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Voorwoord - Preface

Doctoreren kun je - zoals de meeste mensen wel denken - helemaal
niet omschrijven als ’werken’. In het begin lijkt het eerder op zoeken
naar een pinguı̈n op de noordpool: van het ene dwaalspoor kom je op
het andere, een leerproces... Met de frisse ideeën van mijn promotoren
Geert en Roel en de onmisbare hulp van mijn twee bureaugenoten Jos
en Pieter had ik na ongeveer een half jaar tijd eindelijk enig idee van
wat mijn onderwerp precies allemaal inhield. Alle problemen van de
baan!! Nu kon ik beginnen wachten op simulaties, Peter lastig vallen
over CAMFR, met Jos en Pieter meer nieuwe problemen veroorzaken
dan oude oplossen, weer wachten op simulaties, ...

Na een paar honderd koffiepauzes en tientallen brésiliennekes be-
gonnen mijn resultaten wat samenhang te vertonen en ging de wereld
van de conferenties voor mij open: toch wel een van de leukste as-
pecten aan doctoreren. Je krijgt de kans om op korte tijd heel wat bij te
leren over allerhande onderwerpen en komt bovendien op plaatsen die
je niet voor mogelijk had gehouden. Zo belandde ik met Jos en Wim
in Kyoto, totally lost in translation, maar met een fantastische kamer-
jas: arigatô gozaimasu. Met D’Oos kwam ik terecht in San Diego om
daarna met Pieter - inderdaad onze huurauto heeft ABS - het Califor-
nische binnenland onveilig te maken. Dank je, Diederik, voor de lo-
gies en de langlaufinstructies! Het woord jet-lag kreeg echter pas echt
betekenis toen ik ook naar Sydney op conferentie mocht, samen met
Roel en Günther. Three wise (?) monkeys in the land of the kangaroo...

Ondertussen hadden Ilse en Pieter mij leren meten en kon ik mij
niet-lineair gaan uitleven op echte structuren. Tot wanhoop van Sam,
D’Oos, Hendrik en Dries waarschijnlijk, want bijna alle meetapparatuur
was wel ergens op mijn meettafel te vinden. Uiteindelijk kwam alles
wel op zijn pootjes terecht en ben ik erin geslaagd dit kleine boekje bij-
een te schrijven.
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Laat mij voor alle duidelijk vermelden dat ik ook deze mensen in
deze drieënhalf jaar heel wat heb lastiggevallen en hen daarvoor wil
bedanken: Wim, Dirk, Bert, Kris, Reinhard, Bart, Olivier, Peter, Lieven,
Freddy, Wouter, Stijn, nog eens Peter, Bjorn, ook nog eens Freddy, Jon,
Joost, Joris, Katrien, Benoit, Shankar, Iwan, Zeger, Ilse, Ilse, Karien,
Bernadette, het hele TDC-team ... en alle anderen die ik nu tot mijn
schaamte vergeten ben. I would also like to thank Tak-Keung and
Romeu for their help in performing nonlinear experiments and the op-
portunity to do some of the measurements myself at the NICT.

Ik wil zeker en vast ook mijn ouders en mijn tante bedanken voor
alle aanmoedigingen en financiële steun tijdens mijn studies en mijn
doctoraatsjaren. Natuurlijk ben ik mijn tijgertje niet vergeten: dank je
wel voor alles wat je met mij al hebt meegemaakt :) En tot slot een
woordje van dank aan haar ouders en haar broer en zus voor alles wat
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Nederlandstalige
samenvatting

Vandaag de dag vormen optische vezels de basis voor de telecommuni-
catie over lange afstand. Ze maken het transport mogelijk van enorme
hoeveelheden informatie door het feit dat ze verschillende golflengte-
kanalen tegelijkertijd kunnen vervoeren zonder dat deze elkaar beı̈n-
vloeden. De volledige capaciteit van deze vezels kan echter nog niet
worden gebruikt doordat de schakel- en de signaalverwerkings-
mogelijkheden in de optische laag nog te beperkt zijn: wanneer een
optisch signaal door een knoop in een netwerk passeert, moet de data
eerst omgezet worden naar het elektrisch domein voor ze kan verwerkt
worden. Daarna wordt ze terug omgezet naar het optisch domein en
kan ze verder worden getransporteerd. Voor hoge informatiestromen
is dit een kostelijk en moeilijk proces.

Hoewel goedkope integratie met het behoud van deze elektrisch-
optische conversies een eerste stap vormt, wordt verwacht dat de werke-
lijke doorbraak naar ultrahoog datatransport gevormd wordt door
signaalverwerking in het optische domein zelf. Om dit op een geı̈nte-
greerde manier te doen, bestaan er op dit moment twee belangrijke
routes:

• met behulp van vrijeladingsdragereffecten. Alhoewel het bewer-
ken van datastromen met deze aanpak beperkt is door de recom-
binatietijd van deze ladingsdragers tot ongeveer 10 Gb/s, laat het
gebruik van interferometrische technieken toe om hogere data-
stromen te verwerken.

• met behulp van ultrasnelle niet-lineaire effecten veroorzaakt door
het licht zelf: sterke optische signalen induceren in bepaalde ma-
terialen niet-lineair gedrag met een praktisch ogenblikkelijke
responstijd, wat ultrasnelle optisch signaalverwerking mogelijk
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maakt. Deze effecten zijn echter typisch heel zwak en vergen
daarom heel wat vermogen.

In dit werk onderzoeken we deze laatste route omdat ze intrinsiek
het grootste potentieel voor ultrasnelle signaalverwerking bezit, met
de nadruk op de volgende twee niet-lineaire effecten: het Kerr effect
en twee-foton absorptie. Om de zware vermogenvereisten te beperken,
maken we gebruik van nanofotonische componenten die de interactie
tussen het licht en het materiaal in een belangrijke mate versterken.

Het gebonden-elektronisch of optisch Kerr effect en het twee-foton-
absorptieproces stemmen respectievelijk overeen met de lineaire afhan-
kelijkheid van de brekingsindex en de absorptiecoëfficiënt van de licht-
intensiteit. Deze effecten zijn ultrasnel omdat ze geen werkelijke elek-
tronische overgangen vereisen, maar enkel de mogelijkheid ervan. Hun
respons- en hersteltijd is van de orde van ps. Welk effect nu precies
in een bepaald materiaal domineert, is afhankelijk van de verhouding
van de lichtfrequentie tot de grootte van verboden zone van dat ma-
teriaal. AlGaAs is bijvoorbeeld een van de meest geschikte halfgelei-
dermaterialen voor Kerr gedrag bij de telecom golflengte van 1.55 µm.
Voor deze golflengte zijn GaAs en InP dan weer uitstekende materi-
alen voor twee-fotonabsorptie. In Silicium zijn beide effecten belan-
grijk bij 1.55 µm, wat dit materiaal een geschikt materiaal maakt voor
wetenschappelijk onderzoek. Zoals hierboven vermeld zijn ultrasnelle
niet-lineaire effecten typisch heel klein. In halfgeleidermaterialen zijn
dan ook lichtintensiteiten van de orde 1 − 10 GW/cm2 nodig om deze
fenomenen waar te nemen.

Om dergelijke hoge intensiteiten te verkrijgen met een aanvaard-
baar vermogenbudget zijn optische componenten vereist met extreem
kleine dimensies die bovendien gemaakt zijn in een materiaalsysteem
met een hoog brekingsindexcontrast in beide transversale richtingen.
Op die manier wordt het licht opgesloten in een heel kleine ruimte en
is de interactie tussen het licht en het materiaalsysteem veel sterker.
Een voorbeeld van een dergelijk halfgeleidersysteem is o.a. Silicium-
op-Isolator (SOI): nanofotonische SOI golfgeleiders met doorsneden tot
0.1 µm2 kunnen worden gefabriceerd. In deze ultrakleine golfgeleiders
- ook fotonische draden genoemd - kan het Kerr effect gebruikt worden
voor optische faseverschuivingen, terwijl twee-fotonabsorptie aanlei-
ding geeft tot saturatie en golflengteconversie. Hiervoor zijn vermo-
gens van de orde 1-10 W nodig voor golfgeleiders met een lengte van
enkele mm. Datastromen hoger dan 1 Tb/s zijn bovendien mogelijk.
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Om die vermogenvereisten (of componentlengtes) nog verder te
beperken kunnen we het licht ook nog in de longitudinale richting op-
sluiting. Dit gebeurt in optische resonatoren waarin het licht wordt
opgesloten in een soort caviteit en het maar geleidelijk kan ontsnap-
pen. Hoe beter het licht in zo een structuur wordt opgesloten, hoe
lager de bruikbare bandbreedte wordt. Naast een beter vermogenge-
bruik geven optisch resonatoren ook aanleiding tot nieuwe function-
aliteiten, zoals optische bistabiliteit en geheugenwerking, die niet mo-
gelijk zijn met fotonische draden. Om de wisselwerking tussen vermo-
gen en bandbreedte te onderzoeken en de resonatorstructuur te kunnen
optimalizeren voor elke toepassing hebben we een theoretisch model
opgesteld dat de invloed van elke designparameter weergeeft. Op die
manier hebben we berekend dat voor 40 Gb/s en 100 Gb/s werking
typisch pulsenergieën van de orde 5-20 pJ en 25-100 pJ nodig zijn voor
resonatorcomponenten met een lengte van slechts 100 µm.

Deze theoretische resultaten hebben we geverifieerd met behulp
van experimentele metingen van zowel fotonische draden (in samen-
werking met het Nationaal Instituut van Informatie- en Communicati-
etechnologie, Japan) als ringresonatoren1 gemaakt uit SOI. Tijdens deze
experimenten hebben we een belangrijke bijdrage van secundaire ef-
fecten in onze structuren vastgesteld: twee-fotonabsorptie geeft aanlei-
ding tot de creatie van vrije ladingsdragers die op hun beurt een in-
vloed hebben op de brekingsindex en de materiaalabsorptie. Boven-
dien geven deze ladingsdragers na recombinatie aanleiding tot warmte
en opnieuw een verandering van de brekingsindex. Om deze effecten
te vermijden moet men de datastroom beperken. Op die manier hebben
we in fotonische draden optische limitering en golflengteconversie ge-
baseerd op twee-fotonabsorptie aangetoond tot pulsfrequenties van
40 GHz met een ingangsvermogen beneden 10 W.

Sterke secundaire effecten kunnen natuurlijk ook zelf gebruikt wor-
den voor optische signaalverwerking, maar met een datasnelheid die
beperkt is door hun relaxatietijd: voor thermische effecten is dit onge-
veer 100 ns, terwijl de recombinatietijd van vrije ladingsdragers van de
orde 1 − 10 ns is. In SOI ringresonatoren hebben we op die manier
thermische bistabiliteit aangetoond met ingangsvermogen van slechts
0.3 mW. Bovendien werd zowel geı̈nverteerde als niet-geı̈nverteerde
golflengteconversie gebaseerd op vrijeladingsdragerdispersie gede-
monstreerd met een pulslengte 10 ns en een piekvermogen van 0.7 mW,
zodat 0.1 Gb/s werking mogelijk is. Bij hogere vermogens stelden we

1In deze optische resonatoren heeft de caviteit de vorm van een ring.
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onstabiel gedrag vast door een interactie tussen thermische en vrije-
ladingsdragerdispersie. Dit is een gevolg van het feit dat deze effecten
een verschillende tijdsconstante en een tegengesteld teken hebben. Alle
experimentele resultaten hebben we nagerekend met behulp van simu-
laties en een goede overeenkomst tussen theorie en experiment werd
bekomen.

Hoewel we met dit werk het potentieel van optische signaalverwer-
king gebaseerd op ultrasnelle niet-lineaire effecten duidelijk hebben
aangetoond, kunnen deze resultaten op verschillende manieren verder
worden verbeterd:

• Terwijl wij voor dit werk ringresonatoren hebben gebruikt, ver-
wachten we voor resonatoren gebaseerd op fotonisch kristallen
nog lagere vermogenniveaus door hun grote mogelijkheden voor
optimalizatie. Fabricatie van dergelijke structuren met lage ver-
liezen is echter heel moeilijk.

• De impact van secundaire effecten kan worden beperkt met be-
hulp van oppervlaktepassivatie en ladingsdragersextractie door
het aanbrengen van een p-i-n junctie. Op die manier kan de
levensduur van de ladingsdragers worden verkleind en warmte-
ontwikkeling worden vermeden. Bovendien zou dit optische
bistabiliteit gebaseerd op vrijeladingsdragerdispersie mogelijk
maken.

• Zoals hierboven vermeld is Silicium niet het optimale materiaal
voor optische signaalverwerking. Naast gebruik te maken van
andere halfgeleidermaterialen (vb. AlGaAs) kan men ook meer
geavanceerde materiaalsystemen zoals kwantumputten, nano-
kristallen, ... aanbrengen op een reeds bestaande techologie om
zo de voordelen van beide te combineren. Op die manier kan
een volledig optisch platform voor ultrasnelle signaalverwerking
mogelijk worden.



English summary

Today, optical fiber forms the basis for long-haul telecommunication.
It is able to carry multiple independent wavelengths or data signals
at the same time, allowing the transport of huge amounts of infor-
mation. However, to explore the full capacity of the optical fiber, the
switching and processing functionality inside the optical layer is too
limited. Typically, the optical signals that are passing through a net-
work node are first converted to the electrical domain before they are
processed and then they are reconverted back to the optical domain
for further transportation. For high bitrates, this is both a costly and
difficult process.

Although low-cost integration while maintaining the conversion
from the optical layer to the electrical and back is a first step, all-optical
signal processing is expected to form the real breakthrough towards
ultra-high bandwidth telecommunication. To achieve this in an inte-
grated way, two heavily investigated routes exist today:

• using carrier effects. Although they are intrinsically limited by
their recombination time to bitrates of about 10 Gb/s, the use of
interferometric structures allows to achieve much higher bitrates.

• using ultrafast nonlinear effects induced by the light itself: strong
optical signals can induce nonlinear behaviour with practically
instantaneous response times, which would allow ultrafast all-
optical signal processing. However, these effects are typically
very small and require very high optical powers.

In this work, we investigate the second approach, as it intrinsically has
the largest potential, with the emphasis on the following two nonlinear
phenomena: the Kerr effect and two-photon absorption. To reduce the
harsh power requirements, high-quality nanophotonic devices will be
used, which enhance the interaction between the light and the material
significantly.

xiii
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The bound-electronic or optical Kerr effect and the two-photon ab-
sorption effect respectively correspond to the linear dependence of the
refractive index and the absorption coefficients on the intensity of the
light. These effects are ultrafast because they do not require real elec-
tronic transitions; simply the possibility of an electronic transition is
enough. Their response and recovery time is of the order of fs. Which
one of the two nonlinear effects in a specific material dominates, is
largely determined by the relative position of the light frequency com-
pared to the material bandgap. As a result, AlGaAs is one of the most
appropriate materials for Kerr-nonlinear operation at the telecom wave-
length 1.55 µm. At this wavelength, GaAs and InP on the other hand
are excellent candidates for two-photon absorption. In Silicon, both the
Kerr effect and two-photon absorption are important at 1.55 µm, mak-
ing it an excellent material for research applications. As mentioned
above, these ultrafast nonlinear phenomena are very small. In semi-
conductor materials, optical intensities of the order of 1 − 10 GW/cm2

are therefore needed to obtain a significant response.

To obtain these high intensities with a reasonable power budget, op-
tical components are required which have extremely small dimensions
and are fabricated in a material system with a high refractive index
contrast in all transverse directions. In this way, the light is confined
in a very narrow space and the nonlinear interaction with the mate-
rial is much stronger. An example of such a semiconductor platform
on which this is possible is e.g. Silicon-on-Insulator (SOI): low-loss
nanophotonic SOI waveguides can be fabricated with cross sections
down to 0.1 µm2. In these ultrasmall waveguides which are called pho-
tonic wires, the optical Kerr effect gives rise to all-optical phaseshift-
ing, while two-photon absorption allows all-optical limiting and wave-
length conversion. Theoretically, power requirements are of the order
of 1-10 W for waveguide lengths in the mm range and bit rates exceed-
ing 1 Tb/s are possible.

To reduce the power needs (or device length) even further, the light
can additionally be confined in the longitudinal direction. This is the
case in optical resonators, in which the light is locked up in a sort of
cavity and is only gradually able to leak out. In these structures, a bet-
ter confinement gives rise to a slower cavity response (limited band-
width). In addition to improved power conditions, optical resonators
allow new functionalities such as optical bistability and memory oper-
ation, which cannot be achieved with photonic wires. To evaluate the
trade-off between pulse power and signal bandwidth and to determine
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the optimum design for each application, we constructed a theoretical
model which incorporates the effect of all resonator parameters. For
40 Gb/s and 100 Gb/s operation, typical pulse energies of the order of
respectively 5-20 pJ and 25-100 pJ were obtained with devices lengths
below 100 µm.

To confirm our theoretical results, nonlinear experiments were per-
formed both on photonic wires (in cooperation with the National Insti-
tute of Information and Communications Technology, Japan) and ring
resonators - in which the cavity has the form of a ring - fabricated in
SOI. During these experiments, significant secondary effects were ob-
served in our structures: the presence of two-photon absorption gives
rise to the creation of free carriers, which can effect the refractive in-
dex and absorption coefficient. In addition, the recombination of these
carriers leads to heating and another change of the refractive index.
To avoid the impact of these phenomena, one can reduce the pulse
repetition rate, however at the cost of a decrease in optical data rate.
Using this approach, we demonstrated all-optical limiting and wave-
length conversion based on two-photon absorption in photonic wires
for pulse trains up to 40 GHz and powers below 10 W.

These secondary effects are much stronger and can also be used for
all-optical signal processing, however within the limitation of their re-
laxation time and possible unstable behaviour: the thermal recovery
time is approximately 100 ns, while the free carrier lifetime is of the
order of 1 − 10 ns. Using SOI ring resonators, we demonstrated ther-
mal bistability with input powers of only 0.3 mW. In addition, both in-
verted and non-inverted all-optical wavelength conversion based on
free-carrier dispersion were observed for a pulse length of 10 ns and
a power of 0.7 mW, indicating that 0.1 Gb/s operation is feasible. At
higher powers, unstable behaviour due to interaction between thermal
and free-carrier dispersion effects was obtained. This is possible be-
cause both effects have different time constants and opposite signs. All
these experimental results were verified by simulations and an excel-
lent agreement between theory and experiment was obtained.

Although proving the potential of all-optical signal processing based
on ultrafast nonlinear effects, the results that we obtained during this
work can still be further improved:

• While our best experimental results were obtained with ring re-
sonators, photonic crystal structures form the most versatile and
tunable system for constructing optical resonators. Fabricating
low-loss photonic crystals is however very difficult.
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• To reduce the impact of secondary effects, surface engineering
and carrier extraction by integrating a p-i-n junction may prove
to be a viable way to reduce detrimental carrier accumulation and
avoid heating effects. Moreover, as free carrier effects can also be
used for signal processing purposes, increasing the reverse volt-
age of the junction would allow bitrates above 10 Gb/s and free-
carrier all-optical bistability should become possible as thermal
dispersion effects are avoided.

• As mentioned above, Silicon is not the best material to be used for
all-optical signal processing. In addition to evaluating other semi-
conductor platforms (e.g. AlGaAs), new material systems such as
quantum dots, nanocrystals... can be integrated onto the existing
Silicon technology, combining the potential of both worlds. In
this way, we expect an ultrafast all-optical nonlinear platform to
be implementable.
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Chapter 1

Introduction

1.1 Photonics

Although some of its principles were already applied in ancient times
(when the caveman threw his spear in front of the fish to catch it1),
the field of photonics - being the science and technology of generat-
ing and controlling light for the purpose of information transport, data
processing, energy generation, sensing, ... - only really began with
the invention of the laser in 1960 and the optical fiber in 1970. This
new method of transporting data showed many potential advantages
[1] over existing electrical connections, the most important one prob-
ably being its ability to carry multiple wavelengths (data signals) at
the same time - known as wavelength division multiplexing (WDM).
Exactly this huge bandwidth capacity of the optical fiber allowed the
evolution of telecommunication to where it is now: worldwide, fiber
forms the backplane of the modern telecom infrastructure based on the
SONET/SDH (synchronous optical network/synchronous digital hier-
archy) standards.

Apart from the cost issues at the receiver end, which in many cases
prohibit the implementation of fiber to the end-user, one of the main
reasons that the capacity of the optical backbone is not yet fully ex-
ploited at this moment, is the fact that the switching and processing
functionality inside the optical layer is limited. Typically, the opti-
cal data passing through a network node must first be converted to
the electrical domain, after which they are processed and reconverted
to the optical domain for further transportation. As bitrates increase,

1And so taking into account the refraction of light.

1
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electronic signal processing however becomes very expensive (costly
transceiver technologies and packaging) or extremely difficult (physi-
cal limitations of electronics).

Therefore, it is not surprising that a lot of research is done towards
low-cost integration of photonic components (photonic integrated cir-
cuits or PICs) [2, 3, 4, 5] and all-optical signal processing, both at the
hardware [6, 7] and at the network level [8]. As optical communication
is gradually finding its way to local area networks and short-distance
applications, the field is only gaining more interest [9, 10, 11].

1.2 Ultrafast, nonlinear, all-optical signal processing

One of the most promising routes to improve the optical functional-
ity in the near future is probably low-cost integration of the individ-
ual photonic and electronic components necessary for optical signal
processing. An excellent example of this strategy is the work of the
companies Infinera Inc. [12] and Luxtera Inc. [11], which base their op-
tical technology respectively on InP and Silicon while maintaining the
signal processing in the electrical domain.

Another interesting approach is to switch and process the different
data signals all-optically and in doing so, avoid costly and inelegant
optical-electrical (O-E) conversions. Although this is possible in seve-
ral ways, integration will also here be a key issue. Today, two heavily
investigated routes exist:

• using carrier effects. In this context, we think of the nonlinear
gain and phase effects in semiconductor optical amplifiers [13, 6,
7] and more recently the plasma effect in Silicon [14, 15, 10]. Un-
fortunately, carrier effects are limited in response time, making it
intrinsically difficult to obtain data rates above 10 Gb/s. The use
of special interferometric structures however makes it possible to
go to much higher bitrates.

• using ultrafast nonlinear effects induced by the light itself. In the
presence of strong optical signals, many materials exhibit non-
linear behaviour with practically instantaneous response times.
Theoretically, this would allow ultrafast all-optical signal proces-
sing. These effects are however typically very small and therefore
require very high optical powers. The recent breakthrough in fab-
ricating ultrasmall, nanophotonic devices however has made it
possible to reduce these requirements significantly.
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Clearly, each solution has its pros and cons and it is hard to tell
which one will prove to be the most interesting and cost effective in
a few decades from now. At this point, ultrafast nonlinear optics - at
least intrinsically - seems to have the largest potential and will be in-
vestigated in this work.

1.3 Focus of this work

As mentioned above, one of the largest bottlenecks for ultrafast nonlin-
ear effects is the fact that they require very high optical powers. With
the recent realization of high-quality nanophotonic structures [3], this
barrier is significantly lowered due to an increased interaction between
the light and the material. However, power is not the only problem and
also new issues arise as a result of the use of these tiny structures. In
this work, we will try to answer the question how far one can go.

As the field of nonlinear optics is so vast, we will concentrate on
two specific nonlinear phenomena: the Kerr effect and two-photon ab-
sorption. A detailed investigation of these two effects can be found in
chapter 2. In chapters 3 and 4, we thoroughly examine the potential of
nanophotonic structures for ultrafast signal processing from a theore-
tical point of view. To do this, we develop a theoretical model which
takes into account the different ultrafast nonlinear effects. This model is
then used to investigate different applications. Special attention is paid
to one of the most interesting material systems at the moment: Silicon-
on-Insulator (SOI). The obtained results are then verified experimen-
tally in chapter 5. The SOI structures used for the experiments have
been fabricated at the Interuniversity Micro-Electronics Center (IMEC,
Leuven). The nonlinear measurements have been performed in partial
cooperation with the National Institute of Information and Communi-
cations Technology (NICT, Japan). Finally, conclusions are drawn and
future work is discussed in chapter 6.

1.4 Publications

The results obtained within this work have been published in various
papers and presented at various conferences. This paragraph gives
an overview of the publications. They can also be found in the pub-
lications section of the photonics research group website : http://
photonics.intec.ugent.be . These publications may be down-

http://photonics.intec.ugent.be/publications
http://photonics.intec.ugent.be/publications
http://photonics.intec.ugent.be
http://photonics.intec.ugent.be
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loaded for personal use only. For any other use, the permission of
the copyright owner (usually the publisher of the journal) must be ob-
tained.
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Chapter 2

Nonlinear effects in standard
semiconductor systems

In this chapter, we will discuss the origin of two nonlinear phenomena
with ultrafast response times - i.e. the bound-electronic Kerr effect and
the two-photon absorption effect - and evaluate their potential in differ-
ent semiconductor material systems. Furthermore, we pay attention to
secondary effects that may occur as a result of these ultrafast effects and
that may interfere with their operation. Finally, a few words are spent
on material anisotropy and the possibility of material engineering for
increasing the nonlinear interaction.

2.1 Mathematical formulation

Mathematically, the nonlinear refractive index effect, known as the Kerr
effect, can be represented by a refractive index which linearly depends
on the intensity of the light at a certain position:

n = n0 + n2,II (2.1)

with n the total refractive index, n0 the linear refractive index, n2,I the
Kerr coefficient and I the optical intensity. Equivalently, one can write

n = n0 + n2 |E|2 (2.2)

since the light intensity is related to the electric field by

I =
1
2
ε0cn0 |E|2 (2.3)

7
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with ε0 = 8.854×10−12 F/m the free-space permittivity and c = 2.998×
108 m/s the speed of light. So one has

n2,I =
2

ε0cn0
n2 (2.4)

n2 =
ε0cn0

2
n2,I (2.5)

Many other representations exist [16], however these two are the most
common ones.

In a similar way, the linear dependence of the absorption coefficient
on the intensity, which is called the two-photon absorption effect (2PA),
can be expressed as

αtot = α0 + α2,II (2.6)

or, using equation (2.3),

αtot = α0 + α2 |E|2 (2.7)

with αtot the total absorption coefficient, α0 the linear or single-photon
absorption coefficient and α2(,I) the two-photon absorption coefficient.
Often the notation β is used instead of α2 to represent this nonlinear
absorption effect, in which case the notation α is used to indicate the
linear part.

The occurrence of these two nonlinear effects can be understood as
a third-order field dependence of the total macroscopic polarization of
a material in the frequency space [16]. In general, the total polarization
can be expanded as a function of the electric field in the time domain as

P(t) = P(0)(t) + P(1)(t) + P(2)(t) + ... (2.8)

with P(0)(t) independent of the electric field, P(1)(t) linear in the elec-
tric field, and so on. Equivalently, one has in the frequency domain1,

P(ω) = P(0)(ω) + P(1)(ω) + P(2)(ω) + ... (2.9)

with

P(n)(t) =
1
2π

∫ ∞

−∞
dωP(n)(ω) exp(jωt) (2.10)

P(n)(ω) =
∫ ∞

−∞
dtP(n)(t) exp(−jωt) (2.11)

1In this work, the phase convention exp(jωt) will be used.
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Under the conditions of time invariance, causality and the absence of
spatial dispersion, the most general form for the nth order polarization
is given by [16, 17]

P(n)(ω) = ε0

(
1
2π

)n ∫ ∞

−∞
dω1...

∫ ∞

−∞
dωnχ(n)(−ωσ;ω1, ..., ωn)

| E(ω1)...E(ωn)δ(ω − ωσ) (2.12)

with ε0 the free-space permittivity and E(ω) the electric field compo-
nent with frequency ω. χ(n) is called the nth order susceptibility tensor
and determines the process that is represented. The frequency ωσ is de-
fined by ωσ =

∑n
i=1 ωi and its minus sign in the susceptibility tensor

notation is only conventional.
Consider now only the first and third order term

P(ω) ≈ P(1)(ω) + P(3)(ω) (2.13)

and suppose that only a field with one frequency component - i.e. a
monochromatic wave - is present, so that

E(t) = Re
[
Eω′ exp(jω′t)

]
=

Eω′

2
exp(jω′t) +

E∗
ω′

2
exp(−jω′t) (2.14)

E(ω) = πEω′δ(ω − ω′) + πE∗
ωδ(ω + ω′) (2.15)

Possible polarization frequencies ωσ are ω′ and−ω′ for P(1)
ω and 3ω′, ω′,

−ω′ and −3ω′ for P(3)
ω . The polarization with the original frequency ω′

(and −ω′) is defined by

P(t) = Re
[
Pω′ exp(jω′t)

]
=

Pω′

2
exp(jω′t) +

P∗
ω′

2
exp(−jω′t)(2.16)

P(ω) = πPω′δ(ω − ω′) + πP∗
ωδ(ω + ω′) (2.17)

then consists of following parts:

Pω′ = ε0χ
(1)(−ω′;ω′) ·Eω′ + ε0χ

(3)(−ω′;ω′,−ω′, ω′)
...
Eω′

2
E∗

ω′

2
Eω′

+ε0χ
(3)(−ω′;−ω′, ω′, ω′)

...
E∗

ω′

2
Eω′

2
Eω′

+ε0χ
(3)(−ω′;ω′, ω′,−ω′)

...
Eω′

2
Eω′

2
E∗

ω′ (2.18)

Due to permutation symmetry [16], this simplifies to

Pω′ = ε0χ
(1)(−ω′;ω′) ·Eω′ +

3
4
ε0χ

(3)(−ω′;ω′,−ω′, ω′)
...Eω′E∗

ω′Eω′ (2.19)
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or in the case of a scalar susceptibility tensor

Pω′ = ε0

(
χ(1)(−ω′;ω′) +

3
4
χ(3)(−ω′;ω′,−ω′, ω′) |Eω′ |2

)
Eω′ (2.20)

The complex refractive index nc = n − jK with n the refractive index
and K the extinction coefficient, is defined by

Pω = ε0(n2
c(ω)− 1)Eω (2.21)

and for semiconductors, one typically has n >> K, so that (n− jK)2 ≈
n(n− j2K) and the refractive index is given by

n ≈
√

1 + Reχ(1)(−ω;ω) +
3
4

Reχ(3)(−ω;ω,−ω, ω) |Eω|2 (2.22)

≈
√

1 + Reχ(1)(−ω;ω) +
3Reχ(3)(−ω;ω,−ω, ω)

8
√

1 + Reχ(1)(−ω;ω)
|Eω|2 (2.23)

≡ n0 + n2 |Eω|2 (2.24)

with

n0 ≡
√

1 + Reχ(1)(−ω;ω) (2.25)

n2 ≡ 3Reχ(3)(−ω;ω,−ω, ω)
8n0

(2.26)

for small nonlinear effects (n0 >> n2 |Eω|2). In this way, the Kerr coef-
ficient n2 can be related to the real part of the third-order susceptibility:
n2 ∝ Reχ(3)(−ω;ω,−ω, ω).

Equivalently, one has

K ≈ − Imχ(1)(−ω;ω)
2n0

− 3Imχ(3)(−ω;ω,−ω, ω)
8n0

|Eω|2 (2.27)

≡ K0 + K2 |Eω|2 (2.28)

with

K0 ≡ − Imχ(1)(−ω;ω)
2n0

(2.29)

K2 ≡ −3Imχ(3)(−ω;ω,−ω, ω)
8n0

(2.30)
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The single- and two-photon absorption coefficients are associated with
the extinction coefficients K0 and K2 as follows:

α = 2
ω

c
K0 (2.31)

β = 2
ω

c
K2 (2.32)

relating the two-photon absorption coefficient directly to the imaginary
part of the third-order susceptibility: K2 ∝ Imχ(3)(−ω;ω,−ω, ω).

From this, we can conclude that the presence of the Kerr effect and
the two-photon absorption effect is inevitably related, as they are both
part of the same nonlinear susceptibility. This relation is much like that
of the linear refractive index n0 and the absorption coefficient α0, which
is known as the Kramers-Kronig relation. This will be further discussed
in the next section.

So far, nothing has however been said about the particular phys-
ical origin of intensity dependent refractive index and absorption ef-
fects. Describing them as a third-order nonlinear polarization still cov-
ers many grounds and does not provide any information about its mag-
nitude and response time.

2.2 Bound-electronic Kerr effect

The ultrafast Kerr-nonlinear effect, that is investigated in this work, is
called the bound-electronic or two-photon resonant optical Kerr effect.
The origin of its ultrafast nature can be understood in the same way
as that of the linear refractive index: it does not require real electronic
transitions, simply the possibility of an electronic transition is enough.
Therefore, its speed is estimated as that of electronic vibrations (order
fs). This in contrast to e.g. the corrections to the refractive index due to
the presence of a significant amount of free carriers, which is of course
related to the real transition of electrons and holes in the system and
therefore limited by their relaxation times. This will be further dis-
cussed in section 2.5.

Theoretical calculations of the bound-electronic Kerr effect are very
difficult because of the high order perturbation theory that is required
and the need for accurate wavefunctions and energies of many excited
states. One of the first attempts to calculate it was done by Boyle et
al. [18, 19] for the element Helium in 1966. The first estimates for n2

in semiconductor materials were obtained in 1968 by considering the
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molecular bonding orbitals at each atomic position [20, 21] and by con-
sidering the zero-frequency limit of the Franz-Keldish effect [22]. Fur-
ther work has among others been done by Boling, Glass and Owyoung
[18, 23], who deduced a semi-empirical expression valid for several
low refractive index materials and glasses in 1978. All these formu-
lae however only predicted values in the limit of low frequencies. The
first limited dispersion calculations considered the region close to the
bandgap [24].

