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The following is an excerpt from a conversation between two
wizards at the Unseen University, discussing the study of the
Jfundamentals of magic.

Finally Cutangle spoke, very slowly and carefully.

T look at it like this,” he said. ’'Before [...], I was like ev-
eryone else. You know what I mean? I was confused and
uncertain about all the little details of life. But now,” he
brightened up, 'while I'm still confused and uncertain it’s
on a much higher plane, d’you see, and at least I know I'm
bewildered about the really fundamental and important facts
about the universe.’

Treatle nodded. T hadn’t looked at it like that,” he said,
‘but you're absolutely right. [It has] really pushed back the
boundaries of ignorance. There’s so much about the universe
we don’t know.’

They both savoured the strange warm glow of being much
more ignorant than ordinary people, who were ignorant of
only ordinary things.

“Equal Rites” - Terry Pratchett
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Nederlandse
Samenvatting - Dutch
Summary

In de volgende bladzijden wordt een beknopt overzicht gegeven van
de belangrijkste verwezenlijkingen in het kader van voorliggend docto-
raatswerk. Voor verdere details en uitgebreidere achtergrondinformatie
verwijzen we uiteraard naar de Engelse tekst.

1. Inleiding

Achtergrond

De laatste jaren heeft de telecommunicatie-industrie een explosieve
groei gekend, denken we maar aan de exponentiéle toename van het
gebruik van internet en mobiele telefonie. Het is in belangrijke mate
de opto-elektronica die een dergelijke evolutie heeft mogelijk gemaakt,
aangezien alle verbindingen in het ruggengraatnetwerk optisch ver-
lopen over glasvezelverbindingen. We moeten echter vaststellen dat
op middellange termijn de huidige stand van de technologie niet meer
zal volstaan om aan de eisen van de telecomsector te voldoen wat be-
treft bandbreedte en capaciteit. Nieuwe evoluties in de opto-elektronica
dringen zich dus op.

Een mogelijke route bestaat erin om het schakelproces in de netwerk-
knopen, dat vandaag de dag nog elektronisch gebeurt, langs optische
weg te laten verlopen. Om dit op een efficiénte manier mogelijk te
maken, moeten echter zeer compacte fotonische geintegreerde circuiten
(PIC’s) ontworpen worden, die toelaten een verscheidenheid aan opti-
sche functionaliteit op een kleine oppervlakte te combineren. Vandaag
de dag staat de PIC-technologie nog grotendeels in zijn kinderschoe-
nen. Vooral het aspect compactheid laat nog veel te wensen over, zeker
in vergelijking met de integratiedichtheden die gehaald worden in elek-
tronische chips.
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Figuur 1: Fotonische kristallen.

Figuur 2: Bocht in een golfgeleider in een 2D fotonisch kristal.

Een veelbelovende recente ontwikkeling die hier een oplossing zou
kunnen bieden is het gebruik van fotonische kristallen (Ph.C.’s) (fig. 1).
Dit zijn nanotechnologiecomponenten die een structurele periodiciteit
vertonen op een schaal van de golflengte. Door deze periodiciteit zal
licht meervoudig verstrooid worden aan de scheidingsvlakken tussen
de verschillende materialen. Dit kan aanleiding geven tot destructieve
interferentie in de transmissie, zodat een Ph.C. zich als een zeer goede
reflector gaat gedragen. Dit principe van een fotonische bandkloof kan
aangewend worden om golfgeleiders te maken door opzettelijk de pe-
riodiciteit van het kristal te verstoren (door b.v. een rij weg te laten).
Op die manier ontstaat een lijndefect in het kristal dat aan beide zij-
den is omgeven door een perfecte reflector en dus zal fungeren als een
golfgeleider. Bovendien kan dit principe uitgebreid worden om in de
golfgeleider zeer compacte bochten te nemen (fig. 2), die slechts een
oppervlakte van een paar vierkante micron in beslag nemen. Bochten
in traditionele golfgeleiders daarentegen zijn typisch vierkante millime-
ters groot, zodat Ph.C.’s zeer veelbelovend zijn om compacte optische
chips te maken. Deze mogelijkheid tot miniaturisatie opent enorme
perspectieven, zeker als we kijken welke verbeteringen elektronische
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Figuur 3: Verticale-caviteitslaser.

chips ondergaan hebben dankzij een ver doorgedreven miniaturisatie.

Aan de uiteinden van het netwerk, in de laatste kilometer die het
ruggengraatnetwerk met de eindgebruiker verbindt, is er ook ruimte
voor verbetering. Daar zal de oplossing bestaan uit het doortrekken van
optische vezel tot aan de eindgebruiker. Om deze oplossing economisch
haalbaar te maken zijn efficiénte en goedkope lasers nodig. Kandidaat
bij uitstek hiervoor is de verticale-caviteitslaser (VCSEL) (fig. 3), die
nu al een commerciéle realiteit is en b.v. zal ingezet worden bij Gi-
gabit Ethernet toepassingen. In een dergelijke laser plant het licht
zich voort in de verticale richting, loodrecht op het substraat. Dit
staat in tegenstelling tot meer klassieke lasers, waar het licht evenwij-
dig aan het substraat wordt uitgestraald. Groot voordeel van verticale
emissie is dat verschillende lasers op die manier in een tweedimensio-
nale matrix kunnen worden samengebracht op een enkele chip (fig. 4).
Bovendien kunnen dergelijke lasers veel compacter gemaakt worden
dan hun klassieke tegenhangers, wat dan weer perspectieven opent
naar miniaturisatie en snelheid toe.

