 7 = 29 ps and we can calculate Ry by multiplying the flux rate (0.2
ml/min) by the estimated particle concentration, which depends on the particle
class (1.6 x 10% and 0.91 x 104%%5 respectively for class A and B) since the mix-
tures have a common solid content volume. Note that we are assuming that the
number of particles that remain stuck somewhere before reaching the illumina-
tion area is negligible w.r.t. the total number of passing particles. Therefore, even
if we deem this assumption sufficiently true in our case, we should keep in mind
that the estimated R; is more an upper limit for the true particle flow rate. From
the next calculation steps it will be evident that this implies that we will obtain a
lower limit estimate of the true FoV. To provide an example calculation, assuming
a reasonable FoV= 100 pum, respectively for classes A and B we obtain (keeping 2
significant digits): Pra(k = 0) =098, Prg(k =0) =0.99, Pra(k = 1) =0.017,
Prg(k=1) =0.0098, Pra(k =2)=0.00016, Prg(k = 2) = 0.000048. These

i

GHENT
UNIVERSITY

Frame rate ~ 138 fps, exposure time = 20 us,

“mec

through the microfluidic channel (statistical independence). The particle ratio R
can be estimated by R = 1 — Pr(0, 7 4+ FoV/v, Ry), with reference to equation
(5.4). Thus, by inverting it, we can finally estimate the FoV corresponding to a

chosen value of R:
In(1 - R)v

Ry

For each chosen value of R and for each particle class, we report in Table 5.3 the

FoV = — — TV (5.5)

number of classification samples (accepted images) and the FoV estimates. The
corresponding estimated FoV is quite large: =~ 0.3 mm. It should also be stressed
that, as a consequence of our choice of having a single threshold 6p for both
classes and for training and testing, the FoV was class-dependent.

No diffractive layer

Particle rate | # accepted images | Field of view (mm)
class A | classB | classA | classB
0.02 1427 2108 0.09 0.25
0.04 4008 3067 0.27 0.37
0.06 6452 4120 0.45 0.51
0.08 7954 6051 0.56 0.76

~5.5 p/s
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EXAMPLE ARTICLES

Lippeveld, Maxim, Carly Knill, Emma Ladlow, Andrew Fuller, Louise J. Michaelis, Yvan
Saeys, Andrew Filby, and Daniel Peralta. "Classification of human white blood cells

using machine learning for stain-free imaging flow cytometry." Cytometry Part A 97, no.

3 (2020)

* Proper ground truth with manual gating

* Deep learning does not outperform feature engineering
« 8 different types of WBC, but also 3 types classification

* Accuracy < 90%

Tang, Rui, Zunming Zhang, Xinyu Chen, Lauren Waller, Alex Ce Zhang, Jiajie Chen,

Yuanyuan Han, Cheolhong An, Sung Hwan Cho, and Yu-Hwa Lo. "3D side-scattering
imaging flow cytometer and convolutional neural network for label-free cell analysis."
APL Photonics 5, no. 12 (2020)

* Label-free using light sheet and side scattering.
*  92% accuracy WBC classification

— « Ground truth with manual gating

Cversry  LIMeC
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