A real breakthrough concerning the nonlinear dispersion was real-
ized in the early 90s by Sheik-Bahae et al. [25, 26]. In 1984, Wherrett

discovered that n2 roughly scales with
√

Ep

n0E4
g

[27] with Eg the bandgap
energy and Ep the momentum parameter. Sheik-Bahae et al. plotted
n2n0E

4
g/
√

Ep (n0E
4
g/
√

Ep to remove material dependence) as a func-
tion of ~ω

Eg
for various materials and saw that this curve around half

the bandgap qualitatively resembles the linear index profile n0 around
the bandgap [25, 26]. This verified that there exists a similar causality
relation between Reχ(3) and Imχ(3) as there is between the linear refrac-
tive index (related to Reχ(1)) and single-photon absorption (related to
Imχ(1)), as mentioned in the previous section. Linearly, this Kramers-
Kronig relation is given by [17]

n0(ω)− 1 =
c

π

∫ ∞

0

α(ω′)
ω′2 − ω2

dω′ (2.33)

If a perturbation ξ is now introduced into the system, then the Kramers-
Kronig transformation states that the change in refractive index ∆n at
frequency ω is associated with a change in absorption ∆α throughout
the spectrum ω′, given by,

∆n(ω, ξ) =
c

π

∫ ∞

0

∆α(ω′, ξ)
ω′2 − ω2

dω′ (2.34)

The cause of ξ is not necessarily of optical origin. To make the left-hand
side correspond to the Kerr-nonlinear refractive index change ∆n =
n2 |E|2, one must set ξ = ω. So to perform this Kramers-Kronig cal-
culation, one must determine the non-degenerate absorption ∆α(ω′, ω)
- related to Imχ(3)(−ω′;ω′, ω,−ω) - which is the absorption/emission
of light with frequency ω′ due to the presence of light with frequency
ω. Mechanisms contributing to this are non-degenerate two-photon ab-
sorption effects, stimulated Raman scattering and ac Stark effects:
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• Non-degenerate two-photon absorption is the absorption of two
photons which have frequencies ω′ and ω. Due to this process,
an electron-hole pair is created or an electron is excited from the
valence band into the conduction band (and vice versa for the
corresponding hole). Therefore, this is only possible if ~ω′+~ω ≥
Eg.

• Stimulated Raman scattering (figure 2.1) corresponds to the ab-
sorption of a photon with frequency ω (ω′) under the influence of
a photon with frequency ω′ (ω) together with the emission of a
new photon with frequency ω′ (ω). So one either has−~ω′+~ω ≥
Eg or ~ω′ − ~ω ≥ Eg. Note that in this case, only the bound-
electronic contribution is important and not the (typically) reson-
ant contribution which has a limited response time [28].

0

Eg

’

0

Eg

’

Figure 2.1: Representation of non-degenerate 2PA (left) and stimulated Ra-
man scattering (right).

• In addition to these multi-photon absorption processes, the linear
absorption of ω′ can also change due to a shift of the bandgap
as a result of ac Stark effects. Two effects are contributing to
Imχ(3)(−ω′;ω′, ω,−ω): the so-called linear Stark effect correspond-
ing to a coupling between the conduction or valence band with
itself and the quadratic Stark effect corresponding to a coupling
between the conduction and valence band. Both are triggered by
the presence of light with frequency ω.

It is important to note that in fact more than the knowledge of the de-
generate two-photon absorption effect (ω′ = ω) - which was discussed
in section 2.1 - is required.

All these effects were determined theoretically in [26] using a two-
parabolic band model and using relation (2.34), the total bound-electro-
nic Kerr effect can be calculated. This is shown in figure 2.2.
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Figure 2.2: Different contributions to the bound-electronic Kerr effect as a
function of the photon energy-bandgap fraction.

Clearly, the contribution of two-photon absorption is most signif-
icant except for the region close to the bandgap where the quadratic
Stark effect dominates. An obvious enhancement of n2 can be seen for
~ω >

Eg

2 . In addition, a change in the sign of n2 is expected around
~ω
Eg

≈ 0.7. Phenomena which are not yet taken into account in this
model are higher band effects and excitonic enhancements. Even with-
out these contributions, a good overall agreement with experimental
results was obtained.

A theory that does include higher band effects was developed by
Hutchings et al. [29]. This time, not a Kramers-Kronig approach was
used, but an explicit calculation of Reχ(3)(−ω′;ω′, ω,−ω) was perfor-
med using the Kane band model. Such a quantum-mechanical ap-
proach immediately allows to take into account all contributions to the
Kerr effect, in contrast with the former approach in which several ef-
fects were calculated one by one and then added in the end. Using this
approach, a similar dispersion shape was obtained as in [25, 26], only
with a slightly higher midgap enhancement.

Despite all theoretical work, experimental results are still necessary
for realistic modeling. This is in particular the case for indirect bandgap
structures such as Si, for which the theoretical work of Sheik-Bahae
does not apply immediately. The bound-electronic Kerr-nonlinear co-
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efficient obtained in literature for different semiconductor systems2 are
summarized in table 2.1.

material λ(µm) ~ω/Eg n0 n2,I (cm2/W) n2(cm2/V2)
SiO2 1.06 0.13 1.45 0.32× 10−15 0.06× 10−17

Si 1.54 0.72 3.48 0.60× 10−13 0.28× 10−15

Si 1.54 0.72 3.48 0.45× 10−13 0.21× 10−15

Si 1.5 0.74 3.48 0.70× 10−13 0.33× 10−15

Si 1.27 0.87 3.51 0.26× 10−13 0.12× 10−15

AlAs 1.55 0.37 2.89 0.58× 10−13 0.22× 10−15

AlGaAs 1.60 0.49 3.33 1.30× 10−13 0.58× 10−15

AlGaAs 1.55 0.51 3.33 1.50× 10−13 0.66× 10−15

AlGaAs 1.50 0.53 3.33 1.90× 10−13 0.84× 10−15

AlGaAs 0.85 0.93 3.46 −4.86× 10−13 −2.23× 10−15

GaAs 1.54 0.57 3.37 1.59× 10−13 0.71× 10−15

GaAs 1.27 0.69 3.42 −0.79× 10−13 −0.36× 10−15

GaAs 1.06 0.82 3.48 −3.20× 10−13 −1.48× 10−15

InP 1.55 0.60 3.17 (unknown) (unknown)

Table 2.1: n2 values for several semiconductors, obtained from literature [26,
29, 30, 31, 32, 33, 34, 35, 36]

Measurements from different groups show some variation in the ex-
tracted values of n2, which are typically of the order of ≈ 10 − 15%. It
must be noted that many values from literature (especially from older
papers) must be interpreted with caution, if they were measured for
~ω/Eg > 0.5 (see also section 2.5). The reported values are not neces-
sarily bound-electronic.

While it is clear that the bound-electronic nonlinear Kerr effect is a
very small effect, its main advantage is however its ultrafast response
and relaxation time. Due to device limitations, it has not been pos-
sible yet to measure them, but both are believed to be at least in the
fs-regime. This means that for all practical signal pulse lengths, the
bound-electronic Kerr effect may be considered to be instantaneous.

2In this work, AlGaAs stands for Al0.18Ga0.82As. This composition is of particular
interest for nonlinear research because its bandgap energy Eg is about twice the photon
energy at λ = 1.55 µm.
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2.3 Two-photon absorption

As derived in the beginning of this chapter, the intrinsic counterpart
of the bound-electronic Kerr effect is (degenerate) two-photon absorp-
tion3. In this process, two photons with the same energy ~ω are ab-
sorbed with the creation of a free electron and hole or an electron-hole
pair as a result. Of course, this is only possible if ~ω ≥ Eg

2 .
A model for two-photon absorption dispersion was also calculated

by Sheik-Bahae et al. [25], using again a two-parabolic band model and
the result is plotted in figure 2.3.
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Figure 2.3: Two-photon absorption as a function of the photon energy-
bandgap fraction.

Hutchings et al. [37] used a four-band Kane model to calculate β(ω),
in accordance with their approach for determining the bound-electronic
n2. This calculation is substantially more difficult than when using a
two-band model, and excellent agreement with experimental results
was obtained.

The two-photon absorption coefficients obtained in literature for
semiconductor systems are summarized in table 2.2.

Like the bound-electronic Kerr effect, two-photon absorption may
also be considered to be ultrafast, but also very weak.

3and not the non-degenerate two-photon absorption effect, Raman scattering and
ac Stark effects, since only a single frequency is to be considered. This is in contrast
with the calculation of n2 using the KK transformation.
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material λ(µm) ~ω/Eg n0 βI (cm/W) β(cm/V2)
SiO2 1.06 0.13 1.45 ≈ 0 ≈ 0
Si 1.54 0.72 3.48 0.45× 10−9 2.08× 10−12

Si 1.54 0.72 3.48 0.79× 10−9 3.65× 10−12

Si 1.5 0.74 3.48 0.90× 10−9 4.16× 10−12

Si 1.27 0.87 3.51 0.74× 10−9 3.45× 10−12

AlAs 1.55 0.37 2.89 (unknown) (unknown)
AlGaAs 1.60 0.49 3.33 0.15× 10−9 0.66× 10−12

AlGaAs 1.55 0.51 3.33 0.18× 10−9 0.80× 10−12

AlGaAs 1.50 0.53 3.33 1.00× 10−9 4.42× 10−12

AlGaAs 0.85 0.93 3.46 (unknown) (unknown)
GaAs 1.54 0.57 3.37 10.20× 10−9 45.62× 10−12

GaAs 1.27 0.69 3.42 15.10× 10−9 68.54× 10−12

GaAs 1.06 0.82 3.48 18.00× 10−9 83.14× 10−12

InP 1.55 0.60 3.17 24− 33× 10−9 101− 139× 10−12

Table 2.2: β values, obtained from literature [29, 32, 33, 35, 36, 38, 39], for the
same material systems

2.4 Figure of merit

Since the bound-electronic Kerr effect and degenerate two-photon ab-
sorption are part of the same third-order susceptibility and therefore
unavoidably related, they will simultaneously influence the behaviour
of possible nonlinear components. From figures 2.2 and 2.3, it can be
seen that both the magnitude of n2 and the proportion between n2 and
β change for different ~ω/Eg. Therefore, an optimum can be expected,
for which n2 is relatively high and β is tolerable. To determine the
amount of two-photon absorption which can be tolerated, one has to
solve the wave equation. For the monochromatic wave in the case of
an isotropic material, this equation is given by [40]

∇2Eω +
ω2

c2
Eω = −µ0ω

2Pω (2.35)

Considering again only the first and third order polarization, this be-
comes

∇2Eω +
ω2

c2

(
1 + χ(1)(−ω, ω) +

3
4
χ(3)(−ω, ω,−ω, ω) |Eω|2

)
Eω = 0

(2.36)
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A possible method to solve this nonlinear equation is using a multi-
scale approach [41]. In one dimension with z the axis of propagation,
in the absence of linear loss and considering only a wave propagating
in the forward direction, this results (in first order) in [42]:

Eω =
E0,ω√

1 + β |E0,ω|2 z
exp

(
−j

ω

c
n0z − j

ωn2

cβ
ln(1 + β |E0,ω|2 z)

)
(2.37)

with E0,ω the electric field at z = 0. Higher order corrections can be
obtained by further calculation, however such calculations are increas-
ingly difficult and do not give significant changes.

The influence of two-photon absorption not only results in a de-
creasing amplitude of the field along the direction of propagation, but
also in a smaller phase change: the induced change is now only,

∆φ(z) = −ωn2

cβ
ln(1 + β |E0,ω|2 z) (2.38)

instead of

∆φ(z) = −ωn2

c
|E0,ω|2 z (2.39)

in the absence of two-photon absorption.
In figure 2.4, the relation between total intensity transmission T =
1

1+β|E0,ω |2z
and the obtained phase shift |∆φ| is plotted for different val-

ues of n2
βλ .

Starting from equation (2.37), a figure of merit for Kerr-nonlinear
materials is defined [43, 44, 45] by stating that a certain phase shift
∆φ should be obtainable with a remaining transmission of at least 1/e.
From equation (2.37), it can be derived that this is possible if

|∆φ| < ωn2

cβ
(2.40)

In case a phase shift of π is required (e.g. for Kerr-nonlinear phase
shifting [45]), the figure of merit condition becomes

FOM ≡
∣∣∣∣ n2

λβ

∣∣∣∣ > 1
2

(2.41)

while a phase shift of 4π (e.g. for a Kerr-nonlinear directional coup-
ler [44]) would require that,

FOM ≡
∣∣∣∣ n2

λβ

∣∣∣∣ > 2 (2.42)
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Figure 2.4: Intensity transmission as a function of phase shift for different
values of n2

βλ ≡ FOM . The line T = 1/e is also drawn (see further).

with the figure of merit FOM defined as
∣∣∣ n2
λβ

∣∣∣.
Using the results from [25] and [26], the figure of merit can be es-

timated theoretically as a function of the optical energy relative to the
bandgap. This is plotted in figure 2.5. The lines FOM = 2 and FOM =
1
2 are also indicated.
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Figure 2.5: Figure of merit as a function of the relative frequency ~ω
Eg

. The lines
FOM = 0.5 and FOM = 2 are also shown.

As can be seen, two frequency regions show possibly useful FOM -
values for Kerr-nonlinear operation, i.e. 0 ≤ ~ω ≤ 0.55Eg and 0.95Eg ≤
~ω ≤ Eg. In the other parts, two-photon absorption will be the dom-
inant effect. However, because of large carrier related effects (see sec-
tion 2.5) close to the bandgap, the midgap region is generally preferred.
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On the other hand, the lower end of the midgap region is limited by
three-photon absorption [36, 46] and has relatively small n2-values (see
figure 2.2), leading to an optimum frequency region of approximately
0.45 ≤ ~ω ≤ 0.55Eg.

The figures of merit for the materials and wavelengths of tables 2.1
and 2.2 are shown in table 2.3.

material λ(µm) ~ω/Eg n0 FOM

SiO2 1.06 0.13 1.45 >> 1
Si 1.54 0.72 3.48 0.866
Si 1.54 0.72 3.48 0.370
Si 1.5 0.74 3.48 0.519
Si 1.27 0.87 3.51 0.277
AlAs 1.55 0.37 2.89 (unknown)
AlGaAs 1.60 0.49 3.33 5.417
AlGaAs 1.55 0.51 3.33 5.376
AlGaAs 1.50 0.53 3.33 1.264
AlGaAs 0.85 0.93 3.46 (unknown)
GaAs 1.54 0.57 3.37 0.101
GaAs 1.27 0.69 3.42 0.041
GaAs 1.06 0.82 3.48 0.167
InP 1.55 0.60 3.17 (unknown)

Table 2.3: FOM values, based on tables 2.1 and 2.2

Based on the discussion above, this means that AlGaAs is by far
the best Kerr-nonlinear material for operation around the wavelength
of 1.55 µm. Although SiO2 also has a good FOM , its Kerr coefficient
is much smaller than that of Al0.18Ga0.82As (see table 2.1). For two-
photon absorption on the other hand, GaAs is clearly an excellent can-
didate. The potential of Si at 1.55 µm at this point is unclear, due to the
incompatibility of the measurement results in literature.

2.5 Carrier effects

The result of two-photon or even single-photon absorption - if ~ω ≥ Eg

- is the creation of free carriers (and electron-hole pairs), which will in
turn change the electrical and optical properties of the structure. They
give rise to additional nonlinear effects, which can also be used in their
own sight. As these contributions can be significant, it is interesting to
look into some of the more important effects in more detail.
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Bandfilling occurs when the probability that an electron state in the
conduction band or a hole state in the valence band is filled, is not zero
anymore. Free carriers partially fill the conduction and valence band
and as a consequence, the shape and position of the absorption edge
change (see figure 2.6). Bandfilling decreases the absorption coefficient
for frequencies close to the bandgap (∆α < 0). This effect is also called
the Burstein-Moss effect [47, 48, 49, 50, 51].

0

Eg

Eg

’ > Eg

Figure 2.6: Representation of the bandfilling effect. Due to the filling of the
valence and conduction band, the absorption changes and moves to higher
frequencies.

In addition, the wave functions of the occupied states in the valence
and conduction band will start to overlap, giving rise to a interacting
gas of particles. On top of that, particles with the same spin will try to
avoid each other due to the Pauli exclusion principle. The net effect is a
screening of the electrons and holes, resulting in a decrease in their en-
ergy and a shrinkage of the bandgap [47, 48, 49]. In contrast to the case
of bandfilling, now ∆α > 0, so it partially compensates the bandfill-
ing effect, depending on the carrier density. Again the change is most
significant close to the bandgap4.

If the total absorption change due to bandfilling and plasma screen-
ing is given by ∆α(N), then the corresponding refractive index change

4In a MQW, effects other than bandfilling and plasma screening dominate the car-
rier generated nonlinearities around the bandgap. Especially exciton bleaching due to
phase-space filling [52, 53, 54, 55] - which resembles bandfilling but then for excitons -
becomes important.



22 Nonlinear effects in standard semiconductor systems

can again be calculated using the Kramers-Kronig relation (2.34)5,

∆n(ω, N) =
c

π

∫ ∞

0

∆α(ω′, N)
ω′2 − ω2

dω′ (2.43)

Until now, only interband absorption effects were discussed. How-
ever also intraband effects have to be taken into account. A free carrier
can absorb a photon and move to a higher energy state within the band.
In this way, a hot(ter) carrier is created (figure 2.7). Note that this free-
carrier absorption (FCA) - also known as the plasma effect - is only
existing due to the presence of free electrons and holes, which in turn
were created by single- and two-photon absorption processes.

Eg

Figure 2.7: Representation of free-carrier absorption. Absorption of the in-
coming light due to the presence of free carriers, in this figure free electrons.

This change in absorption and the associated change in refractive
index (also indicated as free-carrier dispersion (FCD)) can be written as
as [47, 56, 57, 58]

∆αFCA(N) = σaN (2.44)
∆nFCD(N) = σrN (2.45)

with σa the free-carrier absorption cross section and σr the free-carrier
refractive volume.

The full carrier impact can now be summarized as follows. As a
first step, the light loss along the propagation axis z is given by,

dI

dz
(z, t) = −αI(z, t)− αaddI(z, t)− βI2(z, t)

−(∆α(N) + σaN(z, t))I(z, t) (2.46)

5Intrinsic materials are assumed so that the free electron concentration N is equal
to the free hole concentration P .
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Possible absorption processes consist of single- and two-photon ab-
sorption (depending on the frequency region of the optical pulse) and
extra carrier absorption processes. In addition, also not absorptive loss
mechanisms can be present such as radiative and scattering loss (mod-
eled by the additional parameter αadd). Carriers are only generated by
absorption and can be calculated by solving,

dN

dt
(z, t) =

αI(z, t)
~ω

+
βI2(z, t)

2~ω
+

∆α(N)I(z, t)
~ω

− f(N, I) (2.47)

In this equation, the term f(N, I) ≡ N(z,t)
τ(N,I) represents the possible car-

rier recombination processes (both radiative and non-radiative) which
may depend on both the carrier density and optical intensity, with τ
the time constant. To be correct, an extra thermalization term would be
required in equation (2.47): created high-energetic carriers will heat the
rest of the distribution through carrier-carrier scattering and then cool
down by means of phonon emission on a timescale of ≈ 1 ps (depend-
ing on the amount of carriers). Since this is much faster than the typi-
cal carrier recombination time constant, the carrier distribution may be
considered to be at equilibrium temperature and there is no need for the
extra term in equation (2.47) [56]. Note that equations (2.46) and (2.47)
are coupled and need to be solved simultaneously.

Once this is done and N(z, t) is determined, the total carrier related
refractive index change is given by,

∆n(z, t) = ∆n(N) + σrN(z, t) (2.48)

In this way, index changes can be achieved which are several times
higher than the ones obtainable using the bound-electronic Kerr effect
with the same input power. Note that depending on the relation be-
tween N and I , this index change may have the mathematical form of a
Kerr effect as often is the case for e.g. bandfilling effects, in which case
the effect is not two-photon resonant, but instead single-photon reson-
ant [40]. In contrast to the bound-electronic Kerr effect, carrier related
refractive index effects involve real transitions of electrons and holes -
i.e. free carriers must effectively be created - and are therefore limited
in speed by the carrier lifetime.

This recovery or recombination of the electron and hole densities
is possible through a large range of processes, which can be radiative
and non-radiative. The recombination time constant is then determined
by the dominant mechanism, which among other things can depend
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on the carrier density, the optical intensity, the material and its proces-
sing...

To obtain fast nonlinear operation, the following recombination me-
chanisms can be used [59, 51, 56],

• Stimulated emission. In this case, an electron and hole recombine
in the presence of another photon(s) with generation of a photon
with identical properties. This mechanism is also used in optical
amplifiers and lasers. In nonlinear structures, it can be used in
a pump-probe configuration, in which the pump beam not only
induces nonlinear behaviour onto the probe, but also amplifies it.
In InP, time constants down to 7 ps were obtained in this way [60].

• Carrier recombination induced by deep recombination centers.
By means of proton bombardment, deep recombination centers
can be produced, where the carriers can recombine efficiently.
In this way, recovery times of 150-270 ps were achieved in GaAs
MQWs [61, 62]. Further reduction is possible by further bombard-
ment, however accompanied by a decreasing nonlinear response.

• Surface recombination. In small waveguides, the carriers can dif-
fuse to the structure surface where they quickly recombine. Very
fast recovery can be obtained by using very small waveguides.
Recovery time constants of 30-50 ps have been obtained in GaAs
[57, 58, 61, 63] and 100-120 ps in InP [58] for waveguides of ≈
0.5 µm wide. In Si, values of the order of 0.1-10 ns were achieved
[64, 65, 66, 67] and values down to 8 ps in AlGaAs [68].

• Carrier sweeping by applying an external dc electric field. Recov-
ery time reductions from 1 ns to 80-90 ps in GaAs are reported
using this technique [51, 69]. However, a p-i-n material layer
structure must be used instead of standard waveguide structures
to reduce the perturbation due to the extra applied field. Fur-
thermore, extra loss can be introduced in this structure due to
the Franz-Keldish effect [51]. Recently, this technique was used
to create fast Si modulators with recovery time of down to 50-
100 ps [14, 15, 70].

From this, it can be concluded that surface recombination is the
most efficient recovery mechanism in terms of reducing the time con-
stant without the requirement of additional structural complexity. So-
lutions like stimulated emission and carrier sweeping can in some cases
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even be more effective, however they require more advanced fabrica-
tion techniques. Up till now, carrier related effects are therefore recovery-
limited to data operations of about 10 Gb/s.

Note also that the lower the carrier lifetime, the higher the required
input power becomes to obtain the same carrier density and thus car-
rier related nonlinearity. In the ultimate case of τcarr = 0, no regime car-
rier density can exist and therefore no related nonlinearity is possible,
which is a fundamental difference with the bound-electronic nonlinear
effects.

It is however possible to go to even higher bitrates without the need
for reducing the carrier lifetime by using interferometric techniques.
An example of this approach is described in [71, 72].

2.6 Thermal effects

Absorption of the incoming light does not only give rise to carrier re-
lated effects, but it also causes thermal heating. This effect has already
indirectly been introduced in the previous section: high-energetic
carriers relax by means of phonon emission, which results in a tem-
perature change.

In reality, this carrier-phonon interaction is very complex and largely
depends on the dominant carrier decay mechanism and material. Apart
from the heat produced due to carrier thermalization, the phonon pro-
duction in the recombination mechanisms mentioned in section 2.5 is
the following,

• Stimulated emission. In principle, phonon creation is possible,
if the band structure of the active material is indirect. However,
most of the energy which is released in the recombination process
is carried away by the created photon [59].

• Carrier recombination induced by deep recombination centers. In
this case, much depends on the band diagram of the defects. If
e.g. the defect is a donor with an H-atom like conduction band,
then a free electron can lower its energy by consecutively emitting
a phonon for each level it descends (the outer levels typically have
an energy separation of the order of 0.1 eV. However, as the lowest
energy states of such a donor are separated by larger energies,
these final states can only be reached by photon emission (with a
wavelength much longer than the band gap).
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• Surface recombination. Surface states typically form a quasi-conti-
nuum of states between the conduction and valence band. As a
result, recombination is possible without photon emission, i.e. all
energy is converted into heat.

• Carrier sweeping by applying a reverse biased, external dc elec-
tric field. In this case, the energy of the carriers is largely con-
verted into heat in an external resistor.

From this, it is clear that it is possible that a large amount of the
absorbed optical power is ultimately converted into heat inside the de-
vice. To obtain the exact percentage, a detailed balance calculation has
to be performed. The temperature change can in general be calculated
as [73],

dT

dt
=

xξ

ρCp
− T − T0

τth
(2.49)

with T the temperature, T0 the ambient temperature, ξ the absorbed
energy density, x the fraction of ξ which is converted in heat, ρ the
density, Cp the specific heat at constant pressure and τth the thermal
relaxation time constant.

Like the presence of carriers, temperature also has an influence on
the electrical and optical properties of the material. The most important
effect is the temperature-dependence of the refractive index,

∆n(T ) =
dn

dT

∣∣∣∣
T=T0

(T − T0) (2.50)

with dn0
dT incorporating both the direct temporal dependence (i.e. ∂n0

∂T )
and thermal expansion effects [74]. Other parameters that change with
temperature are a.o. the band gap...

2.7 Complete nonlinear picture

From the previous sections, it is clear that the complete nonlinear pic-
ture is very complex: multiple nonlinear effects are competing with
each other, all depending on each other. In figure 2.8, the situation is
qualitatively represented for light inside a material systems which has
a frequency around half the bandgap.

Quantitatively, the overall effect of both carriers and heat can be
estimated using sections 2.5 and 2.6. Let us do this for AlGaAs (λ =
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Figure 2.8: When light enters in this material, it can be absorbed through
two-photon absorption and give rise to a change in the refractive index ef-
fect proportional to the light intensity: the Kerr effect. Free carriers that are
excited through the 2PA process, can give rise to free-carrier absorption and
associated a refractive index change: free carrier dispersion. After a while,
these carriers will recombine and in the case of submicron structures (such as
photonic wires), this is mainly due to surface recombination. This interband
relaxation together with the intraband relaxation effects from carriers created
due to 2PA and FCA will meanly lead to phonon creation, which results in
heating of the structure and gives rise to thermal expansion and a thermal re-
fractive index change. Due to conduction and convection, the structure finally
cools down to a steady-state temperature.

1.55 µm), one of the most interesting semiconductor materials for Kerr-
nonlinear effects.

Using equations (2.46), (2.47) and (2.49), the complete picture can be
summarized in these three equations:

dI

dz
(z, t) = −αaddI(z, t)− βII

2(z, t)− σaN(z, t)I(z, t) (2.51)

dN

dt
(z, t) =

βII
2(z, t)

2~ω
− N(z, t)

τcarr
(2.52)

dT

dt
(z, t) =

βII
2(z, t) + σaN(z, t)I(z, t)

ρCp
− T (z, t)− T0

τth
(2.53)

with τcarr the carrier and τth the thermal life time. At the wavelength
of 1.55 µm, linear absorption is negligible and the main free carrier con-
tribution is the plasma effect.

For high-bitrate operation, an average carrier and heat distribution
will be generated since τcarr and τth are relatively high: dN

dt ≈
dT
dt ≈ 0,
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parameter (dim) AlGaAs Ref
n2,I (cm2/W) 1.50× 10−13 [35]
βI (cm/W) 0.18× 10−9 [35]
γI (cm3/W2) 0.06× 10−18 [36]
σr (cm3) −1.0× 10−20 [57, 58]
σa (cm2) 1.5× 10−16 [57, 58]
τcarr (ps) 30 [57]
dn
dT

∣∣
T=300K

(1/K) 1.3× 10−4 [75]
τth (ns) 25 [75, 76]
ρCp (J/K cm3) 1.75 [75]

Table 2.4: Material parameters of AlGaAs at 1.55 µm.

leading to

dI

dz
(z, t) = −αaddI(z, t)− βII

2(z, t)− σaβII
2
0 (z)τcarr

4~ω
I(z, t) (2.54)

N(z) =
βII

2
0 (z)τcarr

4~ω
(2.55)

T (z)− T0 ≈ βII
2
0 (z)

(4~ω + σaI0(z)τcarr) τth

8~ωρCp
(2.56)

in the assumption of a NRZ signal with peak power I0(z). The average
power is then I0(z)

2 .
In this way, the refractive index effects are given by:

∆nKerr(z, t) = n2,II(z, t) (2.57)

∆ncarr,β(z) ≈ σrβII
2
0 (z)τcarr

4~ω
(2.58)

∆nth,β(z) ≈ dn

dT

∣∣∣∣
T=T0

βII
2
0 (z)

(4~ω + σaI0(z)τcarr) τth

8~ωρCp
(2.59)

For materials like AlGaAs with a small two-photon absorption coeffi-
cient, three-photon absorption can become dominant (represented by
∆α = γII

2), leading to the following additional secondary refractive
index effects:

∆ncarr,γ(z) ≈ σrγII
3
0 (z)τcarr

6~ω
(2.60)

∆nth,γ(z) ≈ dn

dT

∣∣∣∣
T=T0

γII
3
0 (z)

(6~ω + σaI0(z)τcarr) τth

12~ωρCp
(2.61)
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These different contributions are plotted in figure 2.9, using the mate-
rial parameters6 for AlGaAs at 1.55 µm given in table 2.4.
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Figure 2.9: Different contributions to the nonlinear refractive index change in
AlGaAs as function of the peak power.

From this figure, it can be seen that the bound-electronic Kerr effect
is dominant at lower intensities. At higher intensity, the thermal con-
tribution - which is dominated by two-photon absorption - surpasses
the Kerr effect due to its I0(z)2 and I0(z)3 dependence. This means
that possible fluctuations of the thermal effects (e.g. long 000... or 111...
signals) can really be expected to interfere with possible ultrafast oper-
ation.

2.8 Material anisotropy

In section 2.1, the nonlinear effects were assumed to be isotropic, how-
ever in reality, the semiconductor materials mentioned above have a
cubic symmetry. As a result, these nonlinear materials cannot be de-
scribed by a simple third-order susceptibility χ(3)(−ω;ω,−ω, ω), but
instead, they have three independent elements in their susceptibility
tensor [16].

6For the carrier constants (σr , σa, τcarr), values of GaAs are used as Drude calcula-
tions do not always provide accurate results [77]. To estimate τth, a one-dimensional
material system model was used for the AlGaAs-AlOx system of section 3.1.
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If one now calculates the third-order polarization P(3)
ω , true Kerr-

nonlinear and two-photon absorptive behaviour, as described by

P(3)
ω =

3
4
ε0χ

(3)
eff (−ω, ω,−ω, ω) |Eω|2 Eω (2.62)

is only found for specific field polarizations:

• the linear polarizations (±1, 0, 0), (0,±1, 0), (0, 0,±1);
(± 1√

2
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2
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2
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2
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2
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2
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(
∓j 2π

3
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)

with (u, v, w) the vector representation in the crystallographic basis.
Furthermore, the nonlinear coefficients n2 and β are different along
each of these six subsets. This was calculated in appendix A.

This anisotropic and polarization dependent behaviour of the third-
order polarization has theoretically been modeled by Hutchings et al.,
both for the Kerr coefficient n2 [78] and two-photon absorption coeffi-
cient β [37]. Experimental verification of these results has been carried
out for the Kerr coefficients of AlGaAs and Si (table 2.5, the polarization
type is always linear). The obtained values are in good agreement with
the theoretical anisotropy predicted by Hutchings.

material<dir> λ(µm) ~ω/Eg n0 n2,I (cm2/W) n2(cm2/V2)
Si<110> 1.54 0.72 3.48 0.45× 10−13 0.21× 10−15

Si<111> 1.54 0.72 3.48 0.43× 10−13 0.20× 10−15

AlGaAs<100> 1.55 0.51 3.33 1.50× 10−13 0.66× 10−15

AlGaAs<110> 1.55 0.51 3.33 1.40× 10−13 0.62× 10−15

Table 2.5: Anisotropic n2 values for several semiconductors, obtained from
literature [32, 35, 36]

As can be seen, these differences for n2 between the different (linear)
polarization directions are relatively small. For the case of β however,
the differences are more important, which may lead to the situation
that the direction with optimal n2 has a much poorer FOM than other
polarization directions. This is e.g. the case for AlGaAs (table 2.6, the
polarization type is again linear), leading to even better FOM values
than reported in table 2.3. In some cases, the main limitation will be
formed by three-photon rather than two-photon absorption.
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material<dir) λ(µm) ~ω/Eg n0 βI (cm/W) β(cm/V2)
Si<110> 1.54 0.72 3.48 0.79× 10−9 3.65× 10−12

Si<111> 1.54 0.72 3.48 0.88× 10−9 4.07× 10−12

AlGaAs<100> 1.55 0.51 3.33 0.18× 10−9 0.80× 10−12

AlGaAs<110> 1.55 0.51 3.33 ≈ 0 ≈ 0

Table 2.6: Anisotropic β values, obtained from literature [32, 36]

2.9 Material engineering

As mentioned in section 2.2, it has been derived by Wherrett that the
plots n2n0E

4
g/
√

Ep and βn0E
3
g/
√

Ep as a function of ~ω
Eg

are almost in-
dependent of the specific semiconductor material. Since the optimum
Eg is now determined by the wavelength of the light λ (e.g. for op-
timum Kerr-nonlinear behaviour 0.45 1

λg
≤ 1

λ ≤ 0.55 1
λg

with λg the
bandgap wavelength) and for semiconductors, n0 ≈ 3 and Ep ≈ 22 eV,
there are in fact no parameters left to optimize the value of n2 in the
case of bulk semiconductor materials. Although the model of Wher-
rett has its limitations, large improvements of the obtainable n2 and β
values at λ = 1.55 µm should not be expected, at least not with bulk
materials. Only tuning for the anisotropic effects remains.