Modellering van optische componenten

Samengevat kunnen we zonder enige twijfel stellen dat verdere evolu-
ties in de opto-elektronica, en meer bepaald in het domein van PIC’s,
Ph.C.’s en VCSEL’s van cruciaal belang zullen zijn om de verdere ont-
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Figuur 4: Optische interconnectie met een 2D matrix van verticaal
emitterende lichtbronnen.
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Figuur 5: Ruimtelijke discretisatie.

wikkeling van de telecommunicatie mogelijk te maken. Nochtans is
een dergelijke evolutie niet triviaal. In het bijzonder is de fabricage van
prototypes bijzonder duur en tijdrovend. Hier dringt zich dus een aan-
pak op waarbij de verschillende ontwerpsmogelijkheden vooraf door-
gerekend worden met behulp van computersimulaties. Probleem hier-
bij is dat bestaande methodes, zoals b.v. eindige differenties in het
tijdsdomein (FDTD), bijzonder traag kunnen zijn en grote hoeveelheden
geheugen vereisen. Belangrijkste reden hiervoor is dat deze methodes
gebaseerd zijn op het invoeren van ruimtelijke discretisatie (fig. 5). Over
de structuur die men wenst door te rekenen wordt een rooster gelegd
en men gaat vervolgens op zoek naar de waarde van de elektromagneti-
sche velden ter hoogte van ieder roosterpunt. In de praktijk blijkt men
heel veel roosterpunten en dus heel veel onbekenden nodig te hebben.
Hierdoor kunnen deze technieken zeer traag zijn en bijgevolg minder
bruikbaar voor praktisch ontwerp, waarbij immers verschillende itera-
ties moeten worden doorgevoerd.

In het kader van dit werk werd dan ook een nieuwe techniek ont-
wikkeld die precies toelaat om de vereiste rekentijd en hoeveelheid
geheugen met een grootteorde te doen dalen. Deze methode is gebaseerd



Figuur 6: Eigenmode-expansie.

op een combinatie van vectoriéle eigenmode-expansie en het gebruik
van geavanceerde randvoorwaarden. De filosofie achter eigenmode-
expansie maakt gebruik van het feit dat in het gros van de gevallen
de structuur die moet worden doorgerekend een brekingsindexprofiel
heeft dat stuksgewijze constant is. Hierdoor kan de component wor-
den verdeeld in lagen waar de brekingsindex niet varieert in de propa-
gatierichting (fig. 6), zodat we in iedere laag het veld kunnen schrijven
als een lineaire combinatie van de eigenmodi van die bepaalde laag. Dit
resulteert in een veel kleiner aantal onbekenden vergeleken met tech-
nieken die de structuur ruimtelijk discretiseren. Hierdoor zijn metho-
des die gebruik maken van eigenmodi ook merkelijk sneller. Bovendien
is eigenmode-expansie rigoureus in de zin dat er geen a priori vereen-
voudigingen worden doorgevoerd bij het oplossen van de wetten van
Maxwell. Deze aanpak wordt mathematisch rigoureus in de limiet van
een oneindig aantal modi en een complete set.

Een probleem dat eigenmode-expansie steeds geplaagd heeft in het
verleden en waar in dit werk een oplossing is voor geintroduceerd, is dat
van parasitaire reflecties aan het metalen discretisatievolume. Immers,
om een discrete set stralingsmodi te bekomen, geeft men er de voorkeur
aan om de structuur die men bestudeert op te sluiten in een metalen
doos. Probleem hierbij is dat op die manier de berekeningsresultaten
verstoord worden, omdat de straling kan reflecteren aan het metaal
en terugkeert naar de structuur die men wil bestuderen. Men kan dit
probleem grotendeels oplossen door speciale geavanceerde randvoor -
waarden te introduceren, die dan ook in dit werk uitgebreid bestudeerd
zullen worden.

Overzicht van het proefschrift

De doelstelling van dit werk is het uitbreiden en verder verfijnen van
de eigenmode-expansie om te komen tot een flexibele en performante
modelleringstool die toelaat om geavanceerde optische componenten te
ontwerpen die de verdere evolutie van de optische telecommunicatie
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mogelijk moeten maken.

Dit proefschrift is als volgt opgebouwd. In hoofdstuk 2 wordt een
inleiding gegeven op de techniek van eigenmode-expansie. De nieuwe
geavanceerde randvoorwaarden die van cruciaal belang zijn voor het
succes van deze methode worden vervolgens besproken in hoofdstuk
3. Hoofdstuk 4 gaat dieper in op de software-aspecten gerelateerd aan
de implementatie van het model. In de volgende hoofdstukken wordt
deze software ingezet bij de studie van een aantal geavanceerde com-
ponenten: fotonische kristallen in hoofdstuk 5, verticale-caviteitslasers
in hoofdstuk 6 en tenslotte resonante-caviteit-LED’s in hoofdstuk 7.
Besluiten en mogelijke richtingen voor verder onderzoek worden aange-
haald in hoofdstuk 8.
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2. Eigenmode-expansie

Eigenmodi in een laag

Deze methode is gebaseerd op het feit dat er in z-invariante media een
set speciale velddistributies kan gevonden worden die hun vorm be-
houden terwijl ze zich langs de z-as voortplanten. Deze zgn. eigen-
modi stemmen overeen met de natuurlijke trillingsvormen die kunnen
bestaan in dergelijke structuren, ook in de afwezigheid van externe
bronnen.