To further improve the Kerr and two-photon absorption coefficients,
more complex material systems are being investigated, such as poly-
mers [79, 80], quantum wells/wires/dots [81, 82, 83, 84, 85, 86], nano-
crystals [87, 88, 89]... However, at the moment, most research has been
done at wavelengths which are not directly suited for telecom purposes
(typically 1 µm) or at effects which are carrier related. Very promis-
ing preliminary results in this field have also been obtained by co-
researchers at the Department of Inorganic and Physical Chemistry of
Ghent University in the context of colloidal nanocrystals [90].

2.10 Conclusions

In this chapter, we discussed the mathematical and physical origin of
two ultrafast nonlinear effects: the bound-electronic Kerr effect and the
two-photon absorption process. Both are parts of the same nonlinear
susceptibility and therefore interdependent. Which one of these two
weak effects dominates, is largely determined by the relative position
of the light frequency compared to the material bandgap. As a result,
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AlGaAs is one of the most appropriate materials for Kerr-nonlinear op-
eration at the telecom wavelength 1.55 µm. At this wavelength, GaAs
and InP on the other hand are excellent candidates for two-photon ab-
sorption. Whether Si at 1.55 µm is more suited for either Kerr-nonlinear
or two-photon absorption behaviour is difficult to say due to incompat-
ibility of the measurement results in literature.

In addition, it was shown that secondary effects - such as the in-
fluence of generated carriers and heating - may have a significant im-
pact on the ultrafast nonlinear operation and must be taken into ac-
count. These secondary effects are typically much slower, but also
much stronger. Even in the case of a good Kerr-nonlinear material such
as AlGaAs, thermal effects can be dominant. A possible way to prevent
heating is e.g. carrier sweeping. Carrier effects themselves on the other
hand can provide a viable alternative for data processing up to about
10 Gb/s (higher bitrates are possible with differential techniques).



Chapter 3

Transverse nonlinear
confinement: waveguides

In the previous chapter, we have seen that ultrafast nonlinear effects
are typically also very small (figure 2.9): for a refractive index change
of ∆n = 10−4, intensities of the order 1 − 10 GW/cm2 are required
for semiconductor materials. To obtain these high intensities with rea-
sonable power budgets, waveguides with very small effective modal
areas - such as photonic wires [91] and photonic crystal (PhC) wave-
guides [92] - must be used.

In this chapter, we calculate this enhancement for two very different
waveguide configurations and apply the results to determine what the
optimum configuration would be. We also discuss the possible appli-
cations of the bound-electronic Kerr and two-photon absorption effect
in such waveguides and determine typical power levels in absence of
secondary effects.

3.1 Waveguide confinement

In this section, we will use the theory discussed in appendix B to calcu-
late the effective nonlinear coefficients of waveguides in three different
nonlinear semiconductor material systems:

• the first system is the high contrast1 Silicon-on-Insulator (SOI)
system which is evaluated both for Kerr and two-photon absorp-

1both laterally and vertically.

33
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tion purposes:2 n2,Si = 0.45 × 10−13 cm2/V2, n2,SiO2 = 0 and
βSi = 3.65× 10−12 cm/V2, βSiO2 = 0. The Si thickness is taken to
be 220 nm and the width of the waveguide is varied.

• the second system is the GaAs-AlGaAs system with low verti-
cal and high lateral contrast, used in [58]. This system is con-
sidered for two-photon absorption effects with βGaAs = 45.62 ×
10−12 cm/V2 and βAlGaAs ≈ 0. The GaAs thickness is equal to
500 nm and the thickness of the upper AlGaAs cladding layer is
300 nm. The width of the waveguide is again varied.

• the third system is the high contrast3 AlGaAs-AlOx system with
Kerr coefficients n2,AlGaAs = 1.50×10−13 cm2/V2 and n2,AlOx = 0.
Now, both the height and the width of the waveguide is varied.

3.1.1 Silicon-on-Insulator (SOI) system

This material system is shown in figure 3.1. The width w of the wave-
guide is still to be optimized.

SiO2 cladding (n = 1.45)

Si core (n = 3.47)

Si substrate

y

z
x

Figure 3.1: Silicon-on-Insulator waveguide system

Using the eigenmode expansion tool of CAMFR [93, 94] and equa-
tion (B.53), the linear and nonlinear effective indices, which express the
effective index change as a function of the optical power (appendix B),
were determined - for up to 8 guided modes - as a function of wave-
guide width for a wavelength of λ = 1.55 µm and the results are given
in figure 3.2. The effective two-photon absorption coefficient βeff curve
is identical to the n2,eff curve, except for a constant factor given by

2Despite the incompatibility, most papers in literature cite the nonlinear Si coeffi-
cients measured by Dinu et al. [32]. Therefore, these values will also be used in this
work.

3also both laterally and vertically.
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βI/n2I . Linear interpolation was used to replace divergent simulation
solutions.
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Figure 3.2: Linear and nonlinear effective index as function of wire width at
the telecom wavelength λ = 1.55 µm.

In figure 3.2, the modes with the highest linear effective index are
TE-like4, while the modes with the lower indices (bottom figure 3.2)
are TM-like. Interactions between odd TE-like and even TM-like (and
vice versa) resulting in anti-crossings are visible (see also [3]). At the
telecom wavelength λ = 1.55 µm, the SOI structure has only a ground
TE-like mode for widths of approximately 0.3− 0.6 µm.

For n2,eff , this results in a curve with a single maximum for each
mode: this maximum corresponds to an optimum confinement of the
light inside the waveguide. Clearly, this optimum is higher for lower
orders due to the better confinement. For the ground TE-like mode,
the highest nonlinear interaction is obtained for a width of 0.35 µm.
However, because of imperfect fabrication and the resulting loss [91, 65]
due to sidewall roughness and surface absorption, it can be better to use
wider waveguides in practice 5.

To determine the Kerr effect and two-photon absorption as a func-
tion of power P instead of intensity I , we can define an effective third-

4In three-dimensional structures, the designation TE and TM is not completely cor-
rect - in particular for very small waveguides, however conventionally the same in-
dication as used as in the two-dimensional slab waveguide case: TE with transverse
electric field Ex and TM with transverse electric field Ey .

5For safety reasons, it is not advisable to tolerate modes with the same parity as
the mode one plans to use. In this case, this means w <0.9 µm (beginning of the third
TE-like mode).
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order nonlinear area by ∆n = n2,I
P

A
(3)
eff

and equivalently ∆α = βI
P

A
(3)
eff

.

This is also discussed in section B.2. Using the equation (B.53), the ef-
fective third-order nonlinear area6 A

(3)
eff is then given by:

A
(3)
eff =

1
ε20c

2

[
Re
∫

(E×H∗) .ezdxdy
]2∫

NL n2
0(x, y) |E(x, y)|4 dxdy

(3.3)

In general, this value is not equal to the effective modal area Am
eff , de-

fined as [95]

Am
eff =

∫
n2

0(x, y) |E(x, y)|2 dxdy

max(n2
0(x, y) |E(x, y)|2)

(3.4)

which is used to indicate confinement of the light in a structure. Here,
Am

eff has a minimum for w = 0.45 µm (Am
eff = 0.063 µm2). Both are nev-

ertheless of the same magnitude.
In this work, a wire width of w = 0.5 µm will generally be assumed.

Its properties are compared to that of w = 0.35 µm in table 3.1:

w (µm) n0,eff n2,eff (W−1) βeff (W−1cm−1)
0.35 1.85 8.81× 10−5 1.55
0.5 2.37 6.40× 10−5 1.12
w (µm) A

(3)
eff (µm2) Am

eff (µm2)
0.35 0.051 0.071
0.5 0.071 0.064

Table 3.1: Linear and nonlinear properties of different SOI wires.

The n2,eff value for w = 0.5 µm is already 40% smaller than the opti-
mum value for the width of w = 0.35 µm. Nevertheless, even in the case
of w = 0.5 µm, the obtained nonlinear coefficient is still much higher
than that for w > 2 µm.

6Other definitions of A
(3)
eff are used in literature, such as [36, 65]:

A
(3)
eff =

[∫
dxn2

0(x, y) |E(x, y)|2 dxdy
]2∫

NL
n4

0(x, y) |E(x, y)|4 dxdy
(3.1)

A
(3)
eff =

[∫
dx |E(x, y)|2 dxdy

]2∫
NL
|E(x, y)|4 dxdy

(3.2)

all leading to similar values (variations up to 20%). Equation (3.3) however was found
to coincide with direct numerical simulations of the effective index and absorption
change as a function of power (within numerical accuracy).
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3.1.2 GaAs-AlGaAs system

This layer structure, shown in figure 3.3, was used for two-photon ab-
sorption experiments by Ibrahim et al. [58] with a width of 0.8 µm.
Here, the width w of the waveguide is still considered to be undefined.

GaAs substrate

GaAs core (n=3.37)

Al0.5Ga0.5As cladding

Al0.5Ga0.5As cladding (n = 3.14)

y

z
x

Figure 3.3: GaAs-AlGaAs waveguide system

The effective linear and nonlinear indices as a function of wave-
guide width are plotted in figure 3.4 for a wavelength of λ = 1.55 µm.
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Figure 3.4: Effective linear index and two-photon absorption coefficient as
function of wire width at the telecom wavelength λ = 1.55 µm.

In this low vertical contrast system, TM-like modes have the high-
est effective index at lower waveguide widths, while TE-like modes
dominate wider waveguides: for the ground modes, one has e.g. that
nTM,0

0,eff > nTE,0
0,eff for w <1.2 µm while for w >1.2 µm nTM,0

0,eff < nTE,0
0,eff . The

effective two-photon absorption coefficient - and lowest A
(3)
eff value - is
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obtained for the ground TE-like mode at a width of 0.8 µm and not for
the ground TM mode. This can be explained by the fact that the linear
refractive index profile with n0,GaAs ≈ n0,AlGaAs is very different from
the spatial profile of the two-photon absorption coefficient, for which
βGaAs >> βAlGaAs. As a result, the nonlinear material is much more
excited in case of a TE-like mode than in the TM-like case.

The results for the two ground modes at a width of 0.8 µm are sum-
marized in table 3.2.

mode n0,eff βeff (W−1cm−1) A
(3)
eff (µm2) Am

eff (µm2)
TE 3.12 2.235 0.456 0.242
TM 3.15 1.916 0.532 0.263

Table 3.2: Linear and nonlinear properties of 0.8 µm GaAs waveguide polar-
izations.

Taking into account the fact that the two-photon absorption coeffi-
cient β of GaAs is approximately 12× higher than that of Si, this ad-
vantage is almost completely lost by using GaAs in a (partially) low
contrast system compared to the high contrast SOI system: the highest
βeff value of the discussed GaAs system is only about 1.5× higher than
that of the best SOI structure - or otherwise - its nonlinear effective area
A

(3)
eff is about 8× higher.

3.1.3 AlGaAs-AlOx system

From the two cases above, it is clear that for efficient nonlinear opera-
tion, the nonlinear material AlGaAs should be used in a high contrast
configuration. An example of this is shown in figure 3.5. To determine
an optimum structure, both the height h and width w of the waveguide
are still left undefined.

AlOx cladding (n = 1.75)

Al0.18Ga0.82As core (n = 3.33)

Al0.18Ga0.82As substrate

y

z
x

Figure 3.5: AlGaAs-AlOx material system
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The effective nonlinear coefficient n2,eff (W−1) at a wavelength of
λ = 1.55 µm is shown in figure 3.6 for the ground TE-like and TM-
like mode respectively. The TE-like mode is the mode with both the
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Figure 3.6: Effective nonlinear index n2,eff (W−1) as function of waveguide
width and height for the ground TE-like (left) and TM-like (right) mode at the
telecom wavelength 1.55 µm.

highest linear and nonlinear effective index for w > h (and vice versa
for w < h), which is in agreement with waveguide symmetry. Note that
the optimum results do not lie on the symmetry axis w = h due to the
air cladding. The best results for both ground modes are summarized
in table 3.1.3.

w (µm) h (µm) mode n0,eff n2,eff (W−1) A
(3)
eff (µm2) Am

eff (µm2)
0.36 0.30 TE 2.06 1.98×10−4 0.076 0.084

TM 2.01 1.26×10−4 0.122 0.100
0.20 0.46 TE 1.63 0.25×10−7 598 222

TM 2.08 1.93×10−4 0.078 0.065

Table 3.3: Linear and nonlinear properties of AlGaAs

Note that the highest effective nonlinear index is only approximately
a factor 2 better than the optimum SOI values, instead of the expected
factor 3. This is due to the fact that the refractive index ratio nSi

nSiO2
>

nAlGaAs
nAlOx

, resulting in a better nonlinear optical confinement. This further
underlines the importance of material systems with very high contrast.
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Similar calculations can also be done for other types of guiding
structures, such as photonic crystal waveguides, allowing potentially
even higher nonlinear effective interaction - in particular in the case of
air-clad membrane structures. As the main focus of this work was on
photonic wires, this was not further investigated in detail.

3.2 Applications

In this section, the potential of nonlinear waveguides for ultrafast sig-
nal processing will be discussed. We will discriminate between so-
called single-signal and pump-probe operation:

1L

0L

power

0NL

1NL

time

Figure 3.7: Example of a linear and nonlinear light pulse. The 0 and 1 levels
are indicated. In single-signal operation, the left and right image correspond
to the linear and nonlinear regime of the same data signal. In a pump-probe
setup, they respectively represent the probe and pump signal.

• A first possibility to apply nonlinear effects for signal processing
is using the data signal itself as trigger for the nonlinear actions,
i.e. by varying the power of the data signal between low (linear
regime) and high (desired nonlinear regime). This approach is
called single-signal operation and can e.g. be used for self-routing
data signals: simply by means of its power, the signal can find its
path through the network. An example is shown in figure 3.7.

• In a second approach, data signals (one or more) can be
influenced by means of an additional control signal: the pump-
probe configuration. In contrast to the first, the data signals al-
ways remain in the linear power regime, while the additional sig-
nal induces the nonlinearity.

To evaluate typical power levels, the effective nonlinear coefficients of
the Silicon-on-Insulator platform will be used (width 0.5 µm, table 3.1).
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As calculated in section 3.1, its values are not the best one can obtain by
optimizing the material system and waveguide width. However, be-
cause of its compatibility with CMOS technology [91], SOI is one of the
most investigated material systems today and its nonlinear values are
of the same order of magnitude as the best results that can be achieved.
First, the Kerr and the two-photon absorption effect will be discussed
separately, which would be the case for e.g. AlGaAs or GaAs. In a sep-
arate section, the mutual impact of both effects is considered, which is
important for e.g. Si.

3.2.1 Bound-electronic Kerr effect

The basic application of the bound-electronic Kerr effect - and any other
refractive index effect - in waveguides is all-optical phase shifting as
discussed in section 2.4. As mentioned before, two-photon absorption
is not considered in this section.

3.2.1.1 Single-signal operation

With the results of table 3.1, the nonlinear phase shift can be calculated
as a function of the optical power P and wire length L as

∆φ(P,L) = −ω

c
n2,effPL (3.5)

This is shown in figure 3.8. To obtain a phase shift of π, large pulse
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Figure 3.8: Phase shift ∆φ as function of optical power for different wave-
guide lengths at λ = 1.55 µm (left). Pulse energy as function of optical power
for different data rates assuming a Non-Return-to-Zero (NRZ) format (right).
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powers or device lengths are typically necessary: a peak power of about
1.2 W is required for a waveguide length of 10 mm. However, the main
advantage7 of photonic waveguides is their large optical bandwidth8

so that data rates higher than 100 Gb/s can easily be sustained. As a
result, the pulse energy can still be kept modest: for instance, the peak
power of 1.2 W corresponds to a pulse energy of 12 pJ for a Non-Return-
to-Zero (NRZ) bitrate of 100 Gb/s (figure 3.8).

3.2.1.2 Pump-probe operation

As the pump and data signal (normally) have different frequencies, the
non-degenerate Kerr effect in this section is not exactly the same effect

as discussed in chapter 2 (i.e. n2 = 3Reχ(3)(−ω;ω,−ω,ω)
8n0

). Instead, the
refractive index of the probe signal with frequency ωs is now changed
by means of the intensity of the pump signal with frequency ωp. As a
result, the relevant polarization is now described by

Pωs = ε0

(
χ(1)(−ωs;ωs) +

3
4
χ(3)(−ωs;ωs,−ωp, ωp)

∣∣Eωp

∣∣2)Eωs (3.6)

instead of by equation (2.20),

Pω = ε0

(
χ(1)(−ω;ω) +

3
2
χ(3)(−ω;ω,−ω, ω) |Eω|2

)
Eω (3.7)

leading to the following Kerr coefficient:

n2,probe =
3Reχ(3)(−ωs;ωs,−ωp, ωp)

4n0
(3.8)

The additional factor 2 compared to the single-signal case is due to the
fact that the index change is caused by a physically distinguishable sig-
nal [40]. This can also be seen in equation (D.7).

For frequencies ωs ≈ ωp, the nonlinear pump-probe susceptibility
χ(3)(−ωs;ωs,−ωp, ωp) is approximately equal to χ(3)(−ωs;ωs,−ωs, ωs)
[96], so that in a pump-probe configuration, the probe feels an index
change which is about twice as large as the index change experienced
by the pump itself. As a result, the probe phase change is given by

∆φprobe(Ppump, L) = −2
ω

c
n2,effPpumpL (3.9)

7In the case of photonic crystal waveguides, this statement is however not always
valid.

8A 500 nm wide SOI photonic wire has a bandwidth of more than 50 THz!
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Figure 3.9: Pump-probe phase shift ∆φprobe as function of optical pump
power for different waveguide lengths at λ = 1.55 µm.

This phase change is plotted in figure 3.9.
Compared to the single-signal case, the required power-length prod-

uct PpumpL for fixed bitrate drops by a factor 2. The conclusions of
relatively high pulse power and/or device length however hold.

Phase shifting is a commonly used and very versatile method for
data processing. Implemented in an interferometric structure such as
a Mach-Zehnder interferometer, it allows all-optical switching, wave-
length conversion, ...

3.2.2 Two-photon absorption effect

Compared to the bound-electronic Kerr effect, two-photon absorption
has much less potential. As it essentially decreases the transmission as
function of the applied power, it can be used for applications based on
all-optical limiting. As mentioned before, the Kerr effect is not consid-
ered in this section.

3.2.2.1 Single-signal operation

Using the results of table 3.1 and chapter 2, the nonlinear transmission
can be calculated as a function of the optical power at the input of the
waveguide Pin and wire length L as

T (Pin, L) =
1

1 + βeffPinL
(3.10)



44 Transverse nonlinear confinement: waveguides

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

input power (W)

tr
an

sm
is

si
on

1 mm
2 mm
5 mm
10 mm

0 2 4 6 8 10
0

1

2

3

4

5

input power (W)
ou

tp
ut

 p
ow

er
 (

W
)

1 mm
2 mm
5 mm
10 mm

Figure 3.10: Intensity transmission T (left) and output power Pout (right)
as function of the input power Pin for different waveguide lengths at
λ = 1.55 µm.

This is shown in figure 3.10. The limiting behaviour can be seen by
looking at the corresponding output power Pout = TPin. Powers of
the same order of magnitude as in the Kerr case are required to obtain
significant all-optical limiting.

3.2.2.2 Pump-probe operation

Similar to the case of the non-degenerate Kerr effect, the non-degenerate
two-photon absorption coefficient is 2× stronger than the degenerate
two-photon absorption coefficient βeff . With z the propagation axis,
the nonlinear transmission of pump and probe can be calculated by
solving

dPpump(z)
dz

= −βeffP 2
pump(z)− 2βeffPprobe(z)Ppump(z) (3.11)

dPprobe(z)
dz

= −2βeffPpump(z)Pprobe(z)− βeffP 2
probe(z) (3.12)

with Ppump(z) and Pprobe(z) respectively the pump and probe power
at position z. If we neglect the non-degenerate two-photon absorption
effect onto the pump signal and the degenerate two-photon absorption
effect onto the probe - which is possible due to the fact that Ppump >>
Pprobe, the pump and probe transmission after a waveguide with length
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L with input pump power Pin,pump become

Tpump(Pin,pump, L) ≈ 1
1 + βeffPin,pumpL

(3.13)

Tprobe(Pin,pump, L) ≈
(

1
1 + βeffPin,pumpL

)2

(3.14)

The pump transmission was represented as function of the pump power
for different waveguide lengths in figure 3.10. The same in now done
for the probe transmission in figure 3.11.
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Figure 3.11: Probe transmission Tprobe (left) and modulation depth (right) as
function of input pump power Pin,pump for different waveguide lengths at
λ = 1.55 µm.

The most important application for the two-photon absorption
pump-probe operation is inverted wavelength conversion: the modula-
tion of the pump signal induces inverted modulation (logic NOT func-
tion) onto a probe signal with a different wavelength. This is schemati-
cally represented in figure 3.12.

The obtainable modulation depth 1− Tprobe(Ppump,L)
Tprobe(0,L)

9 is shown in fi-
gure 3.11. A modulation depth of 95% can be obtained with an input
pump power of 3 W using a waveguide length of 10 mm. Again, the
required optical power is very high, even for relatively long nonlin-
ear waveguides; however, due to the typically large waveguide band-
width, this corresponds to modest pulse energies (in this case, 30 pJ for
a NRZ bitrate of 100 Gb/s).

9In absence of linear loss, this is simply equal to 1− Tprobe(Ppump, L).
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Figure 3.12: Principle of inverted modulation inside a nonlinear waveguide
by means of non-degenerate two-photon absorption.

This NOT function can immediately be extended to a NOR func-
tion by noting that the increase of modulation depth saturates for high
pump powers: Ppump and 2Ppump then results in approximately the
same modulation depth.

3.3 Figure of merit

Until now, the reciprocal impact of the bound-electronic Kerr and two-
photon absorption effect have not been taken into account. This was
already discussed in section 2.4. For two-photon absorption applica-
tions, this is not a problem as long as they are not used in interferomet-
ric structures: in that case, phase changes do not effect the transmission.
Of course, this is not the case of applications based on the Kerr effect,
in which both the transmission and the obtained phase change reduces.
For the Si values of tables 2.1 and 2.2, the impact in the single-signal
case is plotted in figure 3.13.

As can be seen, the impact of two-photon absorption can be quite
important depending on the exact literature values. In this chapter, the
coefficients measured by Dinu et al. [32] were used, corresponding to
the worst case scenario. As a result, the real phase change is typically
smaller than obtained in section 3.2.1, especially for ∆φ >> π. Note
that it is possible that the real phase shift surpasses the results of sec-
tion 3.2.1, as the Kerr coefficients measured by Tsang et al. and Rieger
et al. are somewhat larger [31, 33].
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Figure 3.13: Intensity transmission T as a function of the real phase change
using [31, 32, 33] (left). Obtained real phase shift using [31, 32, 33] compared
to the results obtained in section 3.2.1 without taking into account two-photon
absorption (waveguide length of 10 mm, right).

3.4 Conclusions

In this chapter, an effective nonlinear area was defined, which enables
us to convert the optical intensities of chapter 2 into optical power lev-
els and pulse energies. It was in particular shown that structures with
high contrast in both transverse directions are essential to reduce the
necessary power. As a result, a system like SOI - which has only mod-
erate nonlinear coefficients - can compete with systems such as GaAs-
AlGaAs and AlGaAs-AlOx with much higher n2 and β values. Espe-
cially, in the latter case, it is clear that even a slight decrease in contrast
can have a severe power penalty.

Using these results, the power and energy requirements were deter-
mined for different nonlinear applications implemented in a standard
SOI wire system. Typical power needs are of the order of 1-10 W for
waveguide lengths in the mm range, leading to pulse energies of the
order of 25-250 pJ for 40 Gb/s and 10-100 pJ for 100 Gb/s operation in
NRZ modulation - although in principle bitrates exceeding 1 THz are
possible. These considerations do not yet take into account linear loss
mechanisms (mainly determined by fabrication) and secondary effects
(see chapter 5).
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Chapter 4

Longitudinal nonlinear
confinement: resonators

From the previous chapter, it is clear that using high transverse confine-
ment alone is not sufficient to obtain very small devices which operate
at low power and allow large-scale integration of ultrafast nonlinear
functionalities.

A possible solution to this problem is also confining the light in the
longitudinal direction by using resonant structures. In optical resona-
tors, the light is slowed down and enhanced leading to a larger inter-
action with the nonlinear material. This enhancement however takes
place at the expense of a reduction of the optical bandwidth. As we
have seen in chapter 3, the typical waveguide bandwidth is extremely
large, so that this is essentially not a problem, but it puts a limit on
the maximum improvement of the nonlinear behaviour that can be ob-
tained.

In this chapter, we will investigate the additional enhancement that
can be achieved with resonant structures by means of a one-dimensional
analytical model including both the Kerr effect and two-photon ab-
sorption. To improve the readability, the mathematical description of
this model will however not be given here, but can be found in the
appendix. As in the previous chapter, we will also discuss possible
nonlinear applications, which in the case of optical resonators are more
extensive than in the waveguide case. For each of these applications,
we will calculate typical power levels and pulse energies in the absence
of secondary effects and determine the effect of the different resona-
tor parameters. In addition, we will optimize the resonator structure
by means of our one-dimensional model for a particular configuration

49
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and discuss the value and the impact of properties - such as the quality
factor and the effective modal volume - which are common terms in
experimental work.

4.1 One-dimensional optical resonator

Essentially, an optical resonator is a structure in which light circles
around - or resonates - and is only gradually able to leak out (and enter).
This resonant behaviour can be induced by locking the light between
two optical mirrors in a sort of cavity. Schematically, this is represented
in figure 4.1.

cavity

mirrors

Figure 4.1: Schematic representation of resonant action

These mirror sections can be constructed by means of periodic struc-
tures which obey the Bragg condition [97], called distributed Bragg re-
flectors (DBR). In the one-dimensional case, the most efficient mirror
structure with two different effective index layers na and nb is com-
posed of quarter-wavelength plates1:

la =
λ

4na
(4.1)

lb =
λ

4nb
(4.2)

In this work, we will consider a slightly more general situation, in
which the lengths are given by,

la = m′ λ

4na
(4.3)

lb = m′′ λ

4nb
(4.4)

1In this case, the Bragg condition nala + nblb = mλ
2

with la and lb the length of the
two layers is fulfilled and additionally the reflection at each interface is constructive.
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with m′ and m′′ odd2.
To obtain a resonance around a certain center wavelength λc, a cav-

ity must be constructed with a round-trip phase length equal to a mul-
tiple of 2π [97]. One-dimensionally, this corresponds to a cavity com-
posed of an integer number of half-wavelength plates3:

lcav = Ncav
λc

2na
(4.5)

with Ncav integer.
As a result, a single resonator4 around the center wavelength λc can

be depicted as

ain bm′′ λc
4

am′ λc
4

...bm′′ λc
4

aNcav
λc
2

bm′′ λc
4

am′ λc
4

...bm′′ λc
4

aout

The input and output sections with respectively a length of lin and lout

are necessary for concatenation of more than one resonator period (N
will be used to indicate the number of resonator periods). To avoid
destructive interference in the case of more than one resonator, one re-
quires that lin + lout = λ

4na
+ p λ

2na
with p = 0, 1, 2, ... which e.g. leads to

lin = lout = m′λc
8na

. So finally, one obtains schematically

am′ λc
8︸ ︷︷ ︸

input

bm′′ λc
4

(
am′ λc

4
bm′′ λc

4

)Ndbr
2

−1

︸ ︷︷ ︸
mirror

aNcav
λc
2︸ ︷︷ ︸

cavity

bm′′ λc
4

(
am′ λc

4
bm′′ λc

4

)Ndbr
2

−1

︸ ︷︷ ︸
mirror

am′ λc
8︸ ︷︷ ︸

output

with Ndbr is the total number of b-layers in a single resonator period.
This is visually represented in figure 4.2.

2Now, the Bragg condition is still fulfilled and again the reflection at each interface
is constructive, but the structure is less efficient in terms of length. Such a restriction
can e.g. be imposed for technological purposes.

3One of two effective indices of the mirror sections is reused, e.g. na.
4Two cases can be distinguished: na > nb and na < nb with na the cavity index. The

first case is the most common one. In the three-dimensional case, it can be achieved
by etching a grating into a waveguide using a second etch step. Waveguides with
a diffraction grating etched into the sidewalls and photonic crystal-based resonator
structures are other examples (see also figure 5.10). The case of a waveguide with
an ’external’ sidewall grating is an example of the second case. In this work, it will
implicitly be assumed that na > nb, in the case distinction would be necessary.



52 Longitudinal nonlinear confinement: resonators

lcav

nbna

loutlblalin

cavity mirror

Figure 4.2: Visual representation of a single resonator period as used in this
work.

The linear properties of resonator structures with one and more pe-
riods are described in detail in appendix C. The Kerr and two-photon
absorption nonlinear properties are discussed in appendices D and E.
This theoretical model is published in the journal paper [98]. Nonlinear
simulations were done by means of an extension [99] to
CAMFR [94]: the nonlinear solution is obtained by means of a spatial
grid on which the nonlinear index changes are calculated in an iterative
way, until convergence is obtained.

4.2 Applications

Now, the potential of nonlinear resonators for ultrafast signal proces-
sing will be discussed. Again, we will distinguish single-signal and
pump-probe operation.

In contrast to chapter 3, the transmission spectra of optical resona-
tors are not equal to unity, so that the signal data rates will not only
be determined by the speed of the nonlinear effects but also by the
properties of the resonators. Although data signals are explicitly time-
domain related, we will discuss possible resonator applications from a
frequency-domain point of view, as this leads to the best understand-
ing. To estimate the time response of a data stream with pulse length
tpulse, we will consider a frequency region ∆νs = 1

tpulse
, which is a rea-

sonably good approximation.
To evaluate typical power levels, the effective nonlinear coefficients

of the Silicon-on-Insulator platform will again be used (width 0.5 µm,
table 3.1) although in fact one-dimensional structures are discussed. We
will again discuss the Kerr and the two-photon absorption effect first
separately, which would be the case for e.g. AlGaAs or GaAs, while
the mutual impact of both effects, which is important for e.g. Si, will
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be considered in a separate section. As an example, a mirror contrast
of 1 − nb

na
= 10% will be assumed. Using the theoretical model in ap-

pendices D and E, we will optimize the mirror and cavity length for
each specific application. To conclude, the results that we obtain will
be discussed and verified by means of nonlinear simulations.

This work is published in the journal paper [98] and presented at
several conferences.

4.2.1 Bound-electronic Kerr effect

As discussed in appendix D, the refractive index change due to the Kerr
effect in the mirrors and the cavity of a resonator structure causes a
shift of the resonance frequency ∆νc and the output phase ∆φ which is
proportional to the input power. These two phenomena in an optical
resonator give rise to much more applications than in the case of a sim-
ple waveguide. As mentioned before, two-photon absorption will not
be taken into account in this section.

4.2.1.1 Single-signal operation

Possible functionalities that can be implemented in this way in a single-
signal approach are all-optical phase shifting, limiting, bistability, swi-
tching and regeneration.

• All-optical phase shifting has already been explained in section
3.2.1.

• All-optical limiting is the phenomenon in which the output in-
tensity monotonically increases for increasing input power up
to a limiting value and then remains more or less constant. Al-
though the overall effect is the same as in section 3.2.1, its origin
is now related to the shift of the resonance frequency instead of
the decrease in the resonance transmissivity. This effect will be
discussed in the context of all-optical switching (see below).

• All-optical bistability is the existence of two stable nonlinear so-
lutions for a single input power. This effect will also be discussed
in the context of all-optical switching (see below).

• All-optical switching in the strict sense used here is switching be-
tween zero and unity transmission by means of nonlinear inter-
action (and is to be distinguished from all-optical switching by
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means of nonlinear phase shifting in an interferometric structure).
Two situations are possible:

– Total transmission in the linear case, which is related to all-
optical limiting

– Total transmission in the nonlinear case, which is linked to
all-optical bistability.

• All-optical regeneration is a bit of an outsider in this list: by com-
bining the pulse shaping possibilities of a Kerr-nonlinear resona-
tor with an optical amplifier, a data signal can be Re-amplified
and Re-shaped (2R-regeneration).

All-optical phase shifting In this application, the transmission should
remain unity in both the linear and nonlinear regime and only the phase
is to be shifted, so the resonance frequency shift ∆νc should be smaller
than the resonator bandwidth ∆νBW . The resonance peaks in the linear
and the nonlinear case do not coincide and therefore the maximum sig-
nal bandwidth ∆νs is not equal to ∆νBW . In the case of an infinite num-
ber of periods, ∆νs will be equal to the bandwidth overlap between
both cases. Unfortunately, for a finite structure, the resonance window
will not be completely transmissive. At the edges, the transmission
function will show a number of peaks (increasing with the number of
periods), in between which the transmission can drop even more than
50%, depending on the index contrast of the mirrors (see e.g. the trend
of figures C.1, C.2 and C.3). Therefore, only a fraction fcorr∆νBW with
fcorr < 1 can be used, leading to a useful signal bandwidth of

∆νs = fcorr∆νBW −∆νc (4.6)

Based on simulations, fcorr = 1
2 is a good estimate.

From the results of appendix D and equation (4.6), it can be seen that
a trade-off between input power, device length and signal bandwidth is
to be made: to minimize the device length Ltot, the phase shift per unit
of length ∆φ/Lper must be maximized. This implies that the resonance
shift ∆νc should be as high and the resonance bandwidth ∆νBW as
low as possible (section D.3.3). However, these last two conditions also
result in a lower signal bandwidth ∆νs. Furthermore, a restriction to
the resonance shift ∆νc will be imposed by the achievable input power.
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Figure 4.3: Trade-off between Ltot and Pin (left) and Ein (right) for different
signal bandwidths.
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Figure 4.4: Influence of index contrast on the trade-off Ltot versus Pin (left)
and Ein (right) for 40 Gb/s.

For the example proposed above, the five optimum results are shown
in figure 4.3: the required input power Pin and energy5 Ein to obtain a
phase shift of π is given as function of device length for several signal
bandwidths.

Comparing figures 4.3 and 3.8, it can be seen that - depending on the
signal bandwidth - improvements in the order of 10000 for the device
length are possible. The signal bandwidth is however an important
limiting factor, especially for very high bitrates. Note also that from

5We again assume data rates in the NRZ format. Bitrates of 2.5, 10, 40 and 100 Gb/s
correspond to signal bandwidths ∆νs of 2.5, 10, 40 and 100 GHz.
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a certain input power on, the incremental improvement of Ltot drops
very steeply.

In figure 4.4, the example above is recalculated with other index
contrasts for a signal rate of 40 Gb/s. From this, it is clear that high
index contrasts allow a major improvement in the device length. This
is due to two factors: first of all, the length of mirrors with the same
reflectivity substantially reduces for higher contrast. In addition, the
resonance shift for a certain input power will also be larger for shorter
mirrors, because a smaller part of the nonlinear phase change in the
cavity will be used to compensate the phase shift in the mirrors, as
discussed in section D.1.

An important remark is that for all situations depicted above, the
optimum results were obtained for Ncav ≈ 1: this means that enlarging
|rdbr|νc

is more efficient in terms of device length than enlarging the
cavity length.

Consider now the following case: we would like to minimize the
device length for a signal rate of 40 Gb/s and input powers up to 250 mW
(pulse energies up to 6.25 pJ). Using the theory of appendices C and D,
the five optimum parameters configurations that were obtained, are
shown in table 4.1, together with the required input power Pin and the
total device length Ltot.

Ncav Ndbr N Pin (mW) Ltot (µm)
1 2 44 6 228 94.07
2 5 42 6 241 95.81
3 3 44 6 199 96.03
4 1 46 6 175 96.24
5 6 42 6 219 97.77

Table 4.1: Five optimum parameter values for the example considered in the
text.

Note also that the required input power already drops 30 mW for
an increase in device length of 2 µm. Due to trade-off requirements,
several solutions are found which lie very close together.

Additional properties of the best result of table 4.1 are6:

|rdbr|2νc
= 0.962

∆νBW = 217 GHz

6The effective modal volume is estimated as Am
effLm

eff with Am
eff = 0.064 µm the

value of a 500 nm SOI wire.
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FSR = 17.9 THz

Q = 891
V m

eff = 0.113 µm3

This result is now verified numerically in figure 4.5. However, be-
cause of simulation limitations, the number of periods was reduced to
half. The obtained phase shift for λ = 1

2(λc,L + λc,NL) is ∆φtot ≈ 1.59,
which is close to π

2 . As can be seen, the phase shift is fairly constant
over a large area, however the usable wavelength range (|ttot|2 > 0.9)
is only ∆λs = 0.44 nm, which is close to the expected value of 0.32 nm.
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Figure 4.5: Numerical calculation of the linear and nonlinear phase relation
(left). The region of interest is also shown. The obtained phase shift (right).

From equation (D.33), it follows that the total phase shift ∆φtot is
proportional to both

∣∣∣dφ
dν

∣∣∣
νc

and ∆νc. The resonance shift is approxi-

mately ∆λc = 0.46 nm, which is only about one fourth of the band-
width. On the other hand,

∣∣∣dφ
dν

∣∣∣
νc

is much steeper than in the absence of

resonators. So both parameters contribute in this example. For higher
Pin or n2, the driving factor of the phase shift will typically be ∆νc

(∆νc ≈ fcorr∆νBW ), while in the case of lower n2 or Pin,
∣∣∣dφ
dν

∣∣∣
νc

will be

more significant (∆νc << fcorr∆νBW ).
The corresponding intensity transmission relation of figure 4.5 is

drawn in figure 4.6. As can be seen, the transmission relation deforms
heavily in the presence of Kerr-nonlinear behaviour due to the coupling
between the different resonator cavities, as discussed in appendix D.2.3.
For higher wavelengths, bistable behaviour (see below) starts to occur,
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Figure 4.6: Numerical calculation of the linear and nonlinear intensity trans-
mission relation. The region of interest is also shown.

which can pose an additional limit on the usable signal bandwidth, in
particular for large resonance shifts [100]. In addition, the combina-
tion of anomalous group velocity dispersion (GVD) - which occur at
the high-wavelength edge of the resonance bandwidth - with a large
number of resonator cavities may lead to modulation instability, so that
all-optical signal processing is not possible anymore [30, 101].

’Linear-high and nonlinear-low’ all-optical switching In contrast to
the previous application, a resonance frequency shift ∆νc which is much
larger than the resonance bandwidth ∆νBW is desired for switching
applications. To obtain a high transmission in the linear case, the sig-
nal bandwidth must again be centered around the linear resonance fre-
quency νc. In the nonlinear situation, the high-power data signal will
shift the resonance frequency and the nonlinear transmission will be-
come low. This transmission will be lower for higher input power. The
minimal transmission contrast C is then given by

C = |ttot,L|2 − |ttot,NL|2 (4.7)

with |ttot,L|2 = min(|ttot,L(ν)|2) and |ttot,NL|2 = max(|ttot,NL(ν)|2) for
ν ∈

[
νc − ∆νs

2 , νc + ∆νs
2

]
.

For the example proposed above, this contrast is optimized as func-
tion of the input power Pin and energy Ein in figure 4.7 for a single
resonator. From the discussion above, it is already clear that a trade-
off between the achievable contrast and the input power of the non-
linear data signal is to be made. Figure 4.7 however shows that rather
high powers are required to achieve reasonable transmission contrasts.
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Figure 4.7: Minimal transmission contrast C as function of Pin (left) and Ein

(right) for different signal bandwidths. For these input powers/energies, the
transmission contrast for the 100 Gb/s case is lower than 0.5.

A similar effect of the index contrast is observed as in the case of all-
optical phase shifting.

Now, consider the case of maximizing the transmission contrast for
a signal rate of 40 Gb/s and input powers up to 1000 mW (pulse ener-
gies up to 25 pJ). Note that Pin <1000 mW will always result in a lower
transmission contrast for the optical resonator, because a lower Pin cor-
responds to lower resonance shift. The highest contrast is obtained for:

Ncav = 1
Ndbr = 52

}
C = 0.652

Next to the transmission contrast, some additional properties of this
resonator structure are:

|rdbr|2νc
= 0.983

∆νBW = 103 GHz

FSR = 19.5 THz

Q = 1881
V m

eff = 0.104 µm3

Ltot = 18.1 µm

The transmission contrast is checked numerically in figure 4.8. A
transmission contrast of C = 0.655 is obtained over the signal band-
width, which is in very good agreement with the predicted C = 0.652.
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Figure 4.8: Numerical calculation of the linear and nonlinear transmission
relation (left). The region of interest is also shown. The obtained transmission
contrast (right).

Until now, only one period has been taken into account. It is intu-
itively clear that the contrast will increase for exactly the same param-
eters by using more resonator periods: the linear transmission |ttot,L|2
will be higher and the nonlinear transmission |ttot,NL|2 lower, because
the resonance peak becomes more confined for higher N . This can
be seen in figure 4.9: by using the same parameters and two peri-
ods instead of one, the transmission contrast is already improved to
C = 0.826.
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Figure 4.9: Numerical calculation of the linear and nonlinear transmission re-
lation for two periods. The region of interest is also shown (left). The obtained
transmission contrast (right).



4.2 Applications 61

In the extreme case of an infinite number of periods, a contrast of
unity is achieved, if ∆νc = ∆νs + ∆νBW−∆νs

2 = ∆νBW +∆νs

2 . In the ex-
ample discussed above, an input power of only Pin =95 mW would be
needed for this.

However, in this discussion, one aspect has not yet been mentioned:
the output power is not |ttot|2, but |ttot|2 Pin: while |ttot|2 decreases with
increasing input power, |ttot|2 Pin increases asymptotically (all-optical
limiting functionality, figure 4.10).
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Figure 4.10: Output power Pout as function of input power Pin at the res-
onance frequency νc for the case of one (left) and two (right) periods. The
dotted line represents the case of unity transmission as a reference.

This means that the linear-high transmission state will have a lower
output power than the nonlinear-low transmission state7.

All-optical linear-high/nonlinear-low switching can nevertheless still
be used by adjusting the data processing method [98].

’Linear-low and ’nonlinear-high’ all-optical switching This type of
switching is in many aspects the opposite of the previous type. Since
the nonlinear transmission must in this case be as high as possible, the
signal bandwidth will be centered around the nonlinear resonance fre-
quency ν ′c. The minimal transmission contrast C is now defined as

C = |ttot,NL|2 − |ttot,L|2 (4.8)

with |ttot,NL|2 = min(|ttot,NL(ν)|2) and |ttot,L|2 = max(|ttot,L(ν)|2) for ν ∈[
ν ′c − ∆νs

2 , ν ′c + ∆νs
2

]
.

7at least, in the case of small N . For higher N , the limiting operation becomes much
more complex.
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Again, this contrast will be larger for higher input powers. The op-
timization of the trade-off between contrast and input power/energy
is shown in figure 4.11. Like in the previous cases, the use of a higher
mirror contrast will significantly reduce the required optical power and
energy.
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Figure 4.11: Minimal transmission contrast C as function of Pin (left) and Ein

(right) for different signal bandwidths. A resonator of one period is consid-
ered.

If we consider the same optimization example as above (maximiz-
ing the transmission contrast for a signal rate of 40 Gb/s and input
powers up to 1000 mW), the following result is obtained:

Ncav = 2
Ndbr = 48

}
C = 0.883

Additional properties of this resonator structure are:

|rdbr|2νc
= 0.975

∆νBW = 143 GHz

FSR = 17.8 THz

Q = 1358
V m

eff = 0.113 µm3

Ltot = 17.1 µm

Numerically, this result is verified in figure 4.12. Now, a transmis-
sion contrast of C = 0.889 is obtained, in good agreement with the
predicted value of C = 0.883. Therefore, this figure also shows that in
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this particular case, one has actually two stable nonlinear solutions in
the region of interest. In general, the solution that will be excited is the
one with the lowest transmission (|ttot,NL|2 ≈ |ttot,L|2), because one is
coming from ± 0 mW. Note that this solution is almost coincident with
the linear one.
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Figure 4.12: Numerical calculation of the linear and nonlinear transmission
relation (left). The region of interest is also shown. The obtained transmission
contrast (right).

A possible way however to overcome this obstacle is using pulses
which have a very high power density at the beginning and then drop
down to their regular value. In this way, the upper branch is excited
and the total pulse energy is still acceptable 8 The main problem how-
ever is that this peak power Ppeak is typically much larger (>> 10×)
than the regime pulse power Pin. Furthermore, the duration of the
peak should be of the order of tpeak = 1

∆νs
for the cavity to respond

properly, so that tpulse > tpeak = 1
∆νs

to obtain the same pulse energy in
the ’linear’ and nonlinear case.

If more than one period is considered, the contrast C is further in-
creased. This is shown in figure 4.13. However, increasing N will also
increase the power density required at the start of the pulse in order to
switch to the upper branch.

8Note that in this case, the ’linear’ and nonlinear pulses can now have the same
power for the off-state as well as for the on-state. The difference between linear and
nonlinear regime is simply due to the power peak at the start of the pulse. In this case,
there is no difference anymore between |ttot|2 and |ttot|2 Pin. Combining this system
with set and reset pulses leads to all-optical memory operation [102].
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Figure 4.13: Numerical calculation of the linear and nonlinear transmission
relation for the same resonator with two periods. The region of interest is also
shown (left). The obtained transmission contrast (right).

’Linear-low and ’nonlinear-high’ all-optical stable switching One
could wonder what the switching possibilities are without bistable re-
gions. However, an additional constraint is taken into account to avoid
bistable operation in the region of interest:

[
νc,NL − ∆νs

2 , νc,NL + ∆νs
2

]
>

νu,bistable in the case of n2 > 0 and
[
νc,NL − ∆νs

2 , νc,NL + ∆νs
2

]
< νl,bistable

in the case of n2 < 0 with [νl,bistable, νu,bistable] the bistable region.
Optimization of the transmission contrast as function of input power

and input energy now leads to figure 4.14. By comparing figures 4.11
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Figure 4.14: Minimal transmission contrast C as function of Pin (left) and Ein

(right) for different signal bandwidths. A resonator of one period is consid-
ered.
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and 4.14, it can be seen that now the obtainable contrast for the same
situation is substantially lower. In addition, the maximum achievable
contrast is limited and lower than unity.

For the example of maximizing the transmission contrast for a sig-
nal rate of 40 Gb/s and input powers up to 1000 mW, the optimum re-
sult is not necessarily obtained for Pin = 1000 mW, although here it is
the case. The other device parameters are:

Ncav = 1
Ndbr = 44

}
C = 0.683

and

|rdbr|2νc
= 0.962

∆νBW = 239 GHz

FSR = 19.7 THz

Q = 810
V m

eff = 0.103 µm3

Ltot = 15.4 µm

This result is numerically represented in figure 4.15. A transmission
contrast of C = 0.676 is obtained which is in excellent agreement with
the predicted value.
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Figure 4.15: Numerical calculation of the linear and nonlinear transmission
relation (left). The region of interest is also shown. The obtained transmission
contrast (right).

If we now consider more than one period, the ’bistable’ contrast C
will increase with increasing N : this is shown in figure 4.16. However,
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as indicated in this figure, the stable region will become smaller and
therefore the region of interest will shift, resulting in a smaller obtain-
able ’stable’ contrast. Therefore, the case of a single period will provide
the best results.
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Figure 4.16: Numerical calculation of the linear and nonlinear transmission
relation for the same resonator with two periods (left). The region of interest
is again shown. The obtained transmission contrast (right).

All-optical 2R regeneration The quality of an optical data signal can
be characterized by means of the Bit Error Rate (BER) detected for a
certain average power at the receiver end. To obtain a good signal qual-
ity at the end, several regeneration stages can be introduced between
the sender and the receiver, which clean the signal before the signal
degradation becomes too large. The quality of a regeneration step can
be investigated by the scheme depicted in figure 4.17 - by comparing
the results in the presence and absence of regeneration. A method to
approximate these results analytically is discussed in appendix F.

optical

amplifier

2R regenerator

detector
optical

resonator
variable

attenuation

Figure 4.17: Set-up for measuring the BER as function of the average received
power.



4.2 Applications 67

With a Kerr-nonlinear resonator, pulse reshaping is possible for fre-
quencies on the bistable side of the spectrum9: this is shown for the
cases |ν − νc| = n

√
3

2 ∆νBW with n = 1
2 , 3

4 , 1, 5
4 in figure 4.18. The re-

quired decision powers are also shown.
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Figure 4.18: Input-output power relations at different carrier frequencies. For
ease of comparison, rescaling to the decision power for |ν − νc| =

√
3

2 ∆νBW

has occurred.

For the frequencies |ν − νc| >
√

3
2 ∆νBW , bistable solutions can occur,

which may result in two problems:

• If the bistable region is very large, it may contain the average ’0’
and ’1’ data level so regeneration is not possible.

• If this is not the case, regeneration is possible but at the cost of an
additional time offset or jitter10 due to the presence of a hysteresis
curve.

In this work, a small bistable region will be tolerated: the allowed fre-
quency region was taken to be |ν − νc| ≤ 5

4

√
3

2 ∆νBW .

9Remember that one only has a single solution for ν > νc −
√

3
2

∆νBW if n2 > 0 and
ν < νc +

√
3

2
∆νBW if n2 < 0 (appendix D.2).

10e.g. in the case of asymmetrically shaped pulses.
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To see the regenerative capabilities of a Kerr-nonlinear resonator,
two situations of noisy data signals will be studied:

• in the first case, the data signal is specified by an average power
of Pav = 0.1 mW and extinction ratio P1,in

P0,in
= 2. This corresponds

to P0,in = 0.067 mW and P1,in = 0.133 mW. The signal variation
σ is assumed to be zero. This data signal is only limited by its
extinction ratio which is 3 dB. In this case, the main origin of noise
will be the receiver.

• in the second case, the data signal is again assumed to have an av-
erage power of Pav = 0.1 mW, but with an extinction ratio P1,in

P0,in
=

8. This corresponds to P0,in = 0.022 mW and P1,in = 0.178 mW.
The signal variation is now taken to be σin = 0.1 mW. This data
signal has a much better extinction ratio of 9 dB, but is subject to
severe noise distortion.
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Figure 4.19: BER as a function of received power obtained with a perfect data
signal and the two imperfect situations (case 1, left; case 2, right) discussed
above in the absence of regeneration.

These data signals are now considered in a set-up of figure 4.17 with
the following characteristics:

• the amplifier is assumed to have a noise figure NF = 3. The gain
G can be tuned to the user’s will (i.e. optimized later on).

• the receiver has a sensitivity of -20 dBm or 0.01 mW for a Bit Error
Rate of 10−12, corresponding to a sigma value of σrec = 1.42 µW.
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The BER that can be obtained with this receiver in the case of
a perfect data signal, can be calculated from equation (F.2). It is
plotted as function of the received power in figure 4.19.

In the two noisy cases presented above, the obtainable BER in ab-
sence of regeneration will be significantly smaller (figure 4.19). Instead
of the -20 dBm received average power, both situations require a re-
ceived power of approximately -15 dBm to obtain a Bit Error Rate of
10−12.

Consider now an optical system that requires a signal quality of
BER = 10−12 for a maximum received power of -17 dBm (i.e. a 3 dB
power penalty compared to the ideal case). For the first example, the
Bit Error Rate for a received power of -17 dBm is only BER ≈ 10−6 and
in the second case only BER ≈ 10−10. This means that regeneration
will be required to meet the objectives.

For a certain signal bandwidth ∆νs, we can define a maximum BER
by:

max
(
BERstart

∣∣∣νs+
∆νs

2
, BERnew

∣∣∣νs+
∆νs

2

)
≤

BER ≤ (BERstart + BERnew)
∣∣∣νs+

∆νs
2

(4.9)

with BERi (ν) the bit error rate calculated at the frequency ν (see also
appendix F).
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Figure 4.20: Obtainable BER as a function of maximum link power for case 1
(left) and case 2 (right).

If we optimize the bit error rate as a function of maximum link
power (i.e. the power entering the optical resonator (figure 4.17), which
is the maximum power of the optical link), figure 4.20 is obtained.
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Only in the second case, a small difference between
max (BERstart, BERnew) and BERstart+BERnew is visible: due to the
assumed noise of the input signal, BERstart is approximately 10−14 −
10−15. As a result, this contribution becomes dominant for reshaping
curves close to a step function (resulting in BERnew << BERstart) and
further regeneration is impossible. In the vicinity of BER = 10−12, this
is however not yet the case.

For the specific case of BER = 10−12 and a data rate of 40 Gb/s, the
best optimum configuration in the first case is:

Ncav = 2
Ndbr = 54

Pav,max = 44.45 mW∣∣∣∣νs − νc

∆νBW

∣∣∣∣ = 0.639

with

|rdbr|2νc
= 0.987

∆νBW = 75.8 GHz

FSR = 17.7 THz

Q = 2555
V m

eff = 0.114 µm3

Ltot = 19.1 µm

and for the second example:

Ncav = 2
Ndbr = 58

Pav,max = 8.23 mW∣∣∣∣νs − νc

∆νBW

∣∣∣∣ = 0.304

with

|rdbr|2νc
= 0.996

∆νBW = 49.7 GHz

FSR = 17.6 THz

Q = 3894
V m

eff = 0.115 µm3

Ltot = 20.5 µm
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The corresponding reshaping functions are plotted in figure 4.21. The
lower and upper average ’regeneration’ points P ′

0 = GP0,in +PASE and
P ′

1 = GP1,in + PASE are also drawn11 together with the decision power
P ′

d = P ′
0+P ′

1
2 .
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Figure 4.21: Required reshaping functions for case 1 (left) and case 2 (right).
The decision points and the points where the regeneration takes place are also
shown.
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Figure 4.22: BER as a function of received power obtained with a perfect data
signal and the two imperfect situations (case 1, left; case 2, right) discussed
above in the absence and presence of regeneration.

In the first case, the regeneration is clearly a result of extinction ra-
tio improvement. The obtained noise reduction on the other hand is

11The figure is again rescaled to the decision power for |ν − νc| =
√

3
2

∆νBW
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approximately zero
(

dPreg,out

dPreg,in

∣∣∣
P ′

0

≈ dPreg,out

dPreg,in

∣∣∣
P ′

1

≈ 1
)

. As the original

signal was assumed to be noiseless, this would not have contributed.
In this second case, the regeneration is both the result of extinction

ratio improvement and noise reduction: dPreg,out

dPreg,in

∣∣∣
P ′

0

≈ dPreg,out

dPreg,in

∣∣∣
P ′

1

≈

0.87. Both effects are small (indeed the reshaping curve is close to lin-
ear), but together they are sufficient to obtain the required Bit Error Rate
of BER = 10−12. The corresponding BER as function of the average
received power is plotted in figure 4.22.
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Figure 4.23: Visual representation by means of ’eye’ diagrams of case 1 (left)
and case 2 (right) without (top) and with (bottom) regeneration.

To visualize this regeneration effect on a time-like basis, an ’eye’
diagram of the detected signal in the absence and presence of regener-
ation is shown in figure 4.23. Transient effects are not included as they
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cannot be accurately predicted by a frequency approach. For the sec-
ond example, the improvement is hard to see (which is in agreement
with the almost linear reshaping curve in this case): the improvement
can only be seen by looking closely to the most noisy data points on the
inside of the ’eye’.

4.2.1.2 Pump-probe operation

In contrast to section 3.2.1, the transmission spectrum of a resonator
structure has several resonance peaks which are equally spaced as dis-
cussed in appendix C.5. As a result, one resonance can be used for
the pump signal, while all other resonances can hold data signals. By
splitting the data signal into different parallel signals, larger data flows
can be processed compared to the single signal case. Additionally, the
processing occurs at a lower bitrate which can be beneficial for possible
surrounding electronics.

The total data bandwidth ∆νs,total that can be processed is deter-
mined by both the data bandwidth per signal ∆νs and the free spectral
range FSR: in a frequency range of ∆νrange, the total bandwidth is
given by,

∆νs,total =
∆νrange

FSR
∆νs (4.10)

This means that the information density [103] is equal to ∆νs
FSR or equiv-

alently the frequency amount necessary for one bit information per sec-
ond ∆νbit/s is given by

∆νbit/s =
FSR

∆νs
(4.11)

As mentioned in section 3.2.1, the refractive index change felt by a
probe signal is twice as large as the change felt by the pump. For the
corresponding resonance shift for a probe signal ∆νc,probe, however, one
has for a one-dimensional optical resonator:

∆νc,probe 6= 2∆νc,pump (4.12)

with ∆νc,pump the frequency shift of the pump resonance. This can
be understood as follows: at resonance, the pump beam produces an
almost standing wave inside the resonator cavity (section C.6). This
electric field profile Ecav cos(ω

c nz) with z the propagation axis and Ecav
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gives rise to a refractive index change given by n2 |Ecav|2 cos2(ω
c nz) due

to the bound-electronic Kerr effect. As a result of this standing wave
pattern, the forward propagating field inside the cavity changes to

Ecav,f (z) = Ecav,f,L(z) exp
(
−j

2πν

c

3
4
n2 |Ecav|2 z

)
(4.13)

and the backward propagating field is given by

Ecav,b(z) = Ecav,b,L(z) exp
(

j
2πν

c

3
4
n2 |Ecav|2 z

)
(4.14)

with Ecav,f,L and Ecav,b,L the forward and backward propagating linear
electric field components inside the cavity. If this effect would only be
caused by the ’average’ refractive index change n2 |Ecav|2

〈
cos2(ω

c nz)
〉

=
1
2n2 |Ecav|2 due to the Kerr effect, the field components inside the cavity
would be given by

Ecav,f (z) = Ecav,f,L(z) exp
(
−j

2πν

c

1
2
n2 |Ep,cav|2 z

)
(4.15)

and the backward propagating field is given by

Ecav,b(z) = Ecav,b,L(z) exp
(

j
2πν

c

1
2
n2 |Ep,cav|2 z

)
(4.16)

So the propagation effect and therefore the resonance shift is not only
caused by an average change in the refractive index, but also enhanced
by the cosine field profile.

For frequencies far from the pump frequency (which is the case if
FSR >> ∆νs), this corrugation will not be in phase with the frequency
of the incoming probe field and thus not work constructively. As a
result, only the average effect remains, resulting in equations (4.15)
and (4.16). As a result, the frequency shift of a probe resonance is a
factor 2

3 smaller than predicted by equation (4.12) and given by,

∆νc,probe =
4
3
∆νc,pump (4.17)

Despite this difference, possible functionalities in the pump-probe
case will also be based on the shift of the resonance frequency, leading
to similar applications in single-signal operation. For comparison, the
discussion will be limited to:
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• All-optical phase shifting

• All-optical switching with two possibilities:

– Total transmission in the linear case, which is related to all-
optical limiting

– Total transmission in the nonlinear case, which is linked to
all-optical bistability.

All-optical phase shifting To evaluate different set-ups in a pump-
probe environment, we will compare configurations with the same in-
formation density 1

∆νbit/s
or the same bandwidth per bit per second

∆νbit/s, i.e.

FSR

∆νs
= constant (4.18)

This is in fact an extra degree of freedom compared to single-signal
case, as it is now also possible to optimize the amount of data per chan-
nel ∆νs while the total bandwidth is constant.

In the light of equation (4.17), condition (4.6) must be changed to:

∆νs = fcorr∆νBW −∆νc,probe (4.19)

In this way, the data signals have total transmission in both the linear
and nonlinear case, while the pump signal is able to interact fully with
the cavity (i.e. by also having unity transmission).

Due to the additional constraint (4.18), a trade-off between input
power, device length, signal bandwidth and also free spectral range
will now have to be made.

For the example considered above with ∆νbit/s taken to be
20 Hz/(b/s), the optimum results are plotted in figure 4.24. Depending
on the specific input power or energy, either a 40 Gb/s or 100 Gb/s sig-
nal provides the best results. The optimum results are now only about
a factor 25-100 better than the simple wire case, which is much lower
than in the single-signal case. Note that the pump-probe case behaves
very differently from the single-signal set-up: in the latter, optimum
results were obtained for very small signal bandwidth, which is due
the larger resonator enhancements in these cases. However for a fixed
∆νbit/s, the restraints for FSR cause a new trade-off, which results in
lower improvements compared to the single-signal case. Furthermore,
the optimum results are now obtained for the larger signal bandwidth.
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Figure 4.24: Trade-off between Ltot and Pin (left) and Ein (right) for different
signal bandwidths.

In figure 4.25, the example above is recalculated with other index
contrasts for a signal rate of 40 Gb/s. In contrast to the single-signal
case, the impact of index contrasts is close to negligible. As will be seen
later, this is because the optimum configuration now consists of large
cavities (to reduce the FSR).
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Figure 4.25: Influence of index contrast on the trade-off Ltot versus Pin (left)
and Ein (right) for 40 Gb/s.

The impact of ∆νbit/s is shown in figure 4.26: in contrast to the index
contrast, the effect of information density is not negligible. The larger
the frequency space available per bit per second ∆νbit/s, the larger the
improvement. This is because for the same bandwidth, the free spec-
tral range is larger (equation (4.18)) and thus obtainable improvement,
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because the mirrors are stronger. For very large ∆νbit/s, this improve-
ment will even be larger than the single-signal case, due to the fact that
the probe resonance shift ∆νc,probe is factor 4

3 larger than the pump res-
onance shift ∆νc,pump.
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Figure 4.26: Influence of ∆νbit/s on the trade-off Ltot versus Pin (left) and Ein

(right) for 40 Gb/s.

We would now like to minimize the device length for a signal rate of
40 Gb/s and input powers up to 250 mW (pulse energies up to 6.25 pJ).
Note that due to the discrete character of both Ndbr and Ncav, the con-
dition ∆νbit/s = 20 Hz/(b/s) can never exactly be met for a given in-
dex contrast. Therefore, this condition was relaxed to ∆νbit/s = 20
Hz/(b/s)±1%. The results are shown in table 4.2.

Ndbr Ncav N Pin (mW) Ltot (µm)
1 22 233 17 178.44 1415.60
2 22 234 17 177.69 1421.14
3 22 235 17 176.95 1426.67
4 22 236 17 176.21 1432.21
5 22 237 18 165.73 1522.32

Table 4.2: Best parameter values to minimize the device length for the consid-
ered example.

The values of Ncav are now indeed much larger than one, which is
as already mentioned above, due to the extra FSR condition. Next to
the total length, other interesting properties of the optimized structure
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are:

|rdbr|2νc
= 0.673

∆νBW = 99 GHz

FSR = 805 GHz

Q = 3894
V m

eff = 2.514 µm3

The optimum result of table 4.2 is numerically checked in figure 4.27.
In this figure, the probe phase relation is shown for a pump signal at
wavelength λpump = 1.550028 µm. Note that the nonlinear phase rela-
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Figure 4.27: Numerical calculation of the linear and nonlinear phase relation
(left). The obtained phase shift (right). The position of the pump signal at
λpump = 1.550028 µm and the bandwidth region of the two nearest probe sig-
nals are also shown.

tion is not asymmetrical as it was in the case of a single signal. This
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is because now a linear probe relation is plotted for a pump signal at
a fixed frequency - in contrast to the single-signal figures in which the
nonlinear calculation is not performed for fixed frequency.

A phase shift of approximately 3.19 is obtained, which is close to π.
As can be seen, the phase shift is more or less constant over the probe
bandwidth regions.

The pump resonance shift (felt by the pump itself) is equal to
0.053 nm, which is in good agreement with ∆λc,pump ≈ 0.055 nm ob-
tained from equation (D.46). Note that the resonance shift at the pump
resonance (but felt by a probe) is indeed approximately a factor 2

3 larger
than that of the nearby probe resonances and twice as large as the shift
felt by the pump.

The corresponding intensity transmission relation of figure 4.27 is
drawn in figure 4.28. Due to condition (4.19), both the pump and the
probe signals are indeed located in frequency regions with high trans-
mission. The obtained simulation results thus fully agree with the ana-
lytically optimized specifications.
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Figure 4.28: Numerical calculation of the linear and nonlinear intensity trans-
mission relation.

All-optical stable switching While a separate treatment of the two
switching types is necessary in the single-signal setup, both can be
treated in one go in the pump-probe case. This is because we are now
interested in the transmissivity of a linear data signal for a pump at
a certain fixed position, instead of in a fully nonlinear transmission
curve.

To obtain a large resonance shift, the nonlinear pump signal should
always be placed on the nonlinear resonance frequency νc + ∆νc,pump.
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The position of the probe signals will then result in either a ’linear-high
and nonlinear-low’ transmission or ’linear-low and nonlinear-high’ trans-
mission. The minimal transmission contrast C observed by the probe
signals is again given by,

C = |ttot,L|2 − |ttot,NL|2 (4.20)

in the ’linear-high and nonlinear-low’ transmission case with
|ttot,L|2 = min(|ttot,L(ν)|2) and |ttot,NL|2 = max(|ttot,NL(ν)|2) for
ν ∈

[
νc,L − ∆νs

2 , νc,L + ∆νs
2

]
and

C = |ttot,NL|2 − |ttot,L|2 (4.21)

in the ’linear-low and nonlinear-high’ transmission case, with
|ttot,L|2 = max(|ttot,L(ν)|2) and |ttot,NL|2 = min(|ttot,NL(ν)|2) for
ν ∈

[
νc,NL − ∆νs

2 , νc,NL + ∆νs
2

]
. However, as mentioned above, due to

the symmetry of the probe transmission spectrum, both are in fact the
same.

Optimization of the transmission contrast for the situation depicted
above leads to figure 4.29 using a structure with a single period for
stability reasons.
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Figure 4.29: Minimal transmission contrast C as function of Pin (left) and Ein

(right) for different signal bandwidths. A resonator of one period is consid-
ered. For these input powers, the transmission contrast for the 100 Gb/s case
is lower than 0.5.

Due to stability considerations (like in figure 4.15), the minimum
transmission contrast is limited to ≈ 85%. As can be seen, the largest
contrasts for fixed power are obtained for the smallest data bandwidth,
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while in terms of energy, approximately the same results are obtained
for different ∆νs. The impact of the FSR condition is thus quite differ-
ent in the case of all-optical switching compared to the all-optical phase
shifting functionality.

Again, the impact of the index contrast of the mirror sections is close
to negligible, while the effect of the frequency space per bit per second
∆νbit/s is very significant.

Using the relaxed condition ∆νbit/s = 20 Hz/(b/s)±1%, the highest
transmission contrast for Pin < 1000 mW and a bitrate of 40 Gb/s is
determined by:

Ncav = 232
Ndbr = 28

}
C = 0.453

with

|rdbr|2νc
= 0.811

∆νBW = 39.2 GHz

FSR = 806 THz

Q = 3626
V m

eff = 2.512 µm3

Ltot = 85.3 µm

The values of Ncav are again much larger than unity due to the extra
FSR condition. As a result, the obtainable transmission contrast C is
much smaller than in the single-signal case for the same signal band-
width and power level.

This result is now checked numerically in figure 4.30 for both the
’linear-high and nonlinear-low’ and ’linear-low and nonlinear-high’
transmission case. In this figure, the probe transmission relation is
shown for a pump signal at wavelength λpump = 1.550339 µm. The
transmissivity felt by the pump signal is only |t (λpump)|2 ≈ 0.767 be-
cause of stability issues (figure 4.15). A minimum transmission contrast
of about 0.452 is obtained in both cases, which is close to the predicted
0.453. The resonance shift of the pump signal is equal to 0.582 nm, again
in good agreement with equation (D.46): ∆λc,pump = 0.585 nm. Again,
the resonance shift at the pump resonance felt by a probe is approxi-
mately a factor 2

3 larger than that of the nearby probe resonances and
twice as large as the shift felt by the pump.
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Figure 4.30: Numerical calculation (top) of the linear and nonlinear transmis-
sion relation for the ’linear-high and nonlinear-low’ transmission case (left)
and the ’linear-low and nonlinear-high’ transmission case (right). The ob-
tained transmission contrast (bottom). The position of the pump signal at
λpump = 1.550339 µm and the bandwidth region of the two nearest probe sig-
nals are also shown.
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4.2.2 Two-photon absorption effect

In contrast to the bound-electronic Kerr effect, the possible applications
of two-photon absorption in optical resonators are the same as in the
waveguide case.