In vele omstandigheden blijkt deze verzameling van eigenmodi een
complete set te vormen die kan gebruikt worden om een willekeurig
elektromagnetisch veld weer te geven:

E(r) = Y AE;(r)e % (1)
H(r) = Y AH;(r;)e /%"

We bekomen op die manier een zeer compacte voorstelling van dit
veld als een kolomvector van expansie-coéfficiénten:

(E(r),H(r)) «— A = [4]] 2

Verstrooiing aan de scheiding tussen twee lagen

Een volgende stap in het model bestaat erin om uit te rekenen wat er
gebeurt met een willekeurige velddistributie A;,. op het ogenblik dat
die invalt op het scheidingsoppervlak tussen twee verschillende lagen
(fig. 7). Meer bepaald gaan we op zoek naar de reflectie- en trans-
missiematrices die resp. het teruggekaatste en het doorgelaten veld
beschrijven volgens

Averr = Rigr-Age (3)
Atrans = TI,II'Ainc (4)

Men kan deze matrices bekomen door voor de onbekende velden
ook een expansie voor te stellen onder de vorm van eigenmodi. Het
toepassen van de gepaste continuiteitsvereisten levert dan uiteindelijk
deze matrices, na het in rekening brengen van de orthogonaliteit van
de eigenmodi.

Verstrooiing aan een stapel van verschillende lagen

Tenslotte kunnen ook reflectie- en transmissiematrices worden opge-
steld die het verstrooiingsgedrag beschrijven van een stapel die bestaat
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Figuur 7: Het scheidingsoppervlak tussen twee lagen.

uit een opeenvolging van verschillende lagen. Deze matrices worden be-
komen door de bijdragen te combineren van de propagatie door de indi-
viduele lagen en de verstrooiing die optreedt aan het scheidingsopper-
vlak tussen twee verschillende lagen. De precieze manier waarop deze
bijdragen gecombineerd worden is belangrijk voor de uiteindelijke nu-
merieke stabiliteit van de methode. In de praktijk geven we er daarom
meestal de voorkeur aan om te werken met methodes gebaseerd op S-
matrices, in plaats van een meer voor de hand liggende beschrijving in
termen van transfer T-matrices.

Deze manier om een willekeurige structuur te beschrijven levert ons
alle informatie die we nodig hebben. Naast de kennis van het reflectie-
en het transmissiegedrag kan ze ook gebruikt worden om het veldprofiel
op een willekeurige plaats in de structuur te berekenen.

Zoals reeds aangehaald heeft een dergelijke manier van werken ver-
schillende voordelen ten opzichte van technieken gebaseerd op ruimte-
lijke discretisatie. Doordat in veel grotere mate gebruik wordt gemaakt
van analytisch bekende deeloplossingen (met name in het gedrag van
de eigenmodi) kunnen we komen tot een zeer beknopte beschrijving van
de velden, een klein aantal onbekenden en een gereduceerde rekentijd.
Bovendien laat deze methode in tegenstelling tot andere ook aanzien-
lijke optimalisaties toe wanneer een basisstructuur optreedt die een
aantal maal periodiek wordt herhaald. Klassieke methodes hebben
in dit geval een rekentijd die lineair oploopt met het aantal periodes,
terwijl voor eigenmode-expansie bepaalde technieken kunnen worden
aangewend waardoor de rekentijd slechts logaritmisch toeneemt.
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3. Randvoorwaarden

Metalen discretisatiewanden

Realistische structuren zoals die in de praktijk voorkomen zijn open
structuren, hetgeen wil zeggen dat straling die wordt uitgezonden door
de component naar oneindig kan ontsnappen. Nu blijkt het zo te zijn
dat open structuren een continue set stralingsmodi hebben, zodat de
velden niet meer beschreven kunnen worden als een discrete som van
eigenmodi, en men zijn toevlucht moet nemen tot integralen. Deze in-
tegralen zijn niet triviaal om te behandelen, wegens het voorkomen van
singulariteiten in het integrand. Vandaar dat men meestal de voorkeur
geeft aan een andere aanpak, nl. het plaatsen van de structuur die
men wil bestuderen in een gesloten metalen volume.

De aanwezigheid van dit volume discretiseert de set stralingsmodi,
maar introduceert terzelfdertijd echter een bijkomend probleem. Im-
mers, de straling die wordt uitgezonden kan nu niet meer naar oneindig
propageren, maar zal reflecteren aan het metaal en teruggestuurd wor-
den naar de component. Dit probleem van zgn. parasitaire reflecties
kan onder bepaalde omstandigheden de berekeningsresultaten grondig
verstoren. Het gebruik van meer geavanceerde randvoorwaarden dringt
zich dus op.

Perfect aangepaste lagen

Een zeer interessante geavanceerde randvoorwaarde is het gebruik van
perfect aangepaste lagen (PML’s), die de eigenschap vertonen straling
te kunnen absorberen zonder bijkomende parasitaire reflecties te intro-
duceren. Bovendien is dit het geval voor om het even welke golflengte,
invalshoek of polarisatie van de invallende straling, hetgeen een enorm
voordeel is ten opzichte van meer traditionele absorberende randvoor-
waarden.

In dit werk hebben we gebruik gemaakt van het formalisme van
complexe codrdinaten om de PML te beschrijven, hetgeen inhoudt dat
de PML bekeken wordt als een laag met een reéle brekingsindex maar
met een complexe dikte. Het is precies het imaginaire deel van deze
laagdikte die verantwoordelijk is voor de reflectieloze absorptie in de
PML. We kunnen een gevoel krijgen voor de werking van PML door
de formule te bekijken die een vlakke golf beschrijft in een uniform
medium:

efjkonz (5)

Deze golf kan gedempt worden door propagatie in een verlieshebbend
medium (rn imaginair), maar gezien n en z op gelijke voet optreden in
deze formule kan demping ook bekomen worden door propagatie over
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Figuur 8: TE (cirkels) en TM (kruisen) propagatiefactoren van een GaAs
(n = 3.5) golfgeleider 1 ym dik, omgeven door een luchtlaag met dikte
2.0-0.4j pum. De golflengte is 1.55 pm.

een complexe afstand. Voordeel van een complexe afstand t.o.v. een
verlieshebbend materiaal is dat er geen parasitaire reflecties blijken op
te treden aan het scheidingsoppervlak tussen de PML en de mantella-
gen van de bestudeerde component.