4.2.2.1 Single-signal operation

The application of two-photon absorption in single-signal operation is
very similar to ’linear-high and nonlinear-low’ all-optical switching in
a Kerr-nonlinear resonator.

If the minimal transmission contrast C is defined as

C = |ttot,L|2 − |ttot,NL|2 (4.22)

with |ttot,L|2 = min(|ttot,L(ν)|2) and |ttot,NL|2 = max(|ttot,NL(ν)|2) for
ν ∈

[
νc − ∆νs

2 , νc + ∆νs
2

]
, an optimum contrast as plotted in figure 4.31

is now obtained for a single resonator.
Compared to using waveguides (chapter 3), this corresponds to de-

vice length improvements of the order of 10000, like in the case of Kerr-
nonlinear all-optical phase shifting. In addition, compared to figure 4.7,
the results are slightly worse, although the results of Dinu et al. [32]
were used which indicate two-photon absorption as dominant effect.
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Figure 4.31: Minimal transmission contrast C as function of Pin (left) and Ein

(right) for different signal bandwidths. For these input powers/energies, the
transmission contrast for the 100 Gb/s case is lower than 0.5.

The effect of the index contrast of the mirror sections is indicated
in figure 4.32. Like for Kerr-nonlinear single-signal applications, the
impact of this contrast is very important.
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Figure 4.32: Influence of index contrast on the optimum transmission contrast
for 40 Gb/s. For these input energies, the transmission contrast for the 5 %
case is lower than 0.5.

Maximizing the transmission contrast for a signal rate of 40 Gb/s
and input powers up to 1000 mW (pulse energies up to 25 pJ) now leads
to the following result:

Ncav = 1
Ndbr = 54

}
C = 0.560

Compared to section 4.2.1.1, the obtained contrast is about 15% worse.
Additional properties of the optimum resonator structure are:

|rdbr|2νc
= 0.986

∆νBW = 83 GHz

FSR = 19.5 THz

Q = 2323
V m

eff = 0.104 µm3

Ltot = 18.8 µm

The transmission contrast is checked numerically in figure 4.33. A trans-
mission contrast of C = 0.553 is obtained, which is in good agreement
with the predicted C = 0.560.

This contrast will be further increased by using more periods: in
the case of two periods, one already obtains C = 0.740 (figure 4.34). In
contrast to the Kerr effect, no issues with bistability arise now, so that
higher contrasts than plotted in figure 4.31 are in fact possible, however
at the cost of device length.
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Figure 4.33: Numerical calculation of the linear and nonlinear transmission
relation. The region of interest is also shown (left). The obtained transmission
contrast (right).
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Figure 4.34: Numerical calculation of the linear and nonlinear transmission
relation for two periods. The region of interest is also shown (left). The ob-
tained transmission contrast (right).

4.2.2.2 Pump-probe operation

Also in this configuration, the application of two-photon absorption is
very similar to the ’linear-high and nonlinear-low’ all-optical switching
in a Kerr-nonlinear resonator.

Like in the Kerr-nonlinear pump-probe case, the theory of appendix
E needs some adjustments. For frequencies far from the pump fre-
quency (which is the case if FSR >> ∆νs), equation (E.12) has to be
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replaced by

1−B2
tot(ν

′
c) ≈ −4

3

∣∣ttot,NL,pump(ν ′c)
∣∣2 ∣∣ttot,NL,probe(ν ′c)

∣∣2
c

πν ′c

β

n2

∆νc,lossless

∆νBW,lossless
(4.23)

Note the similarity with equation (3.12) and section 4.2.1.2. For frequen-
cies around νc, the factor 4

3 is to be replaced with 2 as can be expected.
If now a minimal transmission contrast C is defined as

C = |ttot,L|2 − |ttot,NL|2 (4.24)

with |ttot,L|2 = min(|ttot,L(ν)|2) and |ttot,NL|2 = max(|ttot,NL(ν)|2) for
ν ∈

[
νc − ∆νs

2 , νc + ∆νs
2

]
, the optimum transmission contrasts of figure

4.35 are obtained for the single resonator case. ∆νbit/s was taken to
be 20 Hz/(b/s). Similar to the Kerr effect, an improvement of a factor
25-100 in device length is obtained by using optical resonators instead
of waveguides. Like for Kerr-based all-optical switching, the obtained
transmission contrast is almost independent of the individual signal
bandwidth in terms of pulse energy.
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Figure 4.35: Minimal transmission contrast C as function of Pin (left) and Ein

(right) for different signal bandwidths.

The impact of ∆νbit/s is shown in figure 4.36. Like in the Kerr-
nonlinear pump-probe configurations, the effect of information density
is quite severe.

If the transmission contrast is optimized for a signal rate of 40 Gb/s
and input powers up to 1000 mW (pulse energies up to 25 pJ), we obtain
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Figure 4.36: Influence of ∆νbit/s on the trade-off Ltot versus Pin (left) and Ein

(right) for 40 Gb/s.

the following configuration:

Ncav = 232
Ndbr = 28

}
C = 0.265

This contrast is about half the contrast obtained in section 4.2.1.1. Note
also that exactly the same optimum structure is obtained. Additional
properties of this resonator structure are:

|rdbr|2νc
= 0.811

∆νBW = 39.2 GHz

FSR = 806 THz

Q = 3626
V m

eff = 2.512 µm3

Ltot = 85.3 µm

Numerically, the obtained contrast is verified in figure 4.37. In this
figure, the probe transmission relation is shown for a pump signal at
wavelength λpump = 1.55 µm.

A transmission contrast of C = 0.259 is simulated, which is in agree-
ment with the predicted C = 0.265. Note that the transmission at the
pump resonance (but felt by a probe) is indeed smaller than that of the
nearby probe resonances. This NOT functionality can be extended to
a NOR function by noting that the increase of modulation depth satu-
rates for high pump powers like in the waveguide set-up.
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Figure 4.37: Numerical calculation of the linear and nonlinear transmission
relation (left). The region of interest is also shown. The obtained transmission
contrast (right).

Again, the use of more resonator periods will further increase the
value of C.

4.3 Figure of merit

Until now, the mutual impact of the bound-electronic Kerr and two-
photon absorption effect has not yet been considered. With the figure
of merit defined as FOM = n2

βλc
and the resonance shift due to the Kerr

effect in the presence of two-photon absorption given by12 ∆νc,lossy =
|ttot(ν ′c)|

2 ∆νc,ll, equation (E.12) together with equations (E.8) and (E.20)
leads to [104]:

FOM ≈

√
3− |ttot(ν ′c)|

2

2
√

2π (1− |ttot(ν ′c)|)
∆νc,lossy

∆νBW,lossy
(4.25)

With this expression, the nonlinear resonance transmission |ttot(ν ′c)|
2 is

related to the relative resonance shift ∆νc,lossy

∆νBW,lossy
by means of the figure

of merit.
For two-photon absorption applications, the presence of the Kerr

effect is not a problem and even beneficial: the resonance shift further

12This can be understood by the fact that the intensity inside the cavity roughly
scales with the intensity transmission, except for frequencies far from resonance.



4.4 Conclusions 89

reduces the nonlinear transmission, leading to even higher transmis-
sion contrasts. This is shown in figure 4.38. In this figure, the trans-
mission contrast due to the Kerr and two-photon absorption effect at
the linear resonance frequency is plotted as function the transmission
contrast only due to two-photon absorption for different FOM (us-
ing [31, 32, 33]). Significant improvements are possible, in particular
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Figure 4.38: Transmission contrast due to n2 and β at the linear resonance
frequency as function of the transmission contrast only due to β.

if a strong Kerr coefficient is present.
For Kerr-nonlinear functionalities, the presence of two-photon ab-

sorption is in most cases detrimental as firstly, it increases the required
power and secondly, it decreases the obtained phase shift or transmis-
sion contrast (except for ’linear-high and nonlinear-low’ all-optical swi-
tching). In figure 4.39, the resonance transmission is plotted as function
of relative resonance shift ∆νc,lossy

∆νBW,lossy
using [31, 32, 33].

As can be seen, the decrease of the resonance transmission is signif-
icant in all cases. To obtain a relative shift of 4

√
3

9 (bistable limit) with
a transmission |ttot(ν ′c)|

2 > 1/e, a figure of merit of FOM > 0.357 is
required, which is satisfied in all cases.

This work is published in the journal paper [104] and presented at
different conferences.

4.4 Conclusions

In this chapter, the potential of optical resonators for reducing the power
and length requirements for all-optical signal processing was investi-
gated. To do this, we constructed a detailed theoretical model which
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Figure 4.39: Reduction of the resonance transmission as function of the rela-
tive resonance shift.

takes into account both the Kerr effect and two-photon absorption. For
all-optical phase shifting applications, it was found that - for the same
power budget - length reductions up to 10000 are possible compared
to the waveguide case. Important issues in this context are the mini-
mization of the mirror and cavity lengths, the bandwidth trade-off and
information density [98, 105].

In addition, new functionalities are possible with resonant struc-
tures which cannot immediately be obtained with simple waveguides,
such as all-optical switching, bistability and reshaping. Typical power
needs here are of the order of 1-4 W for bitrates of 40 Gb/s (i.e. pulse
energies of 25-100 pJ) for device lengths below 100 µm. Together with
low power requirements for regeneration, this wide variety of nonlin-
ear building blocks could allow an ultracompact, fully nonlinear plat-
form with high bitrate capacities.

For Kerr-nonlinear applications, the presence of two-photon absorp-
tion and additional loss mechanisms may however require intermedi-
ate amplification steps. In addition, anomalous group velocity disper-
sion - which can occur at the resonator band-edge of resonators with a
large number of cavities - may lead to modulation instability.

Next to optical resonators, also other structures display interesting
features in the presence of nonlinear effects: a DBR mirror can e.g. ex-
hibit resonances which are not present in the linear case, although typi-
cally with higher power budgets [106].



Chapter 5

Experimental verification

In the previous two chapters, the potential of waveguides and resona-
tors for all-optical signal processing was investigated in detail. It was
shown that by using powers of the order of 1-10 W, a whole range of
nonlinear functionalities can be obtained, potentially allowing the cre-
ation of an ultradense high-bitrate all-optical platform. Until now how-
ever, many practical issues such as loss and fabrication limitations were
not taken into account.

In this chapter, we will experimentally verify the Silicon-on-Insulator
waveguide and resonator results discussed before and discuss the im-
pact of different degradation mechanisms:

• Loss due to radiation, scattering, surface-state absorption...

• Linear and nonlinear dispersion

• Secondary effects such as carrier and thermal contributions

• Other nonlinear effects such as four-wave mixing...

The waveguide experiments were performed by means of a coopera-
tion between the National Institute of Information and Communica-
tions Technology (NICT, Japan) and the Information Technology de-
partment of Ghent University-IMEC1. To complete the comparison be-
tween theory and experiment, additional experiments from literature
will be used.

1Interuniversity Micro-Electronics Center

91



92 Experimental verification

5.1 SOI waveguides

5.1.1 Fabricated structures

For our experimental work on nonlinear waveguide applications, SOI
photonic wires were used, which have the benefit of a very small modal
area. This was discussed thoroughly in chapter 3. These structures
were created at IMEC (Leuven) on 200 mm SOI wafers with a thickness
of the Silicon layer of 220 nm and a burried oxide of 1 µm: a deep UV
lithography stepper with a 248 nm illumination wavelength is used to
define the structures in the resist. A dry etching process then trans-
fers the patterns into the Silicon layer. A more detailed overview of
the processing steps can be found in [3, 107]. The processes are in
se CMOS processes, characterized and adapted for the fabrication of
photonic circuits, which enforces quite different technological bound-
ary conditions. An example of a fabricated photonic wire and a sketch
of it is shown in figure 5.1.

Figure 5.1: Sketch (left) and fabricated result (right) of a photonic wire.

Other types of waveguides like photonic crystal waveguides also
have the advantage of small modal areas, but were not investigated.

5.1.2 Single-signal operation

5.1.2.1 Experiments

Using 4 ps pulses at a repetition rate of 20 MHz and with a peak power
of about 110 W, Boyraz et al. [108] obtained an all-optical phase shift2

of 2.5π in a 2 cm long SOI rib waveguide with an effective modal area

2Part of this phase shift however occurs in the EDFA preceding the waveguide, as
reported in the text.
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of 5 µm2. A significant power reduction due to two-photon absorption
was also observed.

In a cooperation between NICT and UGent-IMEC, all-optical limit-
ing experiments were performed based on two-photon absorption [109]
using a 2 mm long SOI wire with an effective modal area of 0.064 µm2.
Pulses of 49 ps at a repetition rate of 50 MHz were used with peak pow-
ers up to 12 W. The output power - input power relation is shown in
figure 5.2, together with the theoretical result based on section 3.2.2.
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Figure 5.2: Experimental (left) and theoretical (right) output power Pout

(right) as function of the input power Pin. Experimental results by courtesy of
Liang et al. [109]

To study the difference between both results in more detail, the out-
put pulse profile was measured for various input peak powers (figure
5.3).

Similar experiments in the context of all-optical limiting behaviour
can also be found in [28, 110, 111, 112].

5.1.2.2 Discussion

The experiment of Boyraz et al. [108] is in agreement with the results
of section 3.3: theoretically, a Kerr-nonlinear phase shift of 1.0 − 1.4π
is expected3, using the nonlinear coefficients in [31, 32, 33]. The high
power required in the experiment is due to its large modal area. Using

3This value is lower than reported in [108]. As mentioned above, part of the 2.5π
phase shift occurs in the EDFA preceding the waveguide. To estimate the contribu-
tion due to the Kerr effect, the authors however did not take into account two-photon
absorption, leading to an significant overestimation (section 3.3).
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Figure 5.3: Output pulse profile respectively with input peak powers of 1 W
(top-left), 1.6 W (top-right), 4.2 W (bottom-left)and 10 W (bottom-right). Re-
sults by courtesy of Liang et al. [109]

a 500 nm wide photonic wire, the same shift would be obtained with a
power of only 1.5 W.

When the shape of the nonlinear pulse is not rectangular, the ob-
tained phase shift will vary along the pulse: using equation (2.38) and
taking into account the ultrafast, nonlinear response time, the time-
dependent phase change is given by

∆φ(L, t) = −ωn2

cβ
ln(1 + βeffP (0, t)L) (5.1)

leading to nonlinear dispersion (frequency chirp) and spectral broad-
ening. This effect has applications such as supercontinuum generation
and soliton propagation, both however heavily limited by two-photon
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absorption [16, 30, 108]. For signal processing functionalities based on
a π phase shift, the chirp is however limited (spectral broadening of a
factor 2 requires about a 2.7π phase shift [30]).

The difference between the theoretical and experimental result in
figure 5.2 can be explained by the presence of additional loss mecha-
nisms such as linear and free-carrier absorption. This is described by
equations (2.51) and (2.52). To analyze the effect of these loss factors,
it would be interesting to convert the intensities in these expressions
to optical powers. However, because the carrier density will spread
throughout the structure, calculation of the exact carrier profile is ex-
tremely difficult. Therefore, all non-local effects will be neglected sim-
ilar to [65], so that the carrier effects effectively behave like fifth-order
nonlinearities with effective area A

(5)
eff defined as:

(
A

(5)
eff

)2
=

2
ε30c

3

[
Re
∫

(E×H∗) .ezdxdy
]3∫

NL n3
0(x, y) |E(x, y)|6 dxdy

(5.2)

Calculation of A
(5)
eff and higher-order effective areas for the considered

waveguide structure showed that A
(3)
eff ≈ A

(5)
eff ≈ A

(7)
eff ≈ ... so that a

single area Aeff will be used. In this way, equations (2.51) and (2.52)
simplify to:

dP

dz
(z, t) = −αaddP (z, t)− βI

P 2(z, t)
Aeff

− σaN(z, t)P (z, t) (5.3)

dN

dt
(z, t) =

βIP
2(z, t)

2~ωA2
eff

− N(z, t)
τcarr

(5.4)

The free-carrier refractive index and absorption change in Silicon due
to the plasma effect are given by

∆nFCD(N,P ) = −σr,NN − (σr,P P )0.8 (5.5)
∆αFCA(N,P ) = σa,NN + σa,P P (5.6)

with at 1.55 µm σa,N = 8.5× 10−18 cm2, σa,P = 6.0× 10−18 cm2, σr,N =
8.8× 10−22 cm3 and σr,P = 4.6× 10−22 cm3 at 1.55 µm. The effect of lin-
ear loss and free-carrier absorption is plotted in figure 5.4 for different
carrier lifetimes τcarr, assuming an NRZ data format and high-bit rate
operation (section 2.7). As can be seen, the influence of typical linear
loss is almost negligible. The contribution of free-carrier absorption on
the other hand can easily dominate the limiting effect of two-photon
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Figure 5.4: Impact of linear loss (left) and free-carrier absorption (right) on the
output power for the example considered in section 5.1.2.1.

absorption, explaining the difference between the theoretical and ex-
perimental result in figure 5.2. To avoid this effect in NRZ operation,
carrier lifetimes of 1 ps would be required, which are unrealistically
small for Silicon. A solution to this problem is using other data formats
with less efficient bandwidth usage (Return-to-Zero, RZ).

In the experiment of Liang et al. [109], very small repetition rates
were used so that the carrier concentration is only built up during the
propagation of a single pulse. As the pulse length is much smaller than
the carrier lifetime (typically ns scale), there are little relaxation effects
present leading an increasing carrier density along the pulse. This re-
sults in the highly asymmetric pulse shapes which are observed in fi-
gure 5.3.

5.1.3 Pump-probe operation

5.1.3.1 Experiments

In [113], Boyraz et al. demonstrated all-optical switching based on all-
optical phaseshifting in an (external) Mach-Zehnder configuration us-
ing a pump-probe setup. In this experiment, a 2.5 cm long SOI rib wa-
veguide with an effective modal area of 2 µm2 is used. The 1550 nm
pump pulses with a pulse length of 1 ps and repetition rate of 20 MHz
have a peak power of about 150 W [114]. The probe signal is operated
in CW with a wavelength of 1537 nm. In this way, an on-off switching
ratio of 13 dB is obtained. Free carrier accumulation was observed with
a carrier lifetime of 7 ns.
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Pump-probe experiments were also performed in the cooperation
between NICT and UGent-IMEC, showing the waveguide potential of
inverted wavelength conversion based on two-photon absorption [115,
116]. A 10 mm long SOI wire with an effective modal area of 0.064 µm2

was used. The pump pulses have a length of only 1.5 ps at a repetition
rate of 10 GHz and with a wavelength of 1552.7 nm. The peak powers
are varied from 0 to 7.5 W. The probe signal is positioned at a wave-
length of 1568 nm. Because of the response limitations of the photodi-
ode and the fact that the DC component of the detected signal is filtered
by the detection circuit, the modulation depth cannot be obtained with
a CW probe. Instead, a pulsed probe signal (1.5 ps pulse length) is used
which is delayed compared to the pump pulse: the modulation depth
then reaches a maximum if the delay between pump and probe pulse is
zero. The obtained result is plotted in figure 5.5, together with the theo-
retical fit. An example of the measured modulation depth as a function
of probe pulse delay is also shown: for an input pump power of 6 W,
a modulation depth of 92% is observed. Improving the repetition rate
up to 40 GHz did not lead to significant degradation due to free-carrier
effects.
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Figure 5.5: Theoretical and experimental modulation depth as a function of
the input pump power (left). Modulation depth as a function of probe delay
for an input pump power of 6 W (right). Experimental results by courtesy of
Nunes et al. [116].

This work is published in the journal paper [115] and presented at
different conferences.



98 Experimental verification

5.1.3.2 Discussion

Converted to a 500 nm wire, the pump power in the pump-probe ex-
periment of Boyraz et al. [113] corresponds to approximately 5.3 W; in
the absence of free-carrier effects, the obtained pump-probe phase shift
would theoretically be 3.4π − 4.8π. Therefore, similar to [109], free car-
rier accumulation along the pulse will lead to an additional refractive
index change, which we estimate at 0.67π in agreement with the exper-
imental results4. Due to FCA, the Kerr-nonlinear phase shift is reduced
to 3.3π − 4.6π. Also here, frequency chirp has to be taken into account.

The free-carrier effect itself can also be used for phase shifting (as
can thermal dispersion), however typically limited by the carrier (or
thermal) lifetime. This limitation can be avoided by means of an inter-
ferometric configuration [6, 117, 118]: using two different control pulses
which are slightly detuned in time, a switching window is opened which
is not limited by the carrier lifetime. In such a configuration, the index
effect does not have to be ultrafast. This is schematically represented in
figure 5.6.

control

signal 2

FC phase change

control

signal 1

data signal

Figure 5.6: Differential operation principle using two control pulses in a
Mach-Zehnder interferometer.

Using the theory of section 5.1.2.2, the required pump power to ob-
tain a free-carrier phase shift of π based on two-photon absorption can
be calculated as function of the pulse length for different wire lengths.
This is done in figure 5.7.

Compared to the ultrafast Kerr effect, the improvement ranges from
1 to 10: only in the case of short waveguides and longer pulses (i.e low

4We expect that this is also the case in the single-signal experiment [108] - where
the peak power is only 1.5 W, but the pulse length is 4× larger, leading to an additional
0.71π phase shift.
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Figure 5.7: Pump power as function of pulse length to obtain a free-carrier
phase shift of π (left). Example of created phase shift after a 10 mm wire with
a pulse length of 10 ps. The peak power is 0.68 W and the carrier lifetime was
assumed to be 1 ns (right).

peak power), a significant enhancement is found, because strong pulses
exhibit a strong Kerr-nonlinear index change independent of the pulse
length. For these power levels, transient thermal dispersion effects are
negligible on a timescale below 1 ns. In high-bitrate operation, a signif-
icant thermal background will however be present.

To utilize the FCD effect more effectively, single-photon absorption
should be deployed [119] - i.e. a pump signal with λp < 1.11 µm. Ab-
sorption coefficients range from α = 1 − 106 cm−1 [75]. In figure 5.8
(left), the required pump power to obtain a phase shift of π is recal-
culated for the single-signal absorption case as function of the pulse
period T for a wire length of 1 mm. Note that the required power does
not further improve for α > 102 cm−1: this can be explained by noting
that the plasma effect in Silicon is slightly less than linear in the carrier
density (equation (5.5)). For α > 102 cm−1, the pump power is reduced
to about zero within a length of 100 µm5, so in all cases the same total
carrier density is created. Therefore, the larger α, the smaller the area
where the carriers are created and the less efficient they are used.

In the pump-probe experiment performed by Nunes et al. [116],
excellent agreement was obtained with our theoretical predictions ne-
glecting free-carrier absorption (figure 5.5). To avoid detrimental free-
carrier effects as discussed in section 5.1.2.2, deviation from the stan-

5This can be seen by comparing figures 5.8 (left) and (right): for α > 102 cm−1, the
pump power does not improve anymore when longer wires are used.
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Figure 5.8: Pump power as function of pulse length to obtain a free-carrier
phase shift of π for a 1 mm (left) and 0.1 mm (right) wire. For these pulse
lengths, the required peak power for α = 1 cm−1 is larger than 1 W in the case
of a 0.1 mm long wire.

dard NRZ scheme in the experiment was necessary. By reducing the
data information - i.e. decreasing the repetition rate - accumulation of
the created carriers can be minimized. Intrinsically, the pump pulse
length of 1.9 ps would allow a repetition rate of about 500 GHz. Reduc-
ing this rate to 40 GHz would correspond to an information reduction
with a factor 12.5. At this repetition rate, free-carrier absorption ef-
fects are only negligible for carrier lifetimes below 200 ps. Although
this carrier lifetime may seem surprisingly low, surface recombination
times down to 100 ps have already been reported [66, 67], although not
in photonic wires. In addition, several papers [65, 120] indicate that
the surface recombination time reduces with increasing carrier densi-
ties. Physically, this can be understood by the fact that in the presence
of large carrier densities, internal fields may arise which enhance the
recombination process. In the experiment here, carrier densities up to
1018 cm−3 are created at the beginning of the waveguide, making the
low carrier lifetime value fully plausible.

The free-carrier absorption effect itself can of course also be used
for inverted wavelength conversion. Unfortunately, no differential op-
eration is possible - in contrast to the case of free carrier dispersion -
making it limited by the carrier lifetime. Therefore bitrates of 10 Gb/s
are very difficult to obtain.

In addition to secondary effects, other ultrafast nonlinear effects
may appear in pump-probe configurations, apart from cross-phase and
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cross-absorption modulation: due to presence of multiple signals, in
particular four-wave mixing (FWM) effects become possible [16, 40].
Although not discussed in this work, FWM effects form another inter-
esting branch of nonlinear optics with applications in the wavelength
conversion domain [121, 122, 123]. A key difference with the nonlinear
phenomena described in chapter 2 is however the condition of phase
matching: efficient wavelength conversion is only possible is the differ-
ent signals are phase matched6.

In the context of this work, four-wave mixing however gives rise
to additional nonlinear loss and crosstalk: in the presence of a strong
pump signal Eω1 with frequency ω1 and weaker probe signal Eω2 with
frequency ω2, an additional idler signal Eω3 will be created7 with fre-
quency ω3 = 2ω1 − ω2, caused by the nonlinear polarization:

P2ω1−ω2 = ε0
3
4
χ(3)(−2ω1 + ω2;ω1, ω1,−ω2)

...E2
ω1

E∗
ω2

exp(−jkP z) (5.7)

with kP = 2kω1−kω2 . For frequencies ω1 ≈ ω2, one has in good approx-
imation that χ(3)(−2ω1 + ω2;ω1, ω1,−ω2) = χ(3)(−ω;ω,−ω, ω), so that
the four-wave mixing process - in absence of linear and free-carrier loss
and pump depletion - is described by

dEω1

dz
(z, t) = −j

ω1

c
n2 |Eω1(z, t)|2 Eω1(z, t)− β

2
|Eω1(z, t)|2 Eω1(z, t)

(5.8)
dEω2

dz
(z, t) = −2j

ω2

c
n2 |Eω1(z, t)|2 Eω2(z, t)− β |Eω1(z, t)|2 Eω2(z, t)

−j
ω2

c
n2E2

ω1
(z, t)E∗

ω3
(z, t) exp(j∆kz)

−β

2
E2

ω1
(z, t)E∗

ω3
(z, t) exp(j∆kz) (5.9)

dEω3

dz
(z, t) = −2j

ω3

c
n2 |Eω1(z, t)|2 Eω3(z, t)− β |Eω1(z, t)|2 Eω3(z, t)

−j
ω3

c
n2E2

ω1
(z, t)E∗

ω2
(z, t) exp(j∆kz)

−β

2
E2

ω1
(z, t)E∗

ω2
(z, t) exp(j∆kz) (5.10)

6In the case of two signals, this means that neff,1 = neff,2. In practice, some phase
mismatch will always remain if both signals have a different wavelength.

7Many other FWM effects may occur, although not in the vicinity of ω1 and ω2. Nev-
ertheless, for sufficiently long structures, also the frequency 2ω2 − ω1 will be created
together with new crossover terms.
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with a phase mismatch given by ∆k = k2ω1−ω2 + kω2 − 2kω1 = 4π
λ1

d2neff

dλ2

(λ2 − λ1)2. The signals are then fully mismatched8 after a (linear) co-
herence length Lcoh = π

∆k .
As an example, let us consider the experimental setups above [116]:

an idler will be created at 1.538 µm with a coherence length of 2.76 mm.
The input pump powers are taken to be 0.5 W and 2 W. The evolution of
the probe and the idler signal along the waveguide is plotted in figure
5.9. The probe situation without FWM effects is also shown.
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Figure 5.9: FWM effects along the waveguide for the experiments described
by [116] with an input power of 0.5 W (left) and 2 W (right). The reference
probe case without FWM is also considered. The different transmissions are
scaled to the probe input power.

For pump power of 0.5 W, the FWM effect is relatively small. As can
be seen, the exact coherence length approaches the linear value Lcoh

quite well. For the 2 W pump signal however, considerable FWM can
be seen and the idler signal is comparable in power level with the probe
signal. In this case, the phase mismatch is partially compensated by
nonlinear phase effects. As a result, the coherence length is now much
larger, which explains the strong idler signal. Note that also the probe
signal is much higher than in the absence of FWM due to energy trans-
fer from the pump through the idler9. In reality, the FWM contribution
will be smaller due to pump depletion and free-carrier absorption ef-

8This formula is based on the linear case. However, in reality, the exact coherence
length is slightly different due to nonlinear phase changes.

9This can explain the difference between theory and experiment is figure 5.5 for
higher input powers.
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fects [122]. Nevertheless, if multiple probe signals are present at the
same time, considerable crosstalk can be obtained.

5.2 Resonators

5.2.1 Fabricated structures

Many three-dimensional implementations of the standing-wave optical
resonator discussed in chapter 4 are possible (figure 5.10): starting from
index guided waveguides, a straightforward approach is to introduce
mirror sections by etching (entirely or partially) the waveguide or by
adding holes. In a PhC waveguide, resonant behaviour can also be
obtained with additional holes. These different approaches were also
fabricated at IMEC (Leuven).

Figure 5.10: Sketch of different types of optical resonators: partially etched
waveguide (top,left), fully etched waveguide (top, right), waveguide with
holes (bottom,left), PhC resonator (bottom, right).

A slightly different type of resonator is the ring resonator (figure
5.11), in which the light literally travels in circles [2]. Depending on the
shape, also racetracks, disks... exist. In contrast to the previous struc-
tures, these devices are traveling-wave optical resonators, which have
slightly different linear and nonlinear properties compared to their
standing-wave equivalent. The coupling between the ring and the in-
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and output waveguides acts like a very short mirror section10, while
the ring itself is to be considered as a large cavity. The latter is in-
trinsically limited by radiation loss depending on the index contrast.
Furthermore, due to the absence 11 of a counterpropagating field, the
third-order nonlinear interaction is reduced by a factor of 3 (see equa-
tion (D.7) and [125]). An important advantage of traveling-wave struc-
tures however is that the ’reflected’ light is passed to an additional port
and is not sent back into the system. This allows all-pass configura-
tions [126], which are not possible with standing-wave resonators (not
further discussed). A sketch of a ring resonator and an example of a
fabricated result are shown in figure 5.11.

Figure 5.11: Sketch (left) and fabricated result (right) of an optical ring reso-
nator.

Apart from these examples, many other types of optical resonators
are still possible (e.g. PhC structures with shifted hole sections [92], ...)
with similar properties.

The best results in terms of loss, Q-factor and modal volume that we
obtained during this work, were with the ring structures in spite of their
lower nonlinear interaction. From chapter 4, it is clear that the cavity
length should be as small as possible12. Low-loss resonators were fab-
ricated with a radius of R ≥ 3 µm. Using other processing techniques,
even better results in terms of nonlinear enhancement were obtained
by other groups using PhC resonators. These will be cited in the text.

10The coupling coefficient between the ring and the waveguide corresponds to the
mirror transmissivity |t|2νc

in our 1D model, while the intensity fraction that goes to the
pass port is given by |r|2νc

[2].
11In practice, some counterpropagating light is possible due to backscattering as a

result of surface roughness [124], although this is negligible for nonlinear purposes.
12Note that in the case of a ring resonator, the mirror length is already negligible and

can therefore not be further optimized.
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5.2.2 Single-signal operation

5.2.2.1 Experiments

Continuous-wave measurements were performed to investigate the in-
fluence of secondary effects on ring resonators. On plain wavegui-
des, we have seen above that the impact of free carriers is quite se-
vere. In this experiment, a ring resonator with a radius of 4 µm was
used: the resonance at the wavelength 1535.72 nm has a bandwidth of
6.03 GHz (47.4 pm) corresponding to a Q-factor of 32000 and a reflec-
tion of |r|2νc

= 0.997. The bandwidth of the resonance at the wavelength
1556.97 nm is approximately 3.77 GHz (30.5 pm), leading to a Q-factor
of 51000 and a reflection of |r|2νc

= 0.998. The measured free spectral
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Figure 5.12: Normalized transmission of the pass and the drop port in the
low-power regime.
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Figure 5.13: Detail around the resonance wavelength 1535.72 nm (left). Detail
around the resonance wavelength 1556.97 nm (right).
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range is 21.25 nm (figure 5.12). The peak transmission at the resonances
is respectively 0.08 and 0.27 (figure 5.13). As can be seen, the resonance
at the wavelength 1535.72 nm is slightly split due to surface roughness
induced backscattering [124].
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Figure 5.14: Experimental (left) and theoretical (right) nonlinear drop trans-
mission spectra around the linear resonance wavelength 1557.51 nm.

As the second resonance has the highest Q-factor and mirror re-
flectivity, the area around 1556.97 nm was investigated on nonlinear
behaviour: the signal power was varied from 0.14 mW to 1.09 mW in
steps of 1.5 dB with an estimated error of ± 0.5 dB. The resulting drop
transmission spectra are shown in figure 5.14. Due to the fact that the
laser source could only be swept in the upward wavelength direction,
only the upper (bistable) arm is plotted. From the steep declines in the
transmission13, it can however be seen that all-optical bistability is ob-
tained for powers of 0.27 mW and above.