Men kan zich terecht vragen stellen bij de fysische betekenis van een
dergelijke schijnbaar ad hoc geintroduceerde uitbreiding van de verge-
lijkingen van Maxwell naar complexe coérdinaten. Men kan echter aan-
tonen dat een dergelijke beschrijving equivalent is met een formulering
aan de hand van anisotrope media met bijzondere materiaaltensoren,
die wel voldoen aan de normale vergelijkingen van Maxwell. Groot
praktisch voordeel van de techniek gebaseerd op complexe codrdinaten
is echter dat alle bestaande analytische formules zeer eenvoudig kun-
nen worden aangepast om rekening te houden met PML door voor de
mantellagen complexe diktes toe te laten.

Fig. 8 illustreert de invloed van PML op de distributie van de pro-
pagatieconstantes in het complexe vlak. De geleide modi blijken nog
steeds dicht bij assen te liggen, de stralingsmodi bevinden zich nu
echter in het complexe vlak ten gevolge van de absorptie in de PML.
Deze stralingsmodi kunnen onderverdeeld worden in twee groepen.
Een eerste groep (de zgn. Bérenger modi) zal zich steeds verder in het
complexe vlak begeven wanneer de absorptie in de PML toeneemt. Een
tweede groep convergeert naar een limietwaarde voor toenemende ab-
sorptie. Het blijkt dat de locatie van deze limietwaarde precies overeen-
stemt met de lekkende modi van de corresponderende open struc-
tuur. Dit suggereert een dieper verband tussen PML modi en lekkende
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Loss of fundamental mode
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Figuur 9: Stralingsverlies voor de structuur uit fig. 3.3 voor verschil-
lende absorptieniveaus in de PML.

modi. Zo hebben we trouwens kunnen aantonen dat in het geval
van een oneindige absorptie PML-mode-expansie equivalent wordt aan
lekkende-mode-expansie.

Ter illustratie van het positieve effect van PML op de parasitaire re-
flecties tonen we in fig. 9 de berekende stralingsverliezen voor de struc-
tuur van fig. 3.3. Dit verlies is berekend als een functie van de dikte
van de laag tussen de metalen wand en de bestudeerde structuur. In
het geval van convergentie verwachten we dat een verdere toename van
deze dikte geen veranderingen meer met zich zal meebrengen in de
berekende resultaten, aangezien deze dikte een zuiver numerieke pa-
rameter is. In de afwezigheid van PML (een imaginaire dikte gelijk aan
nul) treden echter sterke oscillaties op in deze curves, zodat het moeilijk
wordt om te voorspellen tot welke eindwaarde het verlies zal converge-
ren. Dit is een duidelijke indicatie van de aanwezigheid van parasitaire
reflecties, die aanleiding geven tot resonantie-effecten die de bereke-
ning verstoren. Laten we echter de imaginaire component van de dikte
oplopen in absolute waarde, dan zien we dat deze resonanties gedempt
worden en de storende invloed van parasitaire reflecties verdwijnt.

Geavanceerde randvoorwaarden als PML hebben niet alleen als voor -
deel dat de nauwkeurigheid gevoelig wordt verbeterd, ze hebben ook
een positieve invloed op de rekentijd. Immers, deze absorberende rand-
voorwaarden laten toe om de randen dichter tegen de bestudeerde
structuur te plaatsen, hetgeen resulteert in een kleiner computationeel
volume. Dit betekent dan weer dat er minder eigenmodi nodig zullen
zijn om de velden te beschrijven. Aangezien de rekentijd oploopt met de
derde macht van het aantal modi staat dit garant voor een aanzienlijke
snelheidswinst.



Reflectivity of boundary conditions
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Figuur 10: Vergelijking van verschillende absorberende randvoorwaar -
den.

Transparante randvoorwaarden

Een tweede klasse van absorberende randvoorwaarden die we bestu-
deerd hebben wordt gevormd door de zogenaamde transparante rand-
voorwaarden (TBC’s), die een reflectie vertonen die identisch gelijk is
aan nul voor een enkele invalshoek. TBC’s leggen het volgende ver-
band op tussen voorwaarts en achterwaarts propagerende velden:

(kg + koo) F — (kg — kz0) B=0 (6)

Hier is k, de transversale component van de golfvector van de inval-
lende straling en k, o is een vooraf gekozen waarde van k, waarbij men
wenst dat de randvoorwaarde volledig reflectieloos is.

Ter illustratie van deze randvoorwaarden wordt in fig. 10 de ab-
sorptie van 2 verschillende TBC’s vergeleken met die van twee verschil-
lende PML's. PML’s hebben duidelijk de laagste reflecties voor lood-
rechte inval. TBC’s vertonen een reflectie identisch gelijk aan nul voor
een bepaalde invalshoek, maar kunnen relatief hoge reflecties vertonen
voor andere hoeken. Zowel PML'’s als TBC’s vertonen echter een reflec-
tie die naar 100% convergeert voor scherende inval. Dit betekent dat
modi in de buurt van afsnijding geen voordeel halen uit deze randvoor-
waarden.



4. CAMFR

Deze eigenmode-expansie met geavanceerde randvoorwaarden is geim-
plementeerd in het computerprogramma CAMFR - staande voor CAvity
Modelling FRamework. Hierbij hebben we ons laten leiden door object-
en component-georiénteerde technieken om te komen tot een flexibel
raamwerk dat gemakkelijk is om te gebruiken, te onderhouden en uit
te breiden.

Meer in het bijzonder is de software niet opgevat als een enkel mono-
litisch geheel, maar veeleer als een verzameling van elementaire bouw-
blokken die op verschillende manieren kunnen worden samengebracht
om simulaties uit te voeren, ook op manieren die origineel niet verwacht
waren bij het initi€éle ontwerp. Dit draagt in belangrijke mate bij tot
het raamwerk-karakter van de software en zijn flexibiliteit en uitbreid-
baarheid.

Ook hebben we gebruik gemaakt van het feit dat een belangrijk deel
van de modellen in eigenmode-expansietechnieken geformuleerd kun-
nen worden zonder een beroep te doen op de precieze details van de
onderliggende geometrie. Door deze modellen te implementeren in ter-
men van abstracte golfgeleiders en abstracte verstrooiers kunnen deze
zonder meer verder blijven gebruikt worden wanneer er een nieuwe ge-
ometrie (b.v. ellipsvormige golfgeleiders) wordt toegevoegd.

Dit alles is mogelijk gemaakt door onze toevlucht te nemen tot een
geavanceerde programmeertaal als C++, die voldoende expressief is om
dergelijke constructies op te zetten aan de hand van polymorfisme.
Voor de gebruikersinterface van CAMFR is gebruik gemaakt van de
bestaande scripttaal Python, die o.m. een naadloze integratie met an-
dere programma’s toelaat om de berekende resultaten te visualiseren.
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Figuur 11: Triangulair rooster.

5. Fotonische kristallen

Banddiagramma’s

Voor de studie van fotonische Kkristallen is het interessant om te weten
welke Blochmodi kunnen bestaan in een bepaalde oneindig uitgestrekte
periodieke structuur. Ook hier kunnen we eigenmode-expansie ge-
bruiken, want het blijkt dat we uit de eigenwaarden van de transfer-
matrix van de basisperiode informatie kunnen halen over de propa-
gatiefactoren van de Blochmodi. De veldprofielen van deze modi volgen
dan weer uit de eigenvectoren van deze matrix.

Ter illustratie geven we hier het banddiagramma van een triangu-
lair rooster van luchtgaten in een halfgeleider (fig. 11). Op deze figuur
zijn ook de eenheidscellen aangegeven die gebruikt werden bij de bere-
kening van de Blochmodi in een welbepaalde symmetrierichting in de
structuur. In de transversale richting van deze eenheidscellen is ge-
bruik gemaakt van elektrische of magnetische wanden om het oneindig
uitgestrekt karakter van het kristal weer te geven.

Fig. 12 toont de berekende bandstructuur. Er is duidelijk een fre-
quentieband te zien waar geen modi optreden. Licht dat invalt op het
kristal met een frequentie in deze bandkloof zal geen modi vinden om
naar te koppelen, zodat het volledig weerkaatst wordt. Hieraan hebben
fotonische kristallen hun reputatie als uitstekende spiegels te danken.
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Figuur 12: Bandenstructuur in een triangulair rooster.

Componenten gebaseerd op fotonische kristallen

CAMFR is ingezet bij de studie van een rijke waaier aan componen-
ten gebaseerd op periodieke structuren, gaande van golfgeleiders en
bochten in fotonische kristallen, over uitkoppelstructuren en wigmo-
deconvertoren tot de invloed van brekingsindexcontrast op verstrooi-
ingsverliezen in plaatgolfgeleiders gecombineerd met fotonische kris-
tallen.

Bij wijze van voorbeeld tonen we hier het veldprofiel in een 3dB
splitser gecombineerd met scherpe 90-gradenbochten in een fotonisch
kristal (fig. 13). Het is duidelijk dat het fotonisch kristal in staat is om
het licht te geleiden: het vermogen blijft grotendeels geconcentreerd in
de lijndefecten in de kristallen.

We wensen tenslotte ook op te merken dat dankzij eigenmode-expan-
sie dergelijke berekeningen bijzonder snel kunnen gebeuren (2 minuten
op een 250 MHz Sun UltraSparc). FDTD methodes zouden hier groot-
teordes meer rekentijd en geheugen voor nodig hebben. Groot voordeel
van eigenmode-expansie in deze context is de mogelijkheid om de struc-
tuur onmiddellijk met een Blochmode te exciteren, terwijl FDTD rou-
tines moeten vertrekken van een stroomexcitatie die een relatief lang
stuk overgangsgolfgeleider vereist om te komen tot een evenwichtsdis-
tributie die enkel de gewenste Blochmode bevat.

Halfoneindige kristallen

In het kader van dit werk is ook onderzoek verricht naar het reflectiege-
drag van halfoneindige kristallen. In tegenstelling tot hetgeen courant
in de literatuur gesuggereerd wordt, blijkt het in het algemeen niet mo-
gelijk te zijn om te komen tot een eensluitende definitie voor de reflectie
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Figuur 13: Halfvermogensplitser in fotonische kristallen.

van dergelijke structuren. In aanwezigheid van geleide Blochmodi blijkt
immers deze reflectie te oscilleren als een functie van het aantal peri-
odes, zodat een limietwaarde voor een oneindig aantal periodes niet te
definiéren valt.

Dit fenomeen hebben we dan gekoppeld aan de onmogelijkheid om
halfoneindige kristallen te beschrijven als een laterale randvoorwaarde,
precies omdat dit oscillerende gedrag aanleiding schijnt te geven tot een
incomplete set.