By measuring the output signal using an optical oscilloscope, it was
found that for sufficiently high input powers two separate power lev-
els become visible. From our simulations (see below), we expect that
periodic oscillations are in fact occuring. This periodicity could how-
ever not be seen in the measurements, which is probably due to noise
in the input signal due to a pre-amplifier. As discussed in [127], this
can lead to quasi-periodicity of the output signal. To show the impact
of this behaviour, the standard deviation was calculated from the os-
cilloscope data and plotted together with the average transmission as
a function of wavelength. This is done for an input power of 0.76 mW

13This behaviour is similar to section 4.2.1.1 (e.g. figure 4.12), although the origin
here is not the Kerr effect, but thermal dispersion (see further).
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Figure 5.15: Experimental (left) and theoretical (right) nonlinear drop trans-
mission spectra together with the measured standard deviation for an input
power of 0.76 mW.

in figure 5.15. Both (bistable) arms are now present as the sweep was
carrier out manually.

The oscilloscope data is plotted explicitly for the wavelength
1557.02 nm and 1557.03 nm (lower arm) in figure 5.16. In the first plot,
two different power levels can clearly be discriminated, demonstrating
the instable behaviour.

This work is published in the journal paper [120] and presented at
different conferences.

Similar continuous wave experiments on other types of optical reso-
nators - in particular, PhC work - can be found in [65, 66, 128]. Recently,
periodic pulsations and unstable behaviour was also directly observed
by Johnson et al. [129].

5.2.2.2 Discussion

Like the carrier density, the temperature will also vary throughout the
structure, making it very difficult to determine the carrier and tempera-
ture profile exactly. Therefore, the same approach of section 5.1.2.2 was
used, leading to:

dP

dz
(z, t) = −

[
α(SSA) + α(SC+R)

]
P (z, t)− βI

P 2(z, t)
Aeff

−σaN(z, t)P (z, t) (5.11)
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Figure 5.16: Oscilloscope data (top) and simulation results (bottom) at the
wavelength 1557.02 nm (left) and 1557.03 nm (right) for an input power of
0.76 mW.

dN

dt
(z, t) =

βIP
2(z, t)

2~ωA2
eff

− N(z, t)
τcarr

(5.12)

dT

dt
(z, t) =

α(SSA)P (z, t)
ρCpAeff

+
βIP

2(z, t)
ρCpA2

eff

+
σaN(z, t)P (z, t)

ρCpAeff

−T (z, t)− T0

τth
(5.13)

In this equation, the linear loss mechanisms were split to distin-
guish effects which lead to additional heating (such as surface-state ab-
sorption, indicated by SSA) or not (such as scattering and radiation,
indicated by SC + R). In addition, a temperature term was added to
reflect this extra heating.
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The free-carrier refractive index and absorption change in Silicon
due to the plasma effect are given by equations (5.5) and (5.6), while
the thermal dispersion effect is equal to:

∆n(T ) =
dn

dT

∣∣∣∣
T=T0

(T − T0) (5.14)

with dn
dT

∣∣
T=300K

= 1.86× 10−4 at 1.55 µm.
With this theoretical model, information concerning the carrier life-

time can be derived by fitting the reduction of the transmission as a
function of the cavity power. This is done in figure 5.17.
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Figure 5.17: Measured and fitted nonlinear peak transmission (relative to the
linear peak transmission 0.265) as a function of the estimated power inside the
ring cavity (left). Fitted carrier lifetime as a function of carrier density (right).

Large deviations from the measurement data can be observed for
cavity power above 25 mW. This can be explained by the observed quasi-
periodic oscillating behaviour: as a result of these oscillations, the aver-
age output power is much lower than expected in a stable regime. The
resulting carrier lifetime is plotted as function of the carrier density in
figure 5.17: lifetimes in the range of 1−10 ns are found for carrier densi-
ties of the order of 1016−1017 cm−3. This is in good agreement with the
experimental results published in [64, 65, 66, 67, 128]. For higher carrier
densities, even smaller recombination times are expected, which could
explain the results in 5.1.3.2.

Once the carrier lifetime is obtained, we can determine the ther-
mal lifetime and surface-state absorption coefficient α(SSA) by fitting
the resonance wavelength shift. This is shown in figure 5.18. Due
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to some exchange possibilities between the different contributions to
the thermal dispersion at lower power levels, the thermal lifetime and
surface-state absorption coefficient could only be determined to be in
the range tth = 60 − 110 ns and α(SSA) = 0.1 − 0.3 dB/mm. This is in
agreement with the results of [65, 66]. Using a one-dimensional mate-
rial system model, a thermal lifetime of 250 ns is obtained, which is of
the same magnitude14 For the parameter combination tth =65 ns and
α(SSA) = 0.22 dB/mm, the different nonlinear refractive index contri-
butions are shown in figure 5.18.
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Figure 5.18: Measured and fitted nonlinear resonance wavelength shift ∆λc as
a function of the cavity power (left). Decomposition of the different nonlinear
contributions to the refractive index change inside the ring resonator (right).

As can be seen, thermal contributions due to FCA and SSA are
dominant, which could be concluded from the bistability on the up-
per wavelength side. However, the FCD refractive index change is also
quite large. The fitted full transmission spectra are plotted in figure 5.15
and show good agreement with the experimental results.

The unstable behaviour observed in figures 5.15 and 5.16 can now
be explained by the fact that two large nonlinear dispersion effects -
thermal and free-carrier parts - are contributing to the index change
with opposite signs and very different time constants, leading to a cir-
cling around the bistability loop, as explained in [130, 127]. This is con-
firmed by our simulations: despite the fact that a much wider unstable

14Note that this value is much larger then the one for the AlGaAs-AlOx structure of
table 2.4, because of the very effective thermal conductivity of AlOx compared to SiO2.
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area is predicted by simulations, the agreement is in principle correct
and centered around the same wavelengths.

In configurations with less important free-carrier effects (e.g. by
reduced carrier lifetime or due to the fact that the thermal effect due
to FCA - which rises more quickly with the input power than FCD - is
more dominant), this unstable behaviour disappears.

While in the waveguide case, the main loss mechanisms consist of
free-carrier absorption, linear loss can now also be important: in the
ring, the total linear loss was estimated α = 0.72 dB/mm. In addition, it
should be noted that anomalous group velocity dispersion, which was
estimated at -4 ps2/m, counteracts the shift of the resonance frequency.
Both of these considerations result in higher power requirements to ob-
tain the certain frequency shift.

To conclude, we compare these results with the other experimental
work [64, 65, 66, 128] in this field. Thermal bistability in optical ring
resonators was also demonstrated by [64] with powers of 0.7 mW (5 µm
and Q of about 14000). As mentioned above, PhC structures promise
a further reduction of the thermal bistability power compared to ring
resonators:

• PhC resonators are standing-wave structures, leading to more ef-
ficient nonlinear interactions (3×, 10× and 35× higher for a third-,
fifth- and seventh-order nonlinear effect).

• PhC resonators are not subject to radiation loss (limiting ring ra-
dius), although out of plane loss can be important.

• PhC resonators allow for very large tunability in terms of geome-
try.

As a result, thermal bistability was demonstrated with very small input
powers: using a PhC resonator with a Q of 38000 and V m

eff = 0.09 µm3,
Barclay et al. [65] obtained optical bistability with powers of 0.1 mW.
Notomi et al. [66] obtained bistability in PhC structure with a Q of 33000
and V m

eff = 0.08 µm3 using powers of only 40 µW. Recently, thermal
bistability was obtained by Uesugi et al. [128] with powers of only
28 µW in a PhC cavity with a Q of 230000 and V m

eff = 0.12 µm3.
Fitting these structures to a one-dimensional resonator structure as

in chapter 4, mirror contrasts of the order 33% are obtained, showing
that the results there typically can be improved by a factor of 5. Even
higher improvements are expected in the future.
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5.2.3 Pump-probe operation

5.2.3.1 Experiments

Based on the previous analysis, secondary effects will clearly dominate
the resonator behaviour for high repetition rate signal processing. Pos-
sible applications will be the same as discussed in section 4.2, but life-
time limited.

Using an all-pass ring resonator with a radius of 5 µm and Q of
14000, Almeida et al. [64] demonstrated thermal ’linear-high and
nonlinear-low’ switching with an average pump power of 0.55 mW (on
resonance) and a CW probe signal positioned close to the next reso-
nance with a 0.2 nm resonance wavelength offset. The Q-factor of the
second resonance was estimated at 8000. The obtained modulation
depth was 8 dB at a NRZ bitrate of only 0.2 Mb/s.

To demonstrate the lifetime limitation for carrier effects of our SOI
ring resonator structures, a pump signal with a peak power of 0.66 mW
and an extinction ratio of 5 dB was inserted on the second resonance
of the resonator discussed in section 5.2.2. The pulses have a length
of 10 ns and a repetition rate of 12.5 Mb/s (i.e. 10001000... bit pattern,
figure 5.19). The CW probe signal was positioned near the first reso-
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Figure 5.19: Pump signal inserted on the optical resonator.

nance with respectively a 0 nm and 0.08 nm resonance wavelength off-
set. The obtained output probe signals are plotted in figure 5.20. The
measured extinction ratios were respectively 2.7 dB and 3.8 dB. Similar
experiments were also performed by [67, 102].

Using higher pump powers, the extinction ratio can be improved,
however deviations in the converted bit pattern (normally 10001000...
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Figure 5.20: Measured (left) and simulated (right) output probe signals at the
wavelengths 1535.72 nm (top) and 1535.80 nm (bottom) for a pump power of
0.66 mW.

respectively 01110111...) were observed. This is shown in figure 5.21
for the same setup with an input power of 1.32 mW.

5.2.3.2 Discussion

In the experiment performed by Almeida et al. [64], thermal ’linear-
high and nonlinear-low’ switching is obtained at the pass port, corre-
sponding to ’linear-low and nonlinear-high’ switching at the drop port
of an add-drop configuration. This is in agreement with the mentioned
wavelength offset of the probe.
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Figure 5.21: Measured (left) and simulated (right) output probe signals at the
wavelengths 1535.72 nm (top) and 1535.80 nm (bottom) for a pump power of
1.32 mW.

In our free-carrier experiment, ’linear-high and nonlinear-low’ or
’linear-low and ’nonlinear-high’ all-optical switching is obtained, de-
pending on the position of the probe, similar to the behaviour discussed
in section 4.2.1.2. As can be seen in figure 5.20, the obtained experi-
mental data is in good agreement with the predicted results15 The bi-
trate is clearly limited by the carrier lifetime: carrier densities between

15In the timedomain, the nonlinear behaviour of a ring resonator can be simulated
by using its linear rate equation model [2] in combination with equations (5.11), (5.12),
(5.13) and equations (B.50), (B.56) (5.5), (5.6) and (5.14). For a standing-wave structure,
timedomain simulations are much more difficult because of the presence of two coun-
terpropagating waves and more complex tools such as FDTD are in general required.
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0.5− 3.5× 1016 cm−3 were simulated, theoretically allowing data rates
up to 0.3 Gb/s. The slower recovering carrier tail however limits the
data rate to about 0.1 Gb/s. The thermal background was estimated at
∆T = 0.85 K. Due to the low Q-factor of the probe resonance, the power
to obtain pump-probe operation is larger than in the single-signal case.
If the Q-factor of pump and probe resonance would be the same, the
switching power could be reduced with a factor of 510002

320002 ≈ 2.5 (equa-
tion (D.51)).

For higher pump powers, the converted bit pattern shows errors
due to unstable effects similar to the CW case. This is confirmed by
our simulations (figure 5.21), although the agreement is not as good
as for 0.66 mW. As a result of this unstable behaviour, the maximum
obtainable extinction ratio - which typically improves for higher pump
powers - is limited.

To avoid the dominance of secondary effects, the same approach
can be used as for photonic wires: decreasing the repetition rate with
the disadvantage of inefficient bandwidth usage. For optical resona-
tors, this penalty is extra-hard because of the fact that bandwidth con-
finement is the key for nonlinear enhancement (appendices D and E).
Differential operation could also be considered, however multiple opti-
cal resonators would be necessary just as in the case of all-optical Kerr-
nonlinear phase shifting. Due to the presence of significant linear loss,
this will be difficult in practice.

Like in the waveguide case, the presence of two or more optical
signals inside the resonator structure can lead to additional four-wave
mixing effects: (an) idler signal(s) with power levels comparable to the
probe signal(s) can arise, in practice however limited by free-carrier
effects [122].

5.3 Conclusions

In this chapter, we experimentally confirmed our previous theoretical
results. Excellent agreement between simulation and experiment was
obtained. In a cooperation between NICT and UGent-IMEC, all-optical
limiting and wavelength conversion based on two-photon absorption
were demonstrated in a photonic wire for pulse trains up to 40 GHz and
powers below 10 W. We also demonstrated all-optical, thermal bista-
bility in a SOI ring resonator with powers below 0.3 mW. In addition,
two examples of all-optical switching were demonstrated with a pulse
length of 10 ns and a power of 0.7 mW, indicating that 0.1 Gb/s opera-
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tion is feasible. Unstable behaviour due to interaction between thermal
and free-carrier effects was obtained at higher powers.

In addition, the impact of different degradation mechanisms was
discussed: both in the waveguide and in the resonator experiments,
significant secondary effects were observed in the SOI structures due
to the creation of free carriers and heat. To avoid the impact of these
phenomena, one can reduce the pulse repetition rate, however at the
cost of a decrease in optical data rate. Even then, secondary effects
may appear due to accumulation along the pulse itself. Such an ap-
proach has potential for all-optical header processing in packet-based
networks (ns repetition rates, [8, 131])

Secondary effects and in particular free-carrier dispersion can be
used for all-optical signal processing, however within the limitation of
their relaxation time and possible unstable behaviour. Therefore, re-
ducing the carrier lifetime by fabrication optimization or by means of
carrier extraction [70] would be important. In the latter case, one would
also avoid thermal effects leading to free-carrier bistable elements. Also
here, applications can be found along the lines of all-optical packet
routing. This relaxation limitation can however be overcome in pho-
tonic wires by using an interferometric approach.

Apart from secondary effects, further degrading in optical resona-
tors occurs due to significant linear loss and the presence of linear dis-
persion. In pump-probe operation, particular attention should also
be paid to four-wave mixing effects, which could lead to considerable
crosstalk in multiple channel processing (e.g. broadcasting).

Finally, we would like to mention the particular potential of PhC re-
sonators for ultrafast nonlinear signal processing due to their standing-
wave properties and small modal volume.



Chapter 6

Conclusions and
perspectives

6.1 Conclusions

Today, optical data transport forms the backbone for the modern long-
haul telecom infrastructure and is already starting to penetrate the mar-
kets of high-end local area networks and short distance applications.
To fully realize its potential, improved switching and processing func-
tionalities are however necessary inside the optical layer. Although
low-cost integration while maintaining optical-electrical conversions is
a first step, all-optical signal processing is expected to form the real
breakthrough towards ultra-high bandwidth telecommunication. In
the context of the recent advances in fabricating high-quality nanopho-
tonic devices, ultrafast nonlinear optics forms an excellent candidate to
achieve this goal.

Of the many nonlinear effects that exist, two interdependent ultra-
fast phenomena were considered in this work: the bound-electronic
Kerr effect and the two-photon absorption process. In common semi-
conductor materials, these effects are however very weak and therefore
require high optical powers. In addition, secondary effects such as car-
rier generation and heating may arise which can dominate the nonlin-
ear behaviour.

By using waveguides with high transverse confinement, the non-
linear interaction between the light and the material can be enhanced,
leading to significant reductions in the power budget: with peak pow-
ers of the order 1-10 W and waveguides lengths in the mm range, all-

117
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optical signal processing is theoretically possible with bitrates exceed-
ing 1 THz.

Even further improvement is possible by introducing longitudinal
confinement (i.e. resonator enhancement) at the expense of a reduction
in signal bandwidth. To investigate and optimize this trade-off, a de-
tailed theoretical model was constructed which takes into account the
different nonlinear effects. For 40 Gb/s and 100 Gb/s operation, pulse
energies of the order of respectively 5-20 pJ and 25-100 pJ are theoreti-
cally required for devices lengths below 100 µm. In addition, new func-
tionalities such as optical memory are possible with optical resonators,
which cannot be achieved with simple waveguides.

Experimentally, these theoretical results were verified using SOI wa-
veguides and ring resonators: in photonic wires, 40 GHz wavelength
conversion was demonstrated in a cooperation between NICT and
UGent-IMEC with powers in the range of 1-10 W. A severe degradation
due to secondary effects was however observed, leading to the need for
other data formats. In the ring resonator experiments, free-carrier and
thermal effects are even more dominant and thermal bistability was
obtained with input powers below 0.3 mW. For the first time, we also
demonstrated unstable behaviour, which forms an important limita-
tion for thermal all-optical switching, but also has potential for pulse
generation. In addition, free-carrier based all-optical switching was de-
monstrated with a pump power of only 0.67 mW. At larger pump pow-
ers, we again observed instable behaviour, which limits the obtainable
modulation depth. Despite these considerations, both the waveguide
and resonator approach can be used for packet-based all-optical rout-
ing.

6.2 Future work

While proving the extremely large potential of nonlinear optics, the re-
sults that we obtained during this work can still be improved a lot: as
technology and fabrication methods constantly get better, new routes
become possible which will allow an increasingly better behaviour and
performance.

In particular, we expect a lot from the following approaches:

• As already mentioned in chapter 5, photonic crystal structures
form the most versatile and tunable system for fabricating optical
resonators. In the light of using evolutionary algorithms to cre-
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ate high-quality devices [5], we expect the modal volume and Q
factor of these resonators to improve even more.

• In chapter 2, different approaches were already discussed to re-
duce the impact of secondary effects. In particular, carrier extrac-
tion by integration of a p-i-n junction may prove to be a viable
way to avoid many detrimental carrier accumulation and heating
effects [70, 132]. Moreover, as free carrier effects can also be used
for signal processing purposes, increasing the reverse voltage of
the junction would allow bitrates above 10 Gb/s and free-carrier
all-optical bistability should become possible as thermal disper-
sion effects are avoided.

• In addition to the previous remark, we believe that much im-
provement is to be expected from surface engineering: interest-
ing results are reported concerning the reduction of surface-state
absorption and increasing the carrier diffusion (i.e. reducing the
carrier response time) would be possible.

• From the results of this work, it is clear that Silicon may not be the
best material to be used for all-optical signal processing. In addi-
tion to evaluating other semiconductor platforms (e.g. AlGaAs),
new material systems such as quantum dots, nanocrystals... can
be integrated onto the existing Silicon technology, combining the
results of both worlds [90, 133]. In this way, an ultrafast all-optical
nonlinear platform may become possible.
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Appendix A

Material anisotropy

In a cubic symmetry, the three independent elements of the nonlinear
susceptibility tensor χ(3)(−ω;ω,−ω, ω) with u, v, w the main axes of the
cubic crystal structure are [16]:

χ(3)
uuuu(−ω;ω,−ω, ω) = χ(3)

vvvv(−ω;ω,−ω, ω) = χ(3)
wwww(−ω;ω,−ω, ω)

≡ χ
(3)
1 (−ω;ω,−ω, ω)

χ(3)
uuvv(−ω;ω,−ω, ω) = χ(3)
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In this way, the third-order polarization in equation (2.19) becomes,

P (3)
u,ω =

3
4
ε0

[
χ

(3)
1 (−ω, ω,−ω, ω) |Eu,ω|2 Eu,ω

+2χ
(3)
2 (−ω, ω,−ω, ω)(|Ev,ω|2 + |Ev,ω|2)Eu,ω

+ χ
(3)
3 (−ω, ω,−ω, ω)(E2

v,ω + E2
w,ω)E∗

u,ω

]
(A.1)

121



122 Material anisotropy

P (3)
v,ω =

3
4
ε0

[
χ

(3)
1 (−ω, ω,−ω, ω) |Ev,ω|2 Ev,ω

+2χ
(3)
2 (−ω, ω,−ω, ω)(|Ew,ω|2 + |Eu,ω|2)Ev,ω

+ χ
(3)
3 (−ω, ω,−ω, ω)(E2

w,ω + E2
u,ω)E∗

v,ω

]
(A.2)

P (3)
w,ω =

3
4
ε0

[
χ

(3)
1 (−ω, ω,−ω, ω) |Ew,ω|2 Ew,ω

+2χ
(3)
2 (−ω, ω,−ω, ω)(|Eu,ω|2 + |Ev,ω|2)Ew,ω

+ χ
(3)
3 (−ω, ω,−ω, ω)(E2

u,ω + E2
v,ω)E∗

w,ω

]
(A.3)

This means that only the linear field polarizations (±1, 0, 0),
(0,±1, 0), (0, 0,±1); (± 1√

2
,± 1√

2
, 0), (± 1√

2
, 0,± 1√

2
), (0,± 1√

2
,± 1√

2
) and

(± 1√
3
,± 1√

3
,± 1√

3
) really have a Kerr-nonlinear behaviour1. These are

the only linear cases that can be described by a single χ(3)(−ω;ω,−ω, ω),
which is respectively given by,

χ(3)(−ω;ω,−ω, ω) = χ
(3)
1 (−ω, ω,−ω, ω) (A.4)

χ(3)(−ω;ω,−ω, ω) =
1
2
χ

(3)
1 (−ω, ω,−ω, ω) + χ

(3)
2 (−ω, ω,−ω, ω)

+
1
2
χ

(3)
3 (−ω, ω,−ω, ω) (A.5)

χ(3)(−ω;ω,−ω, ω) =
1
3
χ

(3)
1 (−ω, ω,−ω, ω) +

4
3
χ

(3)
2 (−ω, ω,−ω, ω)

+
2
3
χ

(3)
3 (−ω, ω,−ω, ω) (A.6)

so that P(3)
ω becomes,

P(3)
ω =

3
4
ε0χ

(3)(−ω, ω,−ω, ω) |Eω|2 Eω (A.7)

with2 |Eω|2 = |Eu,ω|2 + |Ev,ω|2 + |Ew,ω|2.
In addition, the circular polarizations (± 1√

2
,±j 1√

2
, 0),

(± 1√
2
, 0,±j 1√

2
), (0, j ± 1√

2
,± 1√

2
) and (± 1√

3
,± 1√

3
exp

(
±j 2π

3

)
,

± 1√
3
exp

(
∓j 2π

3

)
) can also be described by a single third-order polar-

1In the other cases, the Kerr-nonlinear behaviour is accompagnied with polarization
rotation as described in [40].

2e.g. in the case (± 1√
2
,± 1√

2
, 0), this means that |Eω|2 = |Eu,ω|2 + |Ev,ω|2 and

|Eu,ω|2 = |Ev,ω|2 = |Eω|2
2

.
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ization, namely,

χ(3)(−ω;ω,−ω, ω) =
1
2
χ

(3)
1 (−ω, ω,−ω, ω) + χ

(3)
2 (−ω, ω,−ω, ω)

−1
2
χ

(3)
3 (−ω, ω,−ω, ω) (A.8)

χ(3)(−ω;ω,−ω, ω) =
1
3
χ

(3)
1 (−ω, ω,−ω, ω) +

4
3
χ

(3)
2 (−ω, ω,−ω, ω)

−1
3
χ

(3)
3 (−ω, ω,−ω, ω) (A.9)

Note that the circular χ(3)(−ω;ω,−ω, ω) values are always smaller than
the corresponding linear polarization susceptibilities.
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Appendix B

Effective nonlinear
coefficients

In chapter 2, the transverse dimensions of the propagating light were
not yet taken into account. In reality however, light is confined transver-
sally, so that the field can generally not be assumed to be independent
of the directions perpendicular to the propagation. As a result, an ef-
fective nonlinear coefficient should be used. Furthermore, because of
the fact that the electric field in realistic structures may have different
components of which the importance changes along the cross section,
the nonlinear anisotropic behaviour of the material system will come
into play (appendix A).

In this appendix, we will study the effective nonlinear propagation
both in the two- and three-dimensional space. In the two-dimensional
case, we will investigate the effects of polarization, anisotropy and mul-
timode behaviour explicitly for the bound-electronic Kerr effect. The
same method can be used for the two-photon absorption effect, lead-
ing to similar results. In the three-dimensional case, we will discuss
a method from literature to calculate an effective nonlinear coefficient
and validate it with the results of the two-dimensional study.

B.1 Nonlinear effects in a slab waveguide

Consider a two-dimensional symmetric slab waveguide as shown in
figure B.1.

Due to spatial invariation in the x direction, such a waveguide has
two types of solutions [17]:
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core

cladding

cladding

y

z x

Figure B.1: Cross section of a two-dimensional symmetric slab waveguide.

• TE modes or transverse electric solutions, with only the field com-
ponents Ex,Hy,Hz . The ground TE mode has electric field com-

ponent Ex with positive parity, or dEx
dy

∣∣∣
y=0

= 0.

• TM modes or transverse magnetic solutions, with only the field
components Hx, Ey, Ez . Ey and Ez have a phase difference of π

2 ,
which corresponds to an elliptic field polarization in the plane of
propagation. Now, the ground TM mode has a Ey component

with a positive parity, or dEy

dy

∣∣∣
y=0

= 0 (like Ex in the TE situation),

while Ez has a negative parity, or Ez|y=0 = 0.

In the presence of nonlinear effects, this spatial symmetry will dictate
the same types of solutions. However, because of the nonlinear field de-
pendence, interaction between the different solutions is possible: inter-
action between different TE modes, interaction between different TM
modes and interaction between both TE and TM modes. This complex-
ity is even further increased by the material anisotropy discussed in
appendix A.

Here, we will only examine two particular cases:

• the Kerr-nonlinearity in case of the ground TE mode with the x-
axis along an axis which has exact Kerr-nonlinear behaviour (so
that a single χ(3)(−ω;ω,−ω, ω) value suffices to describe the com-
plete effect. In this case, the field polarization is linear for each
value of y (transverse direction).

• the Kerr-nonlinearity in case of the ground TM mode with the y-
and z-axes both along a material axis (e.g. the y-axis along the
material v-axis and the z-axis along the material w-axis). In this
case, the field polarization changes from linear along the y-axis
at y = 0 to almost linear along the z-axis for |y| >> 0. Such a
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mode does no have exact Kerr-nonlinear behaviour and must be
described by two χ(3)(−ω;ω,−ω, ω) values.

In addition, only the forward field propagation is considered.

B.1.1 Transverse electric case

The case of the ground TE mode is discussed first. In this case, equa-
tion (2.36), given by

∇2Eω +
ω2

c2

(
1 + χ(1)(−ω, ω) +

3
4
χ(3)(−ω, ω,−ω, ω) |Eω|2

)
Eω = 0(B.1)

simplifies to

∂2

∂y2
Ex,ω +

∂2

∂z2
Ex,ω +

ω2

c2

(
1 + χ(1)(−ω, ω)

+
3
4
χ(3)(−ω, ω,−ω, ω) |Ex,ω|2

)
Ex,ω = 0 (B.2)

To solve this equation, a multi-scale approach [41] can be used: we
introduce additional variables yi and zi, which are function of a param-
eter of ’importance’ ε1 and which provide us with additional degrees of
’freedom’:

yi = εiy (B.3)
zi = εiz (B.4)

In this way, one obtains for the derivatives ∂y = d
dy and ∂z = d

dz :

∂y = ∂y,0 + ε∂y,1 + ε2∂y,2 + ... (B.5)
∂z = ∂z,0 + ε∂z,1 + ε2∂z,2 + ... (B.6)

with ∂y,i = d
dyi

and ∂z,i = d
dzi

. In addition, we expand Eω as a function
of ε:

Eω = E0,ω + εE1,ω + ε2E2,ω + ... (B.7)

The Kerr-nonlinearity which is assumed to be weak is taken to be pro-
portional to ε. If the terms with the same dependence on ε are now

1A larger dependence on ε corresponds to a less important contribution or a higher
order of perturbation.
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taken together, one obtains in the first two orders in ε:

∂2
y,0E0,x,ω + ∂2

z,0E0,x,ω +
ω2

c2

(
1 + χ(1)(−ω, ω)

)
E0,x,ω = 0 (B.8)

∂2
y,0E1,x,ω + ∂2

z,0E1,x,ω +
ω2

c2

(
1 + χ(1)(−ω, ω)

)
E1,x,ω =

−2∂y,0∂y,1E0,x,ω − 2∂z,0∂z,1E0,x,ω

−3ω2

4c2
χ(3)(−ω, ω,−ω, ω) |E0,y,ω|2 E0,x,ω (B.9)

Considering only one mode, the solution of the zeroth order equation
in ε becomes,

E0,x,ω = exp(−jγz0)
(
A(y1, z1, ...) exp(−j

√
k2 − γ2y0)

+B(y1, z1, ...) exp(j
√

k2 − γ2y0)
)

(B.10)

with2

k =
ω

c

√
1 + χ(1)(−ω, ω) =

ωn0

c
(B.11)

The first order equation is then given by,

∂2
y,0E1,x,ω + ∂2

z,0E1,x,ω +
ω2

c2

(
1 + χ(1)(−ω, ω)

)
E1,x,ω =[

2j
√

k2 − γ2(∂y,1A) + 2jγ(∂z,1A)− 3ω2

4c2
χ(3)(−ω, ω,−ω, ω).(

|A|2 + 2 |B|2
)

A
]
exp(−j

√
k2 − γ2y0) exp(−jγz0)

+
[
−2j

√
k2 − γ2(∂y,1B) + 2jγ(∂z,1B)− 3ω2

4c2
χ(3)(−ω, ω,−ω, ω).(

2 |A|2 + |B|2
)

B
]
exp(j

√
k2 − γ2y0) exp(−jγz0) + ... (B.12)

The ... stand for nonsecular terms3 , which are only needed to calculate
E1,x,ω

4. If now the secular terms with the same spatial dependence are
2neglecting single-photon absorption
3Nonsecular terms are terms that do not lead to the same spatial dependence as that

of the homogeneous solution. These terms do not cause problems at y = ∞ or z = ∞.
4In the case that γ = k, some of the nonsecular terms become secular, so that the fol-

lowing derivation is only valid for γ < k. The case γ = k has however been calculated
in chapter 2 with as result,

Ex,ω ≡ E0 exp
[
−j

ω

c

(
n0 + n2 |E0|2

)
z
]

(B.13)

with E0 the field amplitude.
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put equal to zero5, ’infinity’ problems are avoided and the y1 and z1

dependence of A and B can be determined:

A = a(y2, z2, ...) exp

[
−j

ωn2

c

(
|a|2 + 2 |b|2

)√
1− γ2

k2
y1

]
.

exp
[
−j

ωn2

c

(
|a|2 + 2 |b|2

) γ

k
z1

]
(B.14)

B = b(y2, z2, ...) exp

[
j
ωn2

c

(
2 |a|2 + |b|2

)√
1− γ2

k2
y1

]
.

exp
[
−j

ωn2

c

(
2 |a|2 + |b|2

) γ

k
z1

]
(B.15)

with6

n2 =
3χ(3)(−ω, ω,−ω, ω)

8n0
(B.16)

Neglecting higher order contributions, the electric field becomes,

Ex,ω = a exp

[
−j

ω

c

√
1− γ2

k2

(
n0 + n2(|a|2 + 2 |b|2)

)
y

]
.

exp
[
−j

ω

c

γ

k

(
n0 + n2(|a|2 + 2 |b|2)

)
z
]

+b exp

[
j
ω

c

√
1− γ2

k2

(
n0 + n2(2 |a|2 + |b|2)

)
y

]
.

exp
[
−j

ω

c

γ

k

(
n0 + n2(2 |a|2 + |b|2)

)
z
]

(B.17)

The spatial symmetry of the ground TE solution now dictates that
dEx
dy

∣∣∣
y=0

= 0, so one finally obtains for γ < k,

Ex,ω = −2ja cos

[
ω

c

√
1− γ2

k2

(
n0 + 3n2 |a|2

)
y

]
.

exp
[
−j

ω

c

γ

k

(
n0 + 3n2 |a|2

)
z
]

(B.18)

5This is possible because of the additional degrees of freedom that we have intro-
duced.

6neglecting two-photon absorption
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or

Ex,ω ≡ E0 cos

[
ω

c

√
1− γ2

k2

(
n0 +

3
4
n2 |E0|2

)
y

]
.

exp
[
−j

ω

c

γ

k

(
n0 +

3
4
n2 |E0|2

)
z

]
(B.19)

with E0 the maximum field of the mode. In this equation, γ is still to be
determined. This can be done by imposing the boundary conditions at
the material interfaces.

In most cases, the transverse influence of the Kerr-nonlinear effect
can be neglected and γ can be approximated by the effective linear
propagation constant:

γ =
ω

c
n0,eff (B.20)

Special cases are the following:

• γ = k (or n0,eff = n0), representing a homogeneous and thus
one-dimensional material system. Remember that for this case,
the former derivation does not hold.

• γ =
√

k2 − π2

L2 with L the width of the waveguide, representing
the ground TE mode of a parallel plate metallic system.

With equation (B.20), the intensity dependence of the propagation
constant can be written as,

exp
[
−j

ω

c

(
n0,eff +

3
4
n2

n0,eff

n0
|E0|2

)
z

]
(B.21)

This means that the effective nonlinear effect reduces to the fraction
3
4

n0,eff

n0
of that in the case of plane waves (equation (2.39)). In terms of

the same maximum field, the nonlinear interaction will therefore be the
highest if n0,eff ≈ n0. This means that in the case of a single mode
photonic wire, the width should be as close to the second mode cut-off
as possible.
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B.1.2 Transverse magnetic case

Now, the situation of the ground TM mode is examined. Equation (2.36)
becomes,

∂2

∂y2

[
0

Ez,ω

]
+

∂2

∂z2

[
Ey,ω

0

]
− ∂2

∂y∂z

[
Ez,ω

Ey,ω

]
+

ω2

c2

(
1 + χ(1)(−ω, ω)

)
.