Voor meer details verwijzen we uiteraard naar de Engelse tekst.



Figuur 14: Lasercaviteit.

6. Verticale-caviteitslasers

Laserresonanties

We kunnen eigenmode-expansie ook gebruiken voor het bepalen van
de golflengte en de vereiste materiaalwinst van een lasermode van een
willekeurige caviteit. Daarvoor snijden we eerst de caviteit op een arbi-
traire plaats doormidden (fig. 14). Vervolgens berekenen we de reflec-
tiematrices van de bovenste en de onderste caviteitshelft. Een laser-
mode moet voldoen aan de conditie dat zijn kringwinst gelijk is aan
1:

Rtop - Rpot - Alasing = Alasing (7)

Met andere woorden, we moeten op zoek gaan naar een situatie
waarbij de matrix Ry,, - Ryo: €€n eigenvector heeft met een eigenwaarde
gelijk aan 1. Om dit te bekomen variéren we eerst de golflengte A om
aan faseresonatie te voldoen, en vervolgens de materiaalwinst g, in
de actieve laag om amplituderesonantie te bekomen. Op die manier is
het vinden van een lasermode herleid tot een zoektocht in het 2D (J,
Gmat) V1ak.

Transversale opsluiting

Om een laser met een lage drempelstroom te kunnen realiseren is het
van groot belang om de laserbundel bij elkaar te houden in een klein
gebied in de actieve laag. Als we er dan ook nog eens in slagen om enkel
stroom te injecteren in dit gebied, kunnen we een bijzonder efficiénte
VCSEL maken.



Figuur 15: Proton-geimplanteerde VCSEL, luchtpaal-VCSEL en VCSEL
met dik oxidevenster.

Om deze transversale opsluiting te bekomen is het een groot voor-
deel om te beschikken over een simulatiemodel als het onze dat het
optisch gedrag in dergelijke structuren correct vectorieel doorrekent.
Immers, de introductie in de caviteit van een element dat moet zorgen
voor transversale opsluiting heeft zowel positieve als negatieve gevol-
gen. Het is precies deze delicate balans die ervoor zorgt dat het moeilijk
is om intuitief te voorspellen welk effect de opsluitstructuur zal hebben.

Aan de ene kant zal een dergelijke structuur er uiteraard voor zor-
gen dat de laserbundel bij elkaar wordt gehouden in het inwendige van
de opsluitstructuur. Dit kan leiden tot een vermindering van de diffrac-
tieverliezen, daar waar anders de bundel te veel zou openwaaieren in de
caviteit, zodat hij na reflectie aan de spiegels een doorsnede zou hebben
die veel groter is dan het gebied waarin stroom geinjecteerd wordt.

Aan de andere kant kunnen er ook verstrooiingsverliezen optreden
aan de randen van de opsluitstructuur, wanneer het licht erin gekop-
peld moet worden of juist moet verlaten. Dit kan ook een belangrijk ver-
liesmechanisme zijn voor de laserwerking. Vervelend is wel dat struc-
turen die een goede interne opsluiting realiseren vaak ook meer ver-
strooiingsverliezen veroorzaken door een sterker indexcontrast. Hier
moet dus een aanvaardbaar evenwicht gezocht worden.

Ter illustratie vergelijken we nu de drempelwinst van een aantal
VCSEL-structuren geschetst in fig. 15. Het gaat om een VCSEL met
protonimplantie, een luchtpaal-VCSEL en een VCSEL met een dik (\/4)
oxidevenster. De proton-geimplanteerde VCSEL wordt gemaakt door
het oppervlak selectief te beschieten met protonen, Hierdoor wordt de
kristalstructuur verstoord, zodat een isolator gecreéerd wordt. Op die
manier kan een geleidend centraal kanaal gemaakt worden, omgeven
door een isolator. Aangezien de protonen geen invloed hebben op de
brekingsindex van de lagen, is de enige verandering in brekingsin-
dex het gevolg van de winst in de actieve laag in het gebied onder het
geleidend kanaal. Men spreekt in dit verband ook over winstgeleiding.
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Figuur 16: Drempelwinst van verschillende VCSEL structuren.

Bij de luchtpaal-VCSEL bekomt men transversale opsluiting door de
halfgeleiderplak selectief aan te etsen, waardoor een paalvormige struc-
tuur blijft staan. Deze fungeert als golfgeleider en kan bijgevolg ook het
licht bij elkaar houden. De derde VCSEL-structuur maakt gebruik van
de oxidatie van een halfgeleiderlaag met een hoog aluminiumgehalte.
Ook dit resulteert in een centraal geleidend kanaal omgeven door een
isolerende apertuur van aluminiumoxide. Bovendien heeft dit oxide
een lage brekingsindex (n = 1.55) zodat ook hier optische golfgeleiding
bekomen wordt.

Fig. 16 toont de drempelwinst in deze structuren als een functie van
de straal van de component. De winstgeleide VCSEL heeft de hoog-
ste drempelwinst, hetgeen logisch is omdat de transversale opsluiting
bijzonder klein is. Zoals reeds gezegd, wordt deze in dit geval enkel
bekomen door de winst in de actieve laag. De luchtpaal-VCSEL doet
het beter en de oxide-VCSEL heeft de laagste drempelwinst. Nochtans
is in de luchtpaal-VCSEL het opsluitingseffect veel groter dan bij de
oxide-VCSEL, omdat het brekingsindexcontrast hoger is en het effect
zich laat voelen over de hele bovenspiegel in plaats van in een enkele
laag. Dit is een duidelijke indicatie van het reeds aangehaalde effect
van verstrooiingsverliezen in structuren met een groot brekingsindex-
contrast. Hoewel de oxide-VCSEL een lagere opsluiting heeft, zijn ook
de verstrooiingsverliezen kleiner wegens het lagere brekingsindexcon-
trast.

Dunne oxidevensters

Men kan deze redenering verder proberen door te trekken en zich afvra-
gen of men een nog lagere drempelwinst kan bekomen door een dun-
ner oxide te gebruiken. Op die manier offert men wat opsluiting op,
maar tegelijkertijd zullen ook de verstrooiingsverliezen afnemen om-
dat het dunnere oxide de lasermode minder zal verstoren. Bij gebruik
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Figuur 17: Drempelwinst van VCSELs met dunne oxidevensters.

van dergelijke dunne oxides krijgt men ook een extra vrijheidsgraad ter
beschikking: men kan het oxide positioneren op een minimum (knoop)
of een maximum (buik) van het staandegolfpatroon. Fig. 17 toont de
simulatieresultaten voor dergelijke dunne oxidevensters. Wanneer het
oxide op een maximum van het optische veld wordt geplaatst, blijkt een
dergelijke aanpak inderdaad zijn vruchten af te werpen. Het verlies in
opsluiting wordt goedgemaakt door de kleinere verstrooiingsverliezen,
zodat de component een drempelwinst heeft die lager ligt dan die van
een VCSEL met een dik oxidevenster. Voor een dun oxidevenster op
een veldminimum liggen de zaken totaal anders. Dit dunne venster
heeft bijna geen invloed op het elektromagnetisch veld, precies omdat
het zich op een positie bevindt waar dit veld zo zwak is. Dit betekent
dat het er niet in zal slagen om de laserbundel bij elkaar te houden,
zodat de diffractieverliezen enorm zullen toenemen, hetgeen resulteert
in hoge drempelwinsten.

Nochtans mogen dergelijke conclusies niet veralgemeend worden.
Zo zijn er immers in de literatuur studies gerapporteerd waarbij pre-
cies de tegenovergestelde trend experimenteel werd waargenomen, nl.
dat knoopoxides beter presteren dan buikoxides. Dit effect hebben we
theoretisch kunnen verklaren door ook de diffusie van ladingsdragers
in rekening te brengen. Immers, deze ladingsdragers zullen na injectie
in de actieve laag lateraal openspreiden, waardoor de winstzone groter
wordt dan de eigenlijke kanaaldiameter. Een dergelijk breder winst-
profiel is veel beter aangepast aan de brede lasermode in het geval van
knoopoxides, zodat het licht efficiént gepompt kan worden. Precies het
omgekeerde is waar voor buikoxides: veel van de ladingsdragers leveren
geen bijdrage tot de winst omdat de lasermode veel smaller is dan de
winstoppervlakte. Dit alles wordt schematisch geillustreerd in fig. 18.

Verder hebben we ook simulaties verricht die illustreren dat het mo-
gelijk is om een dergelijk effect ook positief aan te wenden om een
hogere modale stabiliteit te bekomen in VCSELs die een oxidevenster
combineren met een protonimplantatie die een kleinere diameter heeft

XXXiv



antinode oxide node oxide

[ A ] = e

Figuur 18: Invloed van ladingsdragersdiffusie op de overlap tussen het
winstprofiel en de lasermode.

dan het oxidevenster. Op die manier is het winstprofiel vooral gecon-
centreerd in het centrum van de laser, waar de fundamentele laser-
mode een grote intensiteit vertoont, terwijl die van de hogere orde modes
er juist verwaarloosbaar is. Zo wordt de grondmode zeer sterk bevoor-
deeld, hetgeen resulteert in een betere modale stabiliteit.

Ook is onderzoek gebeurd op componenten die een wigvormig oxide-
venster hebben. Doordat in dergelijke lasers het brekingsindexprofiel
slechts geleidelijk wijzigt, kunnen de verstrooiingsverliezen nog verder
worden teruggedrongen met een nog lagere drempelwinst tot gevolg.
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Figuur 19: Bron in een caviteit.

7. Resonante-caviteit-LED'’s

Respons op een stroombron

Een ander belangrijk probleem is de studie van de respons van een
arbitraire caviteit op een willekeurige stroombron. Wanneer we een
stroombron gekarakteriseerd door zijn stralingspatroon (A0, Ago,0) in
een caviteit plaatsen, zal ten gevolge van meervoudige reflecties een
gewijzigd stralingspatroon (A,,,A4,) ontstaan (fig. 19). Dit patroon
wordt gegeven door

Aup = (T —Ryot - Riop) " (Aupo + Riot - Adoo) 8

Ado = (I - Rtop . :R»bot)_1 . (Ado,[) + Rtop . Aup70) (9)

Een elektrische puntdipool als bronterm is een goed model voor het
proces van spontane emissie in een halfgeleider ten gevolge van de re-
combinatie van een elektron en een gat. We kunnen dus aan de hand
van de beschreven vergelijkingen bepalen welke invloed de optische
omgeving (i.e. de aanwezigheid van de caviteit) heeft op de spontane
emissie. In sommige gevallen kan de caviteit geen modi onderhouden
waar de spontane-emissiestraling naar kan koppelen. In dit geval zal
de dipool geen licht kunnen uitzenden en spreken we van onderdrulkte
spontane emissie. In andere gevallen bezit de caviteit een mode die pre-
cies resonant is met de dipoolstraling. Deze mode kan dan zeer efficiént
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Figuur 20: RCLED.

energie onttrekken aan de dipool zodat we bevorderde spontane emissie
krijgen.