[
Ey,ω

Ez,ω

]
(B.22)

+
3ω2

4c2

[
χ

(3)
1 |Ey,ω|2 Ey,ω + 2χ

(3)
2 |Ez,ω|2 Ey,ω + χ

(3)
3 E2

z,ωE∗
y,ω

χ
(3)
1 |Ez,ω|2 Ez,ω + 2χ

(3)
2 |Ey,ω|2 Ez,ω + χ

(3)
3 E2

y,ωE∗
z,ω

]
= 0

Due to the fact that Ey and Ez have a phase shift of π
2 (see above), this

equation further simplifies to,

∂2

∂y2

[
0

Ez,ω

]
+

∂2

∂z2

[
Ey,ω

0

]
− ∂2

∂y∂z

[
Ez,ω

Ey,ω

]
+

ω2

c2

(
1 + χ(1)(−ω, ω)

)[ Ey,ω

Ez,ω

]
(B.23)

+
3ω2

4c2

[
χ

(3)
a |Ey,ω|2 Ey,ω + χ

(3)
b |Ez,ω|2 Ey,ω

χ
(3)
a |Ez,ω|2 Ez,ω + χ

(3)
b |Ey,ω|2 Ez,ω

]
= 0

with

χ(3)
a = χ

(3)
1 (B.24)

χ
(3)
b = 2χ

(3)
2 − χ

(3)
3 (B.25)

Using the same multi-scale method as for the TE case, the zeroth and
first order equations in ε become,

∂2
z,0E0,y,ω − ∂y,0∂z,0E0,z,ω +

ω2

c2

(
1 + χ(1)(−ω, ω)

)
E0,y,ω = 0 (B.26)

∂2
y,0E0,z,ω − ∂y,0∂z,0E0,y,ω +

ω2

c2

(
1 + χ(1)(−ω, ω)

)
E0,z,ω = 0 (B.27)
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∂2
z,0E1,y,ω − ∂y,0∂z,0E1,z,ω +

ω2

c2

(
1 + χ(1)(−ω, ω)

)
E1,y,ω =

−2∂z,0∂z,1E0,y,ω + ∂y,0∂z,1E0,z,ω + ∂z,0∂y,1E0,z,ω

−3ω2

4c2

(
χ(3)

a |E0,y,ω|2 + χ
(3)
b |E0,z,ω|2

)
E0,y,ω (B.28)

∂2
y,0E1,z,ω − ∂y,0∂z,0E1,y,ω +

ω2

c2

(
1 + χ(1)(−ω, ω)

)
E1,z,ω =

−2∂y,0∂y,1E0,z,ω + ∂y,0∂z,1E0,y,ω + ∂z,0∂y,1E0,y,ω

−3ω2

4c2

(
χ(3)

a |E0,z,ω|2 + χ
(3)
b |E0,y,ω|2

)
E0,z,ω (B.29)

Considering again only one mode, the zeroth order solution in ε be-
comes,

E0,y,ω = γ
(
A(y1, z1, ...) exp(−j

√
k2 − γ2y0)

+B(y1, z1, ...) exp(j
√

k2 − γ2y0)
)

exp(−jγz0) (B.30)

E0,z,ω =
√

k2 − γ2
(
−A(y1, z1, ...) exp(−j

√
k2 − γ2y0)

+B(y1, z1, ...) exp(j
√

k2 − γ2y0)
)

exp(−jγz0) (B.31)

With this, the first order equations can be written as,

∂2
z,0E1,y,ω − ∂y,0∂z,0E1,z,ω +

ω2

c2

(
1 + χ(1)(−ω, ω)

)
E1,y,ω =

exp(−j
√

k2 − γ2y0) exp(−jγz0)
[
j(k2 + γ2)∂z,1A

+jγ
√

k2 − γ2(∂y,1A)− 3ω2

4c2

(
χ(3)

a γ2 |A|2

+χ
(3)
b (k2 − γ2) |A|2 + 2χ(3)

a γ2 |B|2
)

γA
]

+exp(j
√

k2 − γ2y0) exp(−jγz0)
[
j(k2 + γ2)∂z,1B

−jγ
√

k2 − γ2(∂y,1B)− 3ω2

4c2

(
χ(3)

a γ2 |B|2

+χ
(3)
b (k2 − γ2) |B|2 + 2χ(3)

a γ2 |A|2
)

γB
]

+ ... (B.32)
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∂2
y,0E1,z,ω − ∂y,0∂z,0E1,y,ω +

ω2

c2

(
1 + χ(1)(−ω, ω)

)
E1,z,ω =

exp(−j
√

k2 − γ2y0) exp(−jγz0)
[
−j(2k2 − γ2)∂y,1A

−jγ
√

k2 − γ2∂z,1A−
3ω2

4c2

(
χ(3)

a (k2 − γ2) |A|2

+χ
(3)
b γ2 |A|2 + 2χ(3)

a (k2 − γ2) |B|2
)

(−
√

k2 − γ2A)
]

+exp(j
√

k2 − γ2y0) exp(−jγz0)
[
−j(2k2 − γ2)∂y,1B

+jγ
√

k2 − γ2∂z,1B − 3ω2

4c2

(
χ(3)

a (k2 − γ2) |B|2

+χ
(3)
b γ2 |B|2 + 2χ(3)

a (k2 − γ2) |A|2
)√

k2 − γ2B
]

+ ... (B.33)

where the ... again stand for nonsecular terms, which allow the calcula-
tion of E1,y,ω and E1,z,ω

7. This gives four differential equations, which
determine ∂y,1A, ∂z,1A, ∂y,1B and ∂z,1B. Simplified, one gets,

2jk4(∂y,1A) =
3ω2

4c2

(
χ(3)

a (k4 − 2γ4)
(
|A|2 + 2 |B|2

)
+χ

(3)
b 2γ4 |A|2

)√
k2 − γ2A (B.36)

2jk4(∂z,1A) =
3ω2

4c2

(
χ(3)

a (k4 − 2(k2 − γ2)2)
(
|A|2 + 2 |B|2

)
+χ

(3)
b 2(k2 − γ2)2 |A|2

)
γA (B.37)

2jk4(∂y,1B) =
3ω2

4c2

(
χ(3)

a (k4 − 2γ4)
(
|B|2 + 2 |A|2

)
+χ

(3)
b 2γ4 |B|2

)
(−
√

k2 − β2B) (B.38)

2jk4(∂z,1B) =
3ω2

4c2

(
χ(3)

a (k4 − 2(k2 − γ2)2)
(
|B|2 + 2 |A|2

)
+χ

(3)
b 2(k2 − γ2)2 |B|2

)
γB (B.39)

7again, the same remark holds for the case in which γ = k: some of the terms
assigned by ... are then secular, so that the further derivation is only valid for γ < k.
The case γ = k has the same result as in the TE case, namely,

Ey,ω ≡ E0 exp
[
−j

ω

c

(
n0 + n2 |E0|2

)
z
]

(B.34)

Ez,ω ≡ 0 (B.35)

with E0 the field amplitude.
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which leads to,

A = a(y2, z2, ...) exp
[
−j

ω

c

(
n2,a(1− 2

γ4

k4
)k2
(
|a|2 + 2 |b|2

)
+2n2,b

γ4

k4
k2 |a|2

)√
1− γ2

k2
y1

]
.

exp
[
−j

ω

c

(
n2,a(1− 2(1− γ2

k2
)2)k2

(
|a|2 + 2 |b|2

)
+2n2,b(1−

γ2

k2
)2k2 |a|2

)
γ

k
z1

]
(B.40)

B = b(y2, z2, ...) exp
[
j
ω

c

(
n2,a(1− 2

γ4

k4
)k2
(
|b|2 + 2 |a|2

)
+2n2,b

γ4

k4
k2 |b|2

)√
1− γ2

k2
y1

]
.

exp
[
−j

ω

c

(
n2,a(1− 2(1− γ2

k2
)2)k2

(
|b|2 + 2 |a|2
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γ2
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)2k2 |b|2
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γ

k
z1

]
(B.41)

with8

n2,a =
3χ(3)a(−ω, ω,−ω, ω)

8n0
(B.42)

n2,b =
3χ(3)b(−ω, ω,−ω, ω)

8n0
(B.43)

Neglecting higher order contributions and applying the spatial sym-
metry of the ground TM solution, one finally obtains

Ey,ω = 2γa cos

[
ω

c

√
1− γ2

k2

(
n0 + 3n2,a

(
1− 2

γ4

k4

)
k2 |a|2

+2n2,b
γ4

k4
k2 |a|2

)
y

]
.

exp
[
−j

ω

c

γ

k

(
n0 + 3n2,a

(
1− 2(1− γ2

k2
)2
)

k2 |a|2

+2n2,b

(
1− γ2

k2

)2

k2 |a|2
)

z

]
(B.44)

8neglecting two-photon absorption
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Ez,ω = 2j
√

k2 − γ2a sin

[
ω

c

√
1− γ2

k2

(
n0 + 3n2,a

(
1− 2

γ4
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)
k2 |a|2

+2n2,b
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k2 |a|2

)
y

]
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exp
[
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)2
)
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k2 |a|2
)

z

]
(B.45)

or

Ey,ω ≡
γ

k
E0 cos

[
ω

c

√
1− γ2

k2

(
n0 +

3
4
n2,a

(
1− 2

γ4

k4

)
|E0|2

+
1
2
n2,b

γ4

k4
|E0|2

)
y

]
.

exp
[
−j

ω

c

γ

k

(
n0 +

3
4
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1− 2(1− γ2

k2
)2
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|E0|2

+
1
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(B.46)

Ez,ω ≡ j

√
1− γ2

k2
E0 sin

[
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√
1− γ2

k2

(
n0 +
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+
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2
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)
|E0|2
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1
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k2

)2

|E0|2
)

z

]
(B.47)

with E0 the characteristic electric field. In general, E0 is not the maxi-
mum field. In this equation, γ is again to be determined by imposing
the boundary conditions at the material interfaces. The same particular
cases for γ hold as for the TE situation.
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Using equation (B.20), the field dependence of the propagation con-
stant is now given by

exp

[
−j

ω

c

(
n0,eff +

{
3
4
n2,a

(
1− 2(1−

n2
0,eff

n2
0

)2
)

+
1
2
n2,b

(
1−

n2
0,eff

n2
0

)2
 n0,eff

n0
|E0|2

 z


As discussed before, the Kerr-nonlinear effect in the TM case cannot be
determined by a single value of χ(3)(−ω;ω,−ω, ω). However, as seen in
section 2.8, the anisotropy of n2 is rather small and it can be shown that
n2,a ≈ n2,b. In this case, field dependence of the propagation constant
reduces to

exp

[
−j

ω

c

(
n0,eff + n2

(
3
4
− (1−

n2
0,eff

n2
0

)2
)

n0,eff

n0
|E0|2

)
z

]
(B.48)

For the ground TM mode, the effective nonlinear effect reduces to the

fraction
(

3
4 − (1− n2

0,eff

n2
0

)2
)

n0,eff

n0
of that in the case of plane waves

(equation (2.39)). In terms of the same characteristic field, the nonlinear
interaction will again be the highest if n0,eff ≈ n0. Note also that in this
case (

3
4
− (1−

n2
0,eff

n2
0

)2
)

n0,eff

n0
−→ 3

4
n0,eff

n0
(B.49)

which is the same Kerr-nonlinear behaviour as in the TE case. This
can be explained as follows: for high linear effective indices, Ey is the
dominant field with the same spacial dependence as Ex in the TE case9.

For low values of n0,eff however, the longitudinal component of the
electric field becomes dominant and the nonlinear behaviour is smaller
(equation (B.46)).

B.2 Effective nonlinear coefficients

B.2.1 Definition

Until now, we expressed the index changes either as a function of the
maximum or characteristic electric field (or equivalently intensity). In

9this is expected, since in a one dimensional situation, the TE and TM case are iden-
tical (for perpendicular incidence on possible interfaces)
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practice however, one will typically be interested in the change in effec-
tive index as a function of the input power.

For a Kerr-nonlinear waveguide, the total effective index can be de-
fined as

neff = n0,eff + n2,effP (B.50)

with n0,eff the linear effective index, n2,eff the Kerr-nonlinear effective
index and P the optical power given by,

P =
1
2

Re
∫

dx

∫
dy (E×H∗) .ez (B.51)

=
1
2

Re
∫

dx

∫
dyExH∗

y −H∗
xEy (B.52)

The propagation is again assumed to be along the z-axis, while x and y
define the plane perpendicular to the axis of propagation (see figure B.1).
By using coupled mode theory, it can be derived that this nonlinear ef-
fective index n2,eff is given by [134, 135, 136],

n2,eff =
1
2
cε0

∫
dx
∫

dyn0(x, y)n2(x, y) |E(x, y)|4[
1
2Re

∫
dx
∫

dy (E×H∗) .ez

]2 (B.53)

≡
∫

dx
∫

dyn2,I(x, y)I(x, y)2[
1
2Re

∫
dx
∫

dy (E×H∗) .ez

]2 (B.54)

with

I(x, y) =
1
2
ε0cn0(x, y) |E(x, y)|2 (B.55)

Note that material anisotropy has not been taken into account.
Similarly, the total effective absorption can be defined as

αtotal,eff = αeff + βeffP (B.56)

with αeff the effective linear absorption (or loss) coefficient and βeff

the effective two-photon absorption coefficient. In the same way, it can
be derived that βeff is given by [134, 135, 136]

βeff =
1
2
cε0

∫
dx
∫

dyn0(x, y)β(x, y) |E(x, y)|4[
1
2Re

∫
dx
∫

dy (E×H∗) .ez

]2 (B.57)

≡
∫

dx
∫

dyβI(x, y)I(x, y)2[
1
2Re

∫
dx
∫

dy (E×H∗) .ez

]2 (B.58)
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B.2.2 Plane wave and parallel plate verification

To show the agreement of equation (B.53) with the results obtained by
using the multi-scale approach, we now reconsider the plane wave and
parallel plate case.

In the case of plane waves (TE and TM case of section B.1 with
γ = k) and a certain cross section Across perpendicular to the beam
propagation, the index change n2,effP corresponds to formula (2.1), as
is required. Indeed, for the TE case, the optical power P becomes,

P =
1
2

Re
∫

dx

∫
dyExH∗

y (B.59)

=
1
2

Re
∫

dx

∫
dyn0,effcε0 |Ex|2 (B.60)

=
1
2
n0,effcε0 |E0|2 Across (B.61)

while for the TM case, the optical power P is given by,

P =
1
2

Re
∫

dx

∫
dy(−1)H∗

xEy (B.62)

=
1
2

Re
∫

dx

∫
dy

n2
0

n0,eff
cε0 |Ey|2 (B.63)

=
1
2

n2
0

n0,eff
cε0 |E0|2 Across (B.64)

and since for plane waves, the linear effective index n0,eff is equal to
the linear refractive index n0, both situations reduce to,

P =
1
2
n0cε0 |E0|2 Across (B.65)

With this, the index change n2,effP becomes,

n2,effP = cε0

∫
dx
∫

dyn0(x, y)n2(x, y) |E(x, y)|4[
Re
∫

dx
∫

dy (E×H∗) .ez

] (B.66)

= cε0
n0n2 |E0|4 Across

n0cε0 |E0|2 Across

(B.67)

= n2 |E0|2 (B.68)

which is what was expected.
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For the parallel plate structure of section B.1 in the case of TE polar-
ization, the optical power P becomes,

P =
1
2

Re
∫

dx

∫
dyExH∗

y (B.69)

=
1
2

Re
∫

dx

∫
dyn0,effcε0 |Ex|2 (B.70)

=
1
4
πn0,effcε0 |E0|2 (B.71)

so that

n2,effP = cε0

∫
dx
∫

dyn0(x, y)n2(x, y) |E(x, y)|4[
Re
∫

dx
∫

dy (E×H∗) .ez

] (B.72)

= cε0

3
8πn0n2 |E0|4

1
2πn0,effcε0 |E0|2

(B.73)

=
3
4
n2

n0

n0,eff
|E0|2 (B.74)

For the TM case (with n2,a = n2,b ≡ n2), the optical power is,

P =
1
2

Re
∫

dx

∫
dy(−1)H∗

xEy (B.75)

=
1
2

Re
∫

dx

∫
dy

n2
0

n0,eff
cε0 |Ey|2 (B.76)

=
1
4
πn0,effcε0 |E0|2 (B.77)

and the predicted index change becomes,

n2,effP = cε0

∫
dx
∫

dyn0(x, y)n2(x, y) |E(x, y)|4[
Re
∫

dx
∫

dy (E×H∗) .ez

] (B.78)

= cε0

1
4πn0n2

(
3− 4

n2
0,eff

n2
0

+ 4
n4

0,eff

n4
0

)
|E0|4

1
4πn0,effcε0 |E0|2

(B.79)

=

(
3
4
−

n2
0,eff

n2
0

+
n4

0,eff

n4
0

)
n2

n0

n0,eff
|E0|2 (B.80)

Comparing all these results with section B.1, it can be seen that
equation (B.53) is able to predict the effective Kerr-nonlinear behaviour
correctly for the TE case, both not for the TM case [134, 135, 136]. As
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discussed, the main problem for TM is the existence of an electric field
component in the direction of propagation. However, for n0,eff ≈ n0,
the error is still reasonably small.

In real three-dimensional structures, the guided modes of the struc-
tures are not anymore completely TE or TM, which further compli-
cates the study of the Kerr-nonlinear behaviour. However, for quasi
TE-modes and quasi TM-modes with n0,eff ≈ n0, equation (B.53) pro-
vides a good approximation. In literature, this formula is indeed used
for both TE and TM modes [36].



Appendix C

Linear properties of
one-dimensional optical

resonators

In this appendix, the linear properties of the one-dimensional resona-
tor structure, defined in section 4.1, will be calculated and discussed
analytically.

C.1 Linear properties for 1 period

A rigorous calculation using the transfer matrix method is in principle
possible, but is not suitable to derive analytical formulae. Therefore, a
few approximations will first be introduced. The wavelength depen-
dence of the absolute mirror transmission and reflection coefficients
|tdbr| and |rdbr| is neglected. It is indeed so that the most important λ-
dependence of these coefficients is included in their phase - especially
for long mirrors - while their amplitude is more or less constant for
wavelength variation of the order of the resonance bandwidth:

tdbr = |tdbr| ejϕt ≈ |tdbr|νc
ejϕt (C.1)

rdbr = |rdbr| ejϕr ≈ |rdbr|νc
ejϕr (C.2)

with

|rdbr|2 + |tdbr|2 = 1 (C.3)

141
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For the mirrors defined in section 4.1, calculations show that

|tdbr|νc
=

2n
Ndbr

2
a n

Ndbr
2

b

nNdbr
a + nNdbr

b

(C.4)

|rdbr|νc
=

nNdbr
a − nNdbr

b

nNdbr
a + nNdbr

b

(C.5)

Numerical calculations show that the phases ϕt and ϕr have approxi-
mately a linear dependence on the frequency

ϕt = ±π

2
+

dϕt

dν

∣∣∣∣
νc

(ν − νc) (C.6)

ϕr = 0 +
dϕr

dν

∣∣∣∣
νc

(ν − νc) (C.7)

where the sign of ϕt depends on Ndbr, m′ and m′′. Due to the symmetry
of the mirror section, one also has dϕt

dν

∣∣∣
νc

= dϕr

dν

∣∣∣
νc

≡ dϕ
dν

∣∣∣
νc

. With this,

one can calculate total field transmission, which is the relation between
the input field Ein and output field Eout:

ttot(ν) ≡ Eout

Ein
(C.8)

=
e−jϕin−jϕcav−jϕout |tdbr|2νc

e2jϕt

1− e2jϕr−2jϕcav |rdbr|2νc

(C.9)

=
−e−jϕin+jϕcav−jϕout |tdbr|2νc

e
2j

(
Ncav

π
νc
− dϕ

dν |νc

)
(ν−νc) − |rdbr|2νc

(C.10)

with ϕi = 2π ν
c nili.

The total intensity transmission |ttot(ν)|2 over a single resonator pe-
riod is then given by

|ttot(ν)|2 =
|tdbr|4νc

1 + |rdbr|4νc
− 2 |rdbr|2νc

cos
[
2
(

Ncav
π
νc
− dϕ

dν

∣∣∣
νc

)
(ν − νc)

]
(C.11)
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and the total phase change φ(ν) 1 by

φ(ν) = ±π

2
+

π

2νc
(2Ncav −m′′)(ν − νc)

− arctan


sin
[
2
(

Ncav
π
νc
− dϕ

dν

∣∣∣
νc

)
(ν − νc)

]
cos
[
2
(

Ncav
π
νc
− dϕ

dν

∣∣∣
νc

)
(ν − νc)

]
− |rdbr|2νc


(C.12)

In this equation, the frequency dependence is mainly dominated by
the third term and therefore the second term can be neglected. For
frequencies close to the resonance frequency, |ttot(ν)|2 and φ(ν) are in
good approximation equal to

|ttot(ν)|2 ≈ 1

1 +
4|rdbr|2νc

|tdbr|4νc

(
Ncav

π
νc
− dϕ

dν

∣∣∣
νc

)2

(ν − νc)2
(C.13)

φ(ν) ≈ ±π

2
− arctan

[
2

|tdbr|2νc

(
Ncav

π

νc
− dϕ

dν

∣∣∣∣
νc

)
(ν − νc)

]
(C.14)

Equation (C.13) shows the typical lorentzian transmission characteristic
of a single resonator, while equation (C.14) shows that its output phase
relation has a arctan behaviour. This is shown in figure C.1.

The only parameter left to be determined is now dϕ
dν

∣∣∣
νc

.

C.2 Properties for ∞ periods

Using the Floquet-Bloch theory [97], the general dispersion relation for
a period consisting of N layers was derived by induction and is given
by

2N+1nanb...nN cos(kLper) = (C.15)
1∑

a...N=0

(−1)a+...+N cos
(
(−1)akala + (−1)bkblb + ... + (−1)NkN lN

)
(
(−1)ana + (−1)bnb

)(
(−1)bnb + (−1)cnc

)
...
(
(−1)NnN + (−1)ana

)
1Note the difference between φ and ϕ. φ will be used for the phase change over 1

period, while ϕ (typically with subscript) indicates a phase shift in general.
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Figure C.1: Typical transmission |ttot(ν)|2 and phase re-
lation φ(ν) of a single resonator. The following parame-
ters were used: na = 2.37, nb = 0.9na, Ndbr = 52 and
Ncav = 1.

with ki = ω
c ni, li the layer length and Lper =

∑
li the period length2.

In the case of the resonator period, this approach is not usable be-
cause there are too many layers. The dispersion relation around ν =
νc is however approximately sinusoidal around the central frequency
νc [137], so it can be written as,

ν − νc = −∆νBW

2
sin(kLper ±

π

2
) (C.17)

with ∆νBW the resonance bandwidth and the period length given by

Lper =
λc

4na

(
m′(Ndbr − 1) + 2Ncav

)
+

λc

4nb

(
m′′Ndbr

)
(C.18)

The exact sign depends on different structure parameters (m′, m′′, Ncav,
Ndbr), but is not very important for what follows. kLper is the phase
change between the input and output over a single period, denoted
previously as φ:

φ(ν)± π

2
= − arcsin

(
2

∆νBW
(ν − νc)

)
(C.19)

2For instance for N = 2, one has,

8nanb cos(kLper) =

cos (kala + kblb) (na + nb)
2 − cos (kala − kblb) (na +−nb)

2

− cos (−kala + kblb) (−na + nb)
2 + cos (−kala − kblb) (−na − nb)

2 (C.16)

which is nothing more than the dispersion relation for a DBR mirror.
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Differentiation of equation (C.19) to the frequency gives∣∣∣∣dφ

dν

∣∣∣∣
νc

=
2

∆νBW
(C.20)

so equation (C.19) can be written as

φ(ν)± π

2
= − arcsin

(∣∣∣∣dφ

dν

∣∣∣∣
νc

(ν − νc)

)
(C.21)

With the resonance bandwidth, another important parameter is associ-
ated, i.e. the Q-factor, which is a measure for the energy decay inside
the cavity:

Q =
νc

∆νBW
(C.22)

An analytical expression for
∣∣∣dφ
dν

∣∣∣
νc

can now be obtained from equa-

tion (C.15). The calculation is straightforward, but very tedious, lead-
ing to∣∣∣∣dφ

dν

∣∣∣∣
νc

=
π

2νcn
Ndbr
a nNdbr

b

[
m′n2

an
2
b

Ndbr−2∑
i=0

n2i
a n2Ndbr−4−2i

b (C.23)

+m′′nanb

Ndbr−1∑
i=0

n2i
a n2Ndbr−2−2i

b + Ncav

(
n2Ndbr

a + n2Ndbr
b

)]
This can be rewritten as∣∣∣∣dφ

dν

∣∣∣∣
νc

=
π

2νc

(
nb

na

)Ndbr
[
m′ n2

a

n2
a − n2

b

((
na

nb

)2Ndbr−2

− 1

)
(C.24)

+m′′ nanb

n2
a − n2

b

((
na

nb

)2Ndbr

− 1

)
+ Ncav

((
na

nb

)2Ndbr

+ 1

)]
Using equation (C.5) or,(

na

nb

)Ndbr

=
1 + |rdbr|νc

1− |rdbr|νc

(C.25)

and equation (C.3), one finally obtains∣∣∣∣dφ

dν

∣∣∣∣
νc

=
π

2νc |tdbr|2νc

[
(1 + |rdbr|2νc

)(2Ncav −m′)

+2 |rdbr|νc

m′(n2
a + n2

b) + 2m′′nanb

n2
a − n2

b

]
(C.26)
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Equations (C.20), (C.21) and (C.26) fully describe the resonance band-
width and the phase relation inside the bandwidth.

C.3 Comparison between 1 and ∞ periods

The upper and lower limit for the number of resonator periods have
now been calculated, namely 1 and ∞. We will now investigate how
these two limits are related to each other. The two transmission and
phase characteristics coincide exactly for one and only one frequency,
that is for ν = νc. In that case,

|ttot(νc)|2 = 1 (C.27)

φ(νc) = ±π

2
(C.28)

This could be expected as one has unity transmission for a single re-
sonator period at the resonance frequency, making any number of pe-
riods decoupled. Also in the vicinity of ν = νc, both characteristics
correspond very closely, while at the band edges the difference is quite
large. This agreement was verified by simulations.

This observation allows to derive an analytical formula for dϕ
dν

∣∣∣
νc

:

starting from equations (C.14) and (C.21), one has around ν = νc,

−
φ(ν)± π

2

ν − νc
≈ 2

|tdbr|2νc

(
Ncav

π

νc
− dϕ

dν

∣∣∣∣
νc

)
(C.29)

−
φ(ν)± π

2

ν − νc
≈

∣∣∣∣dφ

dν

∣∣∣∣
νc

(C.30)

so the phase derivative dϕ
dν

∣∣∣
νc

is given by

dϕ

dν

∣∣∣∣
νc

≈ − π

4νc

(
2 |rdbr|νc

m′(n2
a + n2

b) + 2m′′nanb

n2
a − n2

b

− 4Ncav

+(1 + |rdbr|2νc
)(2Ncav −m′)

)
(C.31)

However, by definition, dϕ
dν

∣∣∣
νc

cannot depend on Ncav, so

dϕ

dν

∣∣∣∣
νc

≈ − π

2νc

(
m′(n2

a + n2
b) + 2m′′nanb

n2
a − n2

b

|rdbr|νc
−m′

)
(C.32)
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This corresponds to taking the limit |rdbr|2νc
→ 1, but simulations show

that this formula holds for every value of |rdbr|2νc
.

As a result, the following transmission and phase relation can be
used for the case of a single resonator structure:

|ttot(ν)|2 ≈ 1

1 +
∣∣∣dφ
dν

∣∣∣2
νc

(ν − νc)2
(C.33)

φ(ν) ≈ ±π

2
− arctan

(∣∣∣∣dφ

dν

∣∣∣∣
νc

(ν − νc)

)
(C.34)

C.4 Properties for N periods

The transmission and phase characteristics for N periods will be some-
where between those for 1 and∞ periods. In the case of weak coupling
between the resonators (i.e. |tdbr|2νc

<< 1), it is possible to calculate
these characteristics using the results for a single period. The way to
do this is explained in [138, 139].

For N = 2, this leads to3

|ttot(ν)|2 =
1

1 + 4
∣∣∣dφ
dν

∣∣∣4
νc

(ν − νc)4
(C.35)

φ(ν) = ±π

2
− 1

2
arctan

2
∣∣∣dφ
dν

∣∣∣2
νc

(ν − νc)2 − 1

2
∣∣∣dφ
dν

∣∣∣
νc

(ν − νc)

 (C.36)

This transmission and phase relation are shown in figure C.2.
For N = 3, one obtains

|ttot(ν)|2 =
1

1 +
∣∣∣dφ
dν

∣∣∣2
νc

(ν − νc)2
(

4
∣∣∣dφ
dν

∣∣∣2
νc

(ν − νc)2 − 1
)2 (C.37)

φ(ν) = ±π

2
− 1

3
arctan

2
∣∣∣dφ
dν

∣∣∣2
νc

(ν − νc)2 − 3

4
∣∣∣dφ
dν

∣∣∣
νc

(ν − νc)

 (C.38)

and so on...
3Remember that φ(ν) is the phase change per period.
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Figure C.2: Typical transmission |ttot(ν)|2 and phase relation 2φ(ν) of a re-
sonator with two periods. The following parameters were used: na = 2.37,
nb = 0.9na, Ndbr = 52 and Ncav = 1.

Note that from equation (C.37), it can be seen that for three reso-
nator periods, there are three frequencies for which the structure has
unity transmission, i.e.

ν1 = νc (C.39)

ν2 = νc −
1

2
∣∣∣dφ
dν

∣∣∣
νc

(C.40)

ν3 = νc +
1

2
∣∣∣dφ
dν

∣∣∣
νc

(C.41)

This is in contrast with the two resonator periods structure, for which
only ν = νc has unity transmission (see equation(C.35)). The transmis-
sion and phase relation for a resonator with three periods are shown in
figure C.3.

In general, a structure with p resonator periods has total transmis-
sion for p frequencies if p is odd, and for p− 1 frequencies if p is even.

C.5 Free spectral range

Until now, only the frequency region close to the resonance frequency
νc has been studied. However, from equations (C.10) and (C.11), it can
be seen that the resonance around νc, discussed above, is not the only
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Figure C.3: Typical transmission |ttot(ν)|2 and phase relation 3φ(ν) of a reso-
nator with three periods. The following parameters were used: na = 2.37,
nb = 0.9na, Ndbr = 52 and Ncav = 1.

resonance in the spectrum of a single resonator period. Other reso-
nances occur at the frequencies,

ν − νc = q
π

Ncav
π
νc
− dϕ

dν

∣∣∣
νc

(C.42)

= q
2π

|tdbr|2νc

∣∣∣dφ
dν

∣∣∣
νc

(C.43)

with q integer. This means that the different resonances are
equally spaced with an intermediate distance of

FSR =
2π

|tdbr|2νc

∣∣∣dφ
dν

∣∣∣
νc

(C.44)

which is called the free spectral range.
Based on equations (C.11) and (C.12), one would expect a complete

spectrum consisting of equally spaced resonances. However, equa-
tions (C.1), (C.2), (C.4) and (C.5) are only valid for a limited frequency
range, outside which the transmission relation does not consist of equally
spaced resonances. This is shown in figure C.4. At the ends of this re-
gion, the resonances already show tremendous distortion. The width of
this region is typically determined by the mirror index contrast. The re-
sonator cavity itself (at least for small cavities) can typically be seen as a
distortion of a continuous mirror consisting of am′ λc

4
bm′′ λc

4
-layers. Such
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Figure C.4: Limited wavelength region consisting of equally spaced reso-
nances. The case of na = 2.37, nb = 0.9na, Ndbr = 36 and Ncav = 40 is
considered. Outside this region, equations (C.1), (C.2), (C.4) and (C.5) are not
anymore valid.

a structure has a bandgap centered around the resonance frequency νc

with a width ∆νmirror [97]:

∆νmirror ≈ νc
4
π

na − nb

na + nb
(C.45)

The cavity-like distortion now introduces a (series of) resonance(s) in-
side this bandgap centered around the specific frequency νc: the center
frequency νc is therefore unique.

Other types of resonators such as ring resonators on the other hand
do have a complete spectrum consisting of equally spaced resonances,
in which case the frequency νc is not anymore unique.

The effective modal length of the optical resonator can be associated
with the free spectral range, which is defined as [95]:

Lm
eff =

∫
n2

0(z) |E(z)|2 dz

max(n2
0(z) |E(z)|2)

(C.46)

In good approximation, both parameters are related by

Lm
eff ≈ N

λ2
c

4n0FSR
(C.47)

which can be understood by considering equation (C.44) in the case
that Ncav →∞, in which case Lm

eff = NLper.
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C.6 Field profile

In the case of strong mirror sections (|tdbr|2νc
<< 1), the field profile

inside this particular cavity will almost be a perfect standing wave. In
the case of a single resonator, the maximum and minimum cavity field
at the resonance frequency ν = νc are then given by

|Ecav|max =
(

na

nb

)Ndbr
2

|Ein| (C.48)

|Ecav|min =
(

nb

na

)Ndbr
2

|Ein| (C.49)

More generally, for any frequency ν, maximum and minimum cavity
field are

|Ecav|max =
(

na

nb

) dbr
2

|ttot(ν)| |Ein| (C.50)

|Ecav|min =
(

na

nb

) dbr
2

|ttot(ν)| |Ein| (C.51)

A typical field profile of a resonator with one period at resonance is
shown in figure C.5. The field enhancement inside the cavity is approx-
imately a factor 17.

0 4.525 9.05 13.575 18.1
0

2

4

6

8

10

12

14

16

18

position (µm)

re
la

tiv
e 

el
ec

tr
ic

 fi
el

d

Figure C.5: Relative field profile
∣∣∣E(z)

Ein

∣∣∣ at resonance for a resonator with one
period (total resonator length Lper is 18.1µm). The following parameters were
used: na = 2.37, nb = 0.9na, Ndbr = 52 and Ncav = 1.