RCLED

De resonante-caviteit-LED (RCLED) maakt gebruik van dit principe van
wijziging van spontane emissie om een grotere extractie-efficiéntie te
bekomen (fig. 20). Wanneer straling vanuit het inwendige van een
LED onder een te schuine hoek invalt op het scheidingsvlak tussen
de halfgeleider en de lucht zal die totaal intern reflecteren. Op die
manier kan dit licht niet de buitenwereld bereiken en gaat het dus ver-
loren. Voor klassieke LED’s met een isotroop stralingspatroon gaat op
die manier 98% van al het licht verloren.

RCLED’s maken gebruik van de verandering van spontane emissie
om het licht bij voorkeur loodrecht op het substraat uit te zenden. Op
die manier speelt totale interne reflectie veel minder een rol en kun-
nen extractie-efficiénties van boven de 20% gehaald worden, een hele
verbetering ten opzichte van de 2% bij klassieke LED’s.

Om dit principe van spatiale herverdeling van spontane emissie
beter te begrijpen, is het instructief om gebruik te maken van een
schematische voorstelling in de k-ruimte (fig. 21). Hier wordt de oor-
sponkelijk isotrope emissie van de actieve laag voorgesteld door een
boloppervlak, terwijl de resonantievoorwaarde van de caviteit weerge-
geven wordt aan de hand van ander oppervlak. Punten in de k-ruimte
waar er veel overlap is tussen beide oppervlakken stemmen overeen
met straling die wordt uitgezonden door de caviteit en die door con-
structieve interferentie wordt versterkt. Uit een dergelijk diagram is
dus heel duidelijk te zien dat in een RCLED vooral de straling rond
6 = 0 gaat versterkt worden.
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Figuur 21: k-ruimtediagram voor een RCLED.
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Figuur 22: RC2LED versus RCLED.

RC’LED

In het kader van dit werk hebben we ook een totaal nieuw concept voor
dergelijke RCLED’s voorgesteld, dat toelaat om een grotere extractie-
efficiéntie te halen in combinatie met een smaller stralingspatroon.
Deze zogenaamde RC?LED is gebaseerd op het gebruik van een tweede
resonante caviteit en is het onderwerp geweest van een octrooiaan-
vraag. Zoals te zien in fig. 22, is in de RC?’LED een extra caviteit
geplaatst onder de uitkoppelspiegel.

Deze combinatie van spiegel en caviteit heeft een aantal voordelen.
Ten eerste heeft een dergelijke structuur slechts een belangrijke trans-
missie in een aanzienlijk kleiner hoekinterval. Dit betekent dat het
stralingspatroon van deze component veel smaller zal zijn. Boven-
dien heeft deze spiegel een negatieve angulaire penetratiediepte. Dit
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Figuur 23: k-ruimtediagram voor een RC2LED.

Extraction efficiency to NA=0.5

0.10
0.08 AR
0.06 f \'l ——RC
0.04 ,/-'/ \\ —=—RC2
0.02 j%
0.00

0.130 0.135 0.140 0.145 0.150 0.155 0.160

spacer length (um)

Figuur 24: Extractie-efficiéntie naar NA=0.5 voor een RCLED en een
RC?LED.

betekent dan weer dat het resonantieoppervlak in de k-ruimte omgebo-
gen zal zijn (fig. 23), hetgeen resulteert in een grotere totale overlap en
een grotere efficiéntie.

Als illustratie van de verbeterde eigenschappen van deze compo-
nent tonen we in fig. 24 een aantal CAMFR-simulaties waaruit duidelijk
blijkt dat de extractie-efficiéntie naar optische vezel minstens een fac-
tor 2 hoger kan liggen in vergelijking met een RCLED. Dit betekent dat
voor eenzelfde stroom door de component er twee keer zoveel licht in
een optische vezel kan terecht komen, hetgeen bijzonder interessant is
voor toepassingen als datacommunicatie waarbij het vermogenbudget
steeds zeer Kkritisch is.



8. Besluit

In dit werk hebben we de eigenmode-expansiemethode uitgebreid met
geavanceerde randvoorwaarden, zoals perfect aangepaste lagen en trans-
parante randvoorwaarden. Dit laat toe dat de methode op een correcte
manier stralingsverlies in rekening kan brengen, daar waar vroeger
deze straling volledig reflecteerde aan de harde wanden en op die manier
de berekeningsresultaten verstoorde. Dit heeft niet alleen een positieve
invloed op de nauwkeurigheid, maar verbetert ook de rekentijd van
het model, aangezien de wanden nu veel dichter bij de bestudeerde
structuur geplaatst kunnen worden. Dankzij deze reductie in compu-
tationeel volume is slechts een kleiner aantal N eigenmodi vereist om
tot convergentie te komen, hetgeen een aanzienlijke snelheidswinst met
zich meebrengt omdat de rekentijd oploopt als N3.

We hebben deze technieken geimplementeerd in een flexibel en ge-
bruikersvriendelijk CGO-raamwerk genaamd CAMFR. Dankzij ver door-
gedreven object-georiénteerde technieken kan de implementatie van
deze modellen gebeuren zonder expliciete kennis van de onderliggende
ruimtelijke geometrie, wat het uiteraard bijzonder gemakkelijk maakt
om CAMFR uit te breiden met nieuwe geometrieén.

Op het ogenblik zijn een tweetal van dergelijke geometrieén geimple-
menteerd in CAMFR:

e een 2D cartesische geometrie, met een arbitrair aantal indexspron-
gen in de laterale en de z-richting.

e een 3D cilindersymmetrische geometrie, met een enkele index-
sprong in de radiale richting en een arbitrair aantal in de z-richting.

Voor deze geometrieén (en ook voor andere toekomstige geometrieén) is
de volgende functionaliteit aanwezig:