For more than one resonator period, the fields inside the different
cavities are not equal, which means that equations (C.50)-(C.51) are
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only valid for the last resonator. The only exception to this is for ν = νc,
since for this frequency, every resonator period has total transmission
and therefore they are independent.



Appendix D

Kerr-nonlinear properties of
one-dimensional resonators

In this appendix, we will determine the Kerr-nonlinear properties of
the one-dimensional resonator structure, defined in section 4.1.

The nonlinear effect on the transmission spectrum of a resonating
structure can qualitatively be described as follows. The incoming light
builds up inside the cavity and partially in the mirrors and therefore
changes the refractive index of the complete structure. As a conse-
quence, the round-trip phase will be different and thus the resonance
peak and the output phase will shift. Due to these changes of the refrac-
tive index, the resonance bandwidth can also be different. In the most
general case, na,2 6= nb,2. It can roughly be said that the resonance shift
is determined by the overall value of n2 (a shift to higher frequencies
occurs for n2 < 0 and vice versa), while the change of bandwidth is due
to the modulation of n2.

In this work, we will assume that na,2 ≈ nb,2, which is a good ap-
proximation for structures fabricated in a single material system. As a
result, the change of resonance bandwidth will be neglected.

D.1 Shift of resonance frequency

Since the electric field will be the strongest inside the cavity, it is inter-
esting to consider first only the cavity as Kerr-nonlinear. To determine
the nonlinear interaction inside the cavity, we solve the nonlinear wave
equation (2.36) in one dimension with z the axis of propagation, in the

153
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absence of single- and two-photon absorption by means of a multi-scale
approach [41].

First the nonlinear enhancement in the cavity must be found. In sec-
tion 2.4, the Kerr-nonlinear wave equation was derived for monochro-
matic plane waves, using a multi-scale approach. This method has al-
ready elaborately been discussed in appendix B.1. In the zeroth and
first order, it leads to

∂2
0E0,ω +

ω2

c2

(
1 + χ(1)(−ω, ω)

)
E0,ω = 0 (D.1)

∂2
0E1,ω +

ω2

c2

(
1 + χ(1)(−ω, ω)

)
E1,ω =

−2∂0∂1E0,ω −
3ω2

4c2
χ(3)(−ω, ω,−ω, ω) |E0,ω|2 E0,ω (D.2)

In contrast to the results of section 2.4, both the forward and backward
propagating waves now have to be taken into account as inside the
cavity, the electric field approximates a standing wave. In zeroth order,
the solution is then

E0,ω = E′
f,ω(z1, ...) exp(−jkz0) + E′

b,ω(z1, ...) exp(jkz0) (D.3)

with

k =
ω

c

√
1 + χ(1)(−ω, ω) (D.4)

=
ωn0

c
(D.5)

and equation (D.2) becomes

∂2
0E1,ω +

ω2

c2

(
1 + χ(1)(−ω, ω)

)
E1,ω =[

2jk(∂1E
′
f,ω)− 3ω2

4c2
χ(3)(

∣∣E′
f,ω

∣∣2 + 2
∣∣E′

b,ω

∣∣2)E′
f,ω

]
exp(−jkz0)

+
[
−2jk(∂1E

′
b,ω)− 3ω2

4c2
χ(3)(2

∣∣E′
f,ω

∣∣2 +
∣∣E′

b,ω

∣∣2)E′
b,ω

]
exp(jkz0)

−3ω2

4c2
χ(3)

[
E′2

f,ωE′∗
b,ω exp(−3jkz0) + E′2

b,ωE′∗
f,ω exp(3jkz0)

]
(D.6)

This leads to

E′
f,ω(z1, ...) = Ef,ω(z2, ...) exp

(
−j

ωn2

c
(|Ef,ω|2 + 2 |Eb,ω|2)z1

)
(D.7)

E′
b,ω(z2, ...) = Eb,ω(z2, ...) exp

(
j
ωn2

c
(2 |Ef,ω|2 + |Eb,ω|2)z1

)
(D.8)
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with

n2 =
3χ(3)(−ω, ω,−ω, ω)

8n0
(D.9)

When the contribution of E1,ω to the electric field is neglected, the total
field is given by

Eω = Ef,ω exp
(
−j

ω

c

(
n0 + n2(|Ef,ω|2 + 2 |Eb,ω|2)

)
z
)

+Eb,ω exp
(
j
ω

c

(
n0 + n2(2 |Ef,ω|2 + |Eb,ω|2)

)
z
)

(D.10)

To determine the nonlinear resonance frequency ν ′c, the resonance
condition (C.9) must be calculated:

2jϕr − 2jϕcav = q2π (D.11)

with q integer. Using the results above and from section C.6, the round-
trip phase in the cavity 2ϕcav is given by

2ϕcav = ϕf,cav + ϕb,cav (D.12)

= π
ν

νc
Ncav

na,0 + na,2
1+2|rdbr|2νc

|tdbr|2νc

|Eout|2

na,0
(D.13)

+π
ν

νc
Ncav

na,0 + na,2
2+|rdbr|2νc

|tdbr|2νc

|Eout|2

na,0
(D.14)

= 2π
ν

νc
Ncav

(
1 +

3
2

na,2

na,0

1 + |rdbr|2νc

|tdbr|2νc

|Eout|2
)

(D.15)

Together with equations (C.6)-(C.7), the resonance condition (C.9) is
then:

2
dϕ

dν

∣∣∣∣
νc

(ν − νc)− 2π
ν

νc
Ncav

(
1 +

3
2

na,2

na,0

1 + |rdbr|2νc

|tdbr|2νc

|Eout|2
)
≡ q2π

(D.16)

Solving this equation for ν in both the linear and the nonlinear case
finally leads to the following resonance shift:

∆νc

νc
= − Ncav

Ncav − νc
π

dϕ
dν

∣∣∣
νc

3
2

na,2

na,0

1 + |rdbr|2νc

|tdbr|2νc

|Ein|2 (D.17)
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dϕt

dν

∣∣∣
νc

< 0, so the resonance shift asymptotically grows to

−3
2

na,2

na,0

1+|rdbr|2νc

|tdbr|2νc

|Ein|2 for large cavities or short mirrors. This can be

explained as follows: due to the frequency dependence of the transmis-
sion phase ϕt(ν) of the mirrors, a part of the nonlinear phase change of
the cavity is used to compensated the phase shift ϕt(νc + ∆νc)−ϕt(νc).
As the frequency dependence of ϕt(ν) is less pronounced for shorter

mirrors, the asymptotical behaviour ∆νc → −3
2

na,2

na,0

1+|rdbr|2νc

|tdbr|2νc

|Ein|2 νc

will be faster, as will it be for larger cavities since they provide a large
phase change (∝ Ncav). This has an important consequence: using
Ncav-values larger than 1 can be very beneficial if large(r) resonance
shifts are needed.

D.2 Nonlinear transmission relation |ttot,NL|2

While in the case of∞ periods (band diagram) the Kerr-nonlinear effect
just shifts the transmission window, this will not be the case for a finite
number of periods. In that case, the resonance peak will shift with ∆νc,
but frequencies with a lower linear transmission |ttot,L|2 will not shift
as much, because their (linear) average field will be less than the field
at the linear resonance frequency νc.

D.2.1 Transmission of 1 resonator period

In section D.1, we have seen that the nonlinear effect inside the cavity
scales with |Eout|2 and therefore with the transmission 1. As a result,
the frequency shift of any (linear) frequency ν will be given by

∆ν = |ttot,L(ν)|2 ∆νc (D.18)

and the nonlinear transmission relation becomes2:∣∣ttot,NL(ν ′)
∣∣2 = |ttot,L(ν)|2 (D.19)

with ν ′ = ν + |ttot,L(ν)|2 ∆νc = ν + |ttot,NL(ν ′)|2 ∆νc. This is also ex-
plained in figure D.1.

1In the case that only the cavity is Kerr-nonlinear, this is always correct. In the
more general case of a fully nonlinear resonator, this is in good approximation correct,
except for very low transmissions, in which case the field profile becomes strongly
asymmetrical.

2This can easily be seen like this: if ν = νc, then ν′ = ν′c so indeed |ttot,NL(ν′)|2 =
|ttot,L(ν)|2
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Figure D.1: Terminology in connection with the Kerr-nonlinear resonance
shift.

Using equation (C.33), this leads to

∣∣ttot,NL(ν ′)
∣∣6 − 2

ν ′ − νc

∆νc

∣∣ttot,NL(ν ′)
∣∣4

+

(
∆ν2

BW

4∆ν2
c

+
(

ν ′ − νc

∆νc

)2
)∣∣ttot,NL(ν ′)

∣∣2 − ∆ν2
BW

4∆ν2
c

= 0 (D.20)

This is in agreement with literature [140]. As the coefficients of this
third order equation in |ttot,NL(ν ′)|2 are real for every frequency, one
solution is always real and the other two solutions can be either com-
plex conjugates or also real. In the latter case, one has three possible
solutions for the same frequency, of which only two are stable - the so-
lution is said to be bistable (see also section 4.2.1.1).

An example of this is shown in figure D.2. For low input intensities,
the resonance shift is still relatively small. In this case, equation (D.20)
has only one solution for each frequency. For higher input intensities,
the resonance shift increases and finally becomes so high that a fre-
quency region, in which three real solutions are possible, originates. In
this region, the curve has a hysteresis-like form and only the upper and
lower solution are stable. Note that in both figures, the frequency shifts
are in good approximation proportional to |ttot,NL(ν ′)|2.

A bistable region is present if for two frequencies ν1, ν2 with ν1 > ν2,
one has that ν ′1 < ν ′2 with ν ′ = ν+|ttot,L(ν)|2 ∆νc = ν+|ttot,NL(ν ′)|2 ∆νc.
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Figure D.2: Transmission of a resonator with one period without (left) and
with (right) bistable region. The resonator parameters used are: na = 2.37,
nb = 0.9na, Ndbr = 52 and Ncav = 1. An input power of n2 |Ein|2 = 0.6× 10−5

(left) and n2 |Ein|2 = 1.8× 10−5 (right) was inserted.

For the case n2 > 0, this results in the following condition3

∃ν, 0 <

(
d |ttot,L(ν)|2

dν

)−1

< −∆νc (D.21)

while in the case of n2 < 0, one has4

∃ν, 0 < −

(
d |ttot,L(ν)|2

dν

)−1

< ∆νc (D.22)

The complete bistable region can then be obtained by solving(
d |ttot,L(ν)|2

dν

)−1

= −∆νc (D.23)

and calculating ν ′ = ν + |ttot,L(ν)|2 ∆νc. In this way, it can also be de-
termined from which amount of resonance shift ∆νc, a bistable region
appears. This is the case if equation (D.23) has a two-fold, real solution.

3This can be obtained by using |ttot,L(ν1)|2 > |ttot,L(ν2)|2 (the bistability is on the
lower frequency side) and taking the limit ν1 → ν2.

4Now, one has |ttot,L(ν1)|2 < |ttot,L(ν2)|2 (the bistability is on the higher frequency
side) and one must again take the limit ν1 → ν2.
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Using equation (C.33), bistability arises if,

|∆νc| >
4
√

3
9

∆νBW (D.24)

and the two-fold solution is given by,

νsol = νc ±
√

3
2

∆νBW (D.25)

depending on the sign of ∆νc. As a result, the frequency interval[
νc −

√
3

2 ∆νBW , νc +
√

3
2 ∆νBW

]
can never be bistable.

D.2.2 Transmission of ∞ resonator periods

The resonance frequency shift will still be given by ∆νc, since at reso-
nance every period is independent and has the same field profile. Fur-
thermore, as the resonance bandwidth is assumed to be constant, the
transmission window is simply shifted compared to the linear situa-
tion.

It must again be noted that there exists a bistable region: this re-
gion is found at the upper frequency end if n2 < 0 en vice versa if
n2 > 0. The reason for this is that regions with |ttot,L(ν)|2 = 0 (almost5)
do not feel any nonlinear interaction so that for these frequencies also
|ttot,NL(ν)|2 = 0 is a true solution, independent from the fact that due
to the shift of the transmission window, also |ttot,NL(ν)|2 = 1 is true.

D.2.3 Transmission of N resonator periods

For more than one resonator, the situation is much more complex. It
must be taken into account that the field inside the different periods can
have a different amplitude (see also section C.6) and therefore result in
a different frequency shift. It is possible to obtain bistable and more
generally multi-stable solutions [100]. At frequency νc, the frequency
shift can immediately be calculated and is again given by ∆νc.

5note that the field is not zero, only exponentially decaying.
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D.3 Nonlinear phase relation φNL

D.3.1 Phase shift for 1 period

As it was assumed above that the resonance bandwidth change is neg-
ligible, one has ∣∣∣∣dφL

dν

∣∣∣∣
νc

≈
∣∣∣∣dφNL

dν

∣∣∣∣
ν′c

≡
∣∣∣∣dφ

dν

∣∣∣∣
νc

(D.26)

and the Kerr-nonlinear phase relation for one period will be given by

φNL(ν ′) ≈ ±π

2
− arctan

(∣∣∣∣dφ

dν

∣∣∣∣
νc

(ν − νc)

)
(D.27)

= ±π

2
− arctan

(∣∣∣∣dφ

dν

∣∣∣∣
νc

(ν ′ − νc −
∣∣ttot,NL(ν ′)

∣∣2 ∆νc)

)
(D.28)

with again ν ′ = ν + |ttot,L(ν)|2 ∆νc = ν + |ttot,NL(ν ′)|2 ∆νc. This means
that to determine φNL(ν ′), one must first solve equation (D.20). De-
pending on the number of real solutions for |ttot,NL(ν ′)|2, one can again
have a bistable frequency region. The output phase relations corre-
sponding to figure D.2 are respectively shown in figure D.3.
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Figure D.3: Output phase relation of a resonator with one period without (left)
and with (right) bistable region. The resonator parameters used are: na = 2.37,
nb = 0.9na, Ndbr = 52 and Ncav = 1. An input power of n2 |Ein|2 = 0.6× 10−5

(left) and n2 |Ein|2 = 1.8× 10−5 (right) was inserted.
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In general however, one will be interested in the phase shift in the
neighborhood of the resonance peaks (e.g. ν ′ = νc+ν′c

2 ). The equality

ν + |ttot,L(ν)|2 ∆νc =
νc + ν ′c

2
(D.29)

has a single real solution ν = νsol. For low frequency shifts for which
|ttot,L(νsol)|2 ≈ 1, the phase shift ∆φ will be given by

∆φ ≈ 2 arctan

(∣∣∣∣dφ

dν

∣∣∣∣
νc

∆νc

2

)
(D.30)

D.3.2 Phase shift for ∞ periods

For a structure with ∞ resonator periods, the linear phase relation is
given by equation (C.21) and the nonlinear phase relation is immedi-
ately6:

φNL(ν) = ±π

2
− arcsin

(∣∣∣∣dφ

dν

∣∣∣∣
νc

(ν − ν ′c)

)
(D.31)

So ∆φ is equal to

∆φ = 2arcsin

(∣∣∣∣dφ

dν

∣∣∣∣
νc

∆νc

2

)
(D.32)

D.3.3 Comparison and generalization

If small resonance shifts or large resonance bandwidths (which means
a small value of

∣∣∣dφ
dν

∣∣∣
νc

) are assumed, equations (D.30) and (D.32) can be

approximated as

∆φ =
∣∣∣∣dφ

dν

∣∣∣∣
νc

∆νc (D.33)

which means that this ∆φ will also be valid for any finite number of
periods N . This is shown in figure D.4.

The difference for equation (D.30) and simulations for the case N =
1 has been discussed in section D.3.1. Note that formula (D.33) for ∆φ
is completely in accordance with intuitive reasoning: a phase shift pro-
portional to ∆νc and to

∣∣∣dφ
dν

∣∣∣
νc

is indeed what one would expect.

6It must again be noted that in the bistable region of course two phase relation exist:
the ’transmissive’ one is given here, the other one is simply φNL(ν) = π if n2 > 0 and
φNL(ν) = 0 if n2 < 0
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Figure D.4: Comparison between simulations and equations (D.30), (D.32)
and (D.33).

D.4 Modal theory approach

In section D.1, the resonance shift was determined in the case that only
the cavity is Kerr-nonlinear. With the results of section D.3.3, we can ex-
tend this to a fully Kerr-nonlinear by means of modal theory [34, 141].
In this approach, the field profile along the propagation axis is assumed
to be determined only by linear effects and in a 1D system, the nonlin-
ear action then consists of changing the amplitude of the field along
this axis. This approach is valid for weak nonlinearities (section 2.2).

The transmitted field Et can generally be written as [141]

Et(ω) = ttot(ω)Ein(ω)− µ0ω
2

∫ Ltot

0
Gt(ω, z)PNL(ω, z) (D.34)

with z the direction of propagation and

Gt(ω, z) = ttot(ω)gt(z) (D.35)

where Gt(ω, z) is the Green function of the structure with excitation
located in the middle of the structure. The Kerr-nonlinear effect at a
certain point z can now be written as (see also equation 2.20),

PNL(ω, z) = ε0
3
4
χ(3)(−ω, ω,−ω, ω; z) |f(ω, z)|2 f(ω, z) |Et(ω)|2 Et(ω)

(D.36)

with f(ω, z) the field profile along the z-axis for a certain frequency.
Note that Et(ω) was used here and not Ein(ω), because, as said above,



D.4 Modal theory approach 163

the linear field profile along the z-axis is used, but its amplitude can
change due to the nonlinear effects. Using (D.35) and (D.36), equa-
tion (D.34) now becomes:

Et(ω) = ttot(ω)
(

Ein(ω)− 3ω2

4c2
|Et(ω)|2 Et(ω).∫ Ltot

0
gt(z)χ(3)(−ω, ω,−ω, ω; z) |f(ω, z)|2 f(ω, z)

)
(D.37)

D.4.1 Shift of phase relation φ

Neglecting the nonlinear amplitude change for a moment and compar-
ing equation (D.37) with

Et(ω) = Ein(ω)ttot(ω)ejϕNL (D.38)
≈ Ein(ω)ttot(ω)(1 + jϕNL) (D.39)

the nonlinear phase shift ∆φ in the case of one resonator period is im-
mediately given by

∆φ ≈ j
3ω2

4c2
|ttot(ω)|2 |Ein(ω)|2 .∫ Lper

0
gt(z)χ(3)(−ω, ω,−ω, ω; z) |f(ω, z)|2 f(ω, z) (D.40)

gt(z) and f(z) are given by [141]

gt(z) = −1
2

(
µ12(z) + j

c

ωna,0
µ22(z)

)
(D.41)

f(z) = ν11(z)− j
ωna,0

c
ν12(z) (D.42)

with ν resp. µ the transfer matrix of the electric field and its derivative
from the input of the resonator period until z resp. from z until the
output of the period. In other words, the total transfer matrix of the
structure is in fact written as [142][

Ei
dEi
dz

]
= µ(z)ν(z)

[
Ei+1
dEi+1

dz

]
(D.43)

This is a different approach than in [97], however both transfer matrix
representations are equivalent.
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Now ∆φ can be calculated using equation (D.38). The calculations
have been done for the case na > nb around ν = νc in [34], leading to:

∆φ ≈ 3π

8
|Ein|2

(
na,0

nb,0

)2Ndbr n2

na,0

(
Ncav +

m′′n4
a,0 + m′n4

b,0

n4
a,0 − n4

b,0

)
(D.44)

with n2 ≡ na,2 = nb,2. From equation (D.44), ∆νc can be derived using
equation (D.33) and one obtains,

∆νc

νc
= −

Ncav +
m′′n4

a,0+m′n4
b,0

n4
a,0−n4

b,0

Ncav − m′

2 + 1
2

n
2Ndbr
a,0 −n

2Ndbr
b,0

n
2Ndbr
a,0 +n

2Ndbr
b,0

m′(n2
a,0+n2

b,0)+2m′′na,0nb,0

n2
a,0−n2

b,0

3
4

(
na,0

nb,0

)Ndbr n2Ndbr
a,0

n2Ndbr
a,0 + n2Ndbr

b,0

n2

na,0
|Ein|2 (D.45)

or

∆νc

νc
= −

Ncav +
m′′n4

a,0+m′n4
b,0

n4
a,0−n4

b,0

Ncav − m′

2 + |rdbr|
2−|tdbr|2νc

m′(n2
a,0+n2

b,0)+2m′′na,0nb,0

n2
a,0−n2

b,0

3
8

(1 + |rdbr|νc
)4

|tdbr|2νc
(2− |tdbr|2νc

)
n2

na,0
|Ein|2 (D.46)

Note the close agreement with equation (D.17) in absence of nonlin-
ear mirrors. Comparing this formula with simulation data shows very
good agreement. In the practical case that |rdbr|νc

≈ 1, the resonance
shift is simply given by

∆νc ≈ −
Ncav +

m′′n4
a,0+m′n4

b,0

n4
a,0−n4

b,0

Ncav + nb,0
m′′na,0+m′nb,0

n2
a,0−n2

b,0

3
|tdbr|2νc

n2

na,0
|Ein|2 (D.47)

As
Ncav+

m′′n4
a,0+m′n4

b,0

n4
a,0−n4

b,0

Ncav+nb,0
m′′na,0+m′nb,0

n2
a,0−n2

b,0

< 0, the resonance shift again asymptotically

grows to − 3
|tdbr|2νc

n2
na,0

|Ein|2 for large cavities or short mirrors. This can

be explained in the same way as in case of equation (D.17). Using equa-
tions (C.22) and (C.47), the limit of equation (D.47) for large cavities or
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short mirrors for large cavities leads to:

∆νc ∝
Q

Lm
eff

n2 |Ein|2 (D.48)

In three dimensions, this corresponds to

∆νc ∝
Q

V m
eff

n2,effPin (D.49)

with V m
eff the three-dimensional extension of the effective modal length

Lm
eff , given by [95]:

V m
eff =

∫
n2

0(x, y, z) |E(x, y, z)|2 dxdydz

max(n2
0(x, y, z) |E(x, y, z)|2)

(D.50)

which is in agreement with literature [140]. Using equation (C.22), one
also obtains the relation:

∆νc

∆νBW
∝ Q2

V m
eff

n2,effPin (D.51)

Note however that equation (D.47) is also valid for small cavities and
larger mirrors and is therefore to be preferred.
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Appendix E

Two-photon absorption
properties of

one-dimensional resonators

In this appendix, we will examine the effect of two-photon absorption
on one-dimensional resonator structures.

Qualitatively, two-photon absorption will cause a reduction of the
transmission which depends on the optical power inside the cavity. The
discussion will be limited to the case of a single resonator. Again, it is
assumed that βa = βb in agreement with appendix D.

In the general case of counterpropagating waves, the multi-scale ap-
proach of appendix D cannot be used to study the effect of two-photon
absorption. Therefore, simulation results from a large parameter varia-
tion of resonator structures will be applied to characterize the influence
of two-photon absorption in a general way.

The total transmission, reflection and loss of any structure are for
every frequency related by

|ttot(ν)|2 + |rtot(ν)|2 = B2
tot(ν) (E.1)

with ttot(ν) resp. rtot(ν) the total (nonlinear) field transmission resp.
reflection and Btot(ν) the relative field amplitude after the complete re-
sonator structure in the case of two-photon absorption. Two additional
relations between |ttot(ν)|2, |rtot(ν)|2 and B2

tot(ν) now have to be found
to determine these three quantities completely.

167
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At nonlinear1 resonance ν ′c, this is possible by fitting the simulation
results presented in figure E.1. In this figure, the simulation results
|rtot(ν ′c)|

2 and 1 − Btot(ν ′c) are plotted as a function of |ttot(ν ′c)|
2 for a

large variation of all resonator parameters: the refractive indices na and
nb of the two mirror materials were varied from 2.0− 3.0 with na > nb.
Mirror and cavity lengths in the intervals Ndbr = 40 − 200 and Ncav =
1 − 20 were simulated with input fields leading to nonlinear effects of
n2|Ein|2 = 10−6 − 10−4 and βλc|Ein|2 = 10−6 − 10−4 for λc = 1.55µm.
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Figure E.1: Simulated results of total reflection |rtot(ν′c)|
2 and total insertion

loss 1−Btot(ν′c) as a function of total transmission |ttot(ν′c)|
2 for a large varia-

tion of all resonator parameters as indicated in the text.

The relation between |rtot(ν ′c)|
2 and |ttot(ν ′c)|

2 is symmetrical around
|rtot(ν ′c)|

2 = |ttot(ν ′c)|
2 and can therefore be expressed as

p + q(
∣∣ttot(ν ′c)

∣∣2 +
∣∣rtot(ν ′c)

∣∣2) + r
∣∣ttot(ν ′c)

∣∣2 ∣∣rtot(ν ′c)
∣∣2

+s(
∣∣ttot(ν ′c)

∣∣4 +
∣∣rtot(ν ′c)

∣∣4) + ... = 0 (E.2)

It was found that the choice

p = 1 (E.3)
q = −2 (E.4)
r = −2 (E.5)
s = 1 (E.6)

1In the case of negligible Kerr effect, this is also the linear resonance νc.
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holds a very good approximation for the obtained simulation results
(see also figure E.1). In this way, one has

(
∣∣ttot(ν ′c)

∣∣2 − ∣∣rtot(ν ′c)
∣∣2)2 − 2(

∣∣ttot(ν ′c)
∣∣2 +

∣∣rtot(ν ′c)
∣∣2) + 1 ≈ 0 (E.7)

As all parameters used in the simulations were varied over a large
range, this relation is considered to be generally valid. Now, both the
(nonlinear) resonance transmission and reflection can be expressed in
terms of B2

tot(ν
′
c) as∣∣ttot(ν ′c)

∣∣2 =
1
2

(
B2

tot(ν
′
c) +

√
2B2

tot(ν ′c)− 1
)

(E.8)

∣∣rtot(ν ′c)
∣∣2 =

1
2

(
B2

tot(ν
′
c)−

√
2B2

tot(ν ′c)− 1
)

(E.9)

To determine this nonlinear loss, the following method is used. For
small intensities, the loss due to two-photon absorption is equivalent
to the phase shift induced by the Kerr effect,

1−B2
tot,small(ν

′
c) ∝ 2

ωK2

c
|Ein|2 ⇔ ∆φ ∝ −ωn2

c
|Ein|2

The factor 2 in this expression is due to the fact that loss is related to the
optical intensity, whereas the phase is related to the optical field. Using
equations (D.33) and (C.20) , one obtains for small intensities

1−B2
tot,small(ν

′
c) = − c

πν ′c

β

n2

∆νc,ll

∆νBW,ll
(E.10)

In contrast to the Kerr effect, two-photon absorption will change the
resonance bandwidth2: this will explicitly be indicated by either ll (loss-
less) or lossy (also for other loss dependent properties). Note that this
expression is independent of n2 as ∆νc,ll ∝ n2. For the general case,
expansion of the results for single-photon absorption [104] leads to

1−B2
tot(ν

′
c) ≈

∣∣ttot(ν ′c)
∣∣4 (1−B2

tot,small(ν
′
c)
)

(E.11)

= −
∣∣ttot(ν ′c)

∣∣4 c

πν ′c

β

n2

∆νc,ll

∆νBW,ll
(E.12)

Using equation (E.8), one obtains the following implicit formula for the
insertion loss:

1−B2
tot(ν

′
c) ≈ −

c

4πν ′c

β

n2

(
B2

tot(ν
′
c) +

√
2B2

tot(ν ′c)− 1
)2 ∆νc,ll

∆νBW,ll
(E.13)

2In general, any absorption mechanism changes the bandwidth.
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This equation together with equations (E.8) and (E.9) allows to deter-
mine the total transmission, reflection and insertion loss at nonlinear
resonance.

For a general frequency ν ′ 6= ν ′c, equation (E.12) is to be expanded
to,

1−B2
tot(ν

′) ≈ −
∣∣ttot(ν ′)

∣∣4 c

πν ′c

β

n2

∆νc,ll

∆νBW,ll
(E.14)

In contrast to equation (E.12), equation (E.7) - and thus equations
(E.8) and (E.9) - is not valid for general frequencies ν ′ 6= ν ′c. Instead, the
following relation can be used: the nonlinear transmissivity |ttot,NL(ν ′)|2

is approximately related3 to the linear transmissivity |ttot,L(ν)|2 by

|ttot,NL(ν ′)|2 − |ttot,L(ν)|2

|ttot,L(ν)|2
= U

(
1−B2

tot(ν
′)
)

(E.15)

with U a constant. This means that the relative change in the transmis-
sion at a certain frequency is proportional to the total insertion loss at
that frequency. This is in agreement with what could be expected. To
calculate the constant U , this equation is evaluated at ν ′ = ν ′c or

U =
|ttot,NL(ν ′c)|

2 − 1
1−B2

tot(ν ′c)
(E.16)

so that

|ttot,NL(ν ′)|2 − |ttot,L(ν)|2

|ttot,L(ν)|2
=
(∣∣ttot,NL(ν ′c)

∣∣2 − 1
) 1−B2

tot(ν
′)

1−B2
tot(ν ′c)

(E.17)

Using equation (E.14), this becomes

|ttot,NL(ν ′)|2

|ttot,L(ν)|2
− 1 =

(∣∣ttot,NL(ν ′c)
∣∣2 − 1

) |ttot,NL(ν ′)|4

|ttot,NL(ν ′c)|
4 (E.18)

Finally, substituting equation (C.33), one obtains

1− |ttot,NL(ν ′c)|
2

|ttot,NL(ν ′c)|
4

∣∣ttot,NL(ν ′)
∣∣4 +

(
4(ν ′ − νc)2

∆ν2
BW,ll

+ 1

)∣∣ttot,NL(ν ′)
∣∣2 = 1

(E.19)

An example of the effect of two-photon absorption is shown in figure E.2.

3Now, the impact of the Kerr effect (i.e. the shift of the resonance frequency) is
explicitly neglected, so ν′ = ν and ν′c = νc
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Figure E.2: Transmission of a resonator with one period in the presence of
two-photon absorption. The following parameters are used: na = 2.37, nb =
0.9na, Ndbr = 52 and Ncav = 1. An input power of βλc |Ein|2 = 0.6 × 10−5

(left) and βλc |Ein|2 = 1.8× 10−5 (right) were inserted.

From equation (E.19), a lossy resonance bandwidth can be deter-
mined, given by:

∆νBW,lossy ≈

√
3− |ttot(ν ′c)|

2

2 |ttot(ν ′c)|
2 ∆νBW,ll (E.20)



172 Two-photon absorption properties of resonators



Appendix F

Bit-error rate calculation

A theoretical prediction of the bit error rate as function of the detected
average power is analytically possible if a gaussian distribution is as-
sumed for all the dominant noise contributions [103]. In this case, the
BER can be related to a quality factor Q which is defined as

Q =
P1 − P0

σ0 + σ1
(F.1)

with P0 and P1 respectively the mean ’0’ and ’1’ optical power level at
the receiver end and σ0 and σ1 the (gaussian) variation of these levels.
The corresponding BER is then given by,

BER =
1
2

erfc
(

Q√
2

)
(F.2)

under the assumption that σ0 ≈ σ1 and the decision level for the detec-
tion of ’0’ and ’1’ is given by Pd = P0+P1

2
In the absence of regeneration, the different parameters P0, P1, σ0 =

σ1 ≡ σ for the scheme of figure 4.17 are given by

P0 = AP0,in (F.3)
P1 = AP1,in (F.4)
σ2 = = A2σ2

in + σ2
rec (F.5)

with P0,in, P1,in, σ0,in = σ1,in ≡ σin the corresponding input param-
eters, A the variable attenuation in front of the receiver and σrec the
noise introduced by the receiver. The parameter σrec can be related to
the receiver sensitivity S for a specific BERS by the following expres-
sion

BERS =
1
2

erfc
(

S√
2σrec

)
(F.6)
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In the presence of regeneration, it is more difficult to calculate the
BER analytically [143]. It is however possible to derive a lower and
upper limit inbetween which the real BER is located. In general, a 2R-
regenerator scheme can split into amplification and reshaping - charac-
terized by a nonlinear function Preg,out (Preg,in), which in the ideal case
is equal to a step function. P0, P1, σ0 = σ1 ≡ σ are then approximately
given by

P0 = APreg,out (GP0,in + PASE) (F.7)
P1 = APreg,out (GP1,in + PASE) (F.8)

σ2 = = A2

(
dPreg,out

dPreg,in

)2 (
G2σ2

in + σ2
ASE

)
+ σ2

rec (F.9)

with G the gain of the optical amplifier, PASE the added mean signal-
ASE power 1 and σASE the added variation of the signal-ASE noise. To
derive this, it was assumed that the nonlinear function can be assumed
to be approximately linear around GP0,in + PASE and GP1,in + PASE ,

and dPreg,out

dPreg,in

∣∣∣
GP0,in+PASE

= dPreg,out

dPreg,in

∣∣∣
GP1,in+PASE

≡
(

dPreg,out

dPreg,in

)
, which is

the case for a symmetrical reshaping function.
The BER is now underestimated by simply taking,

BERnew =
1
2

erfc
(

P1 − P0

2
√

2σ

)
(F.10)

because bit errors which are already present at the input of the reshap-
ing element cannot be undone. These are however not yet taken into
account in the above formula and given by

BERstart =
1
2

erfc

G
P1 − P0

2
√

2
√

G2σ2
in + σ2

ASE

 (F.11)

The summation of both terms is on the other hand an overestimation
of the BER as some of the errors ’after regeneration’ may overlap with
the latter bit errors BERnew. As a result, one has

max (BERstart, BERnew) ≤ BER ≤ BERstart + BERnew (F.12)

In most practical cases, one will have that BERstart << BERnew so
that a very good evaluation of the Bit Error Rate is possible.

1This is assumed to be the dominant noise contribution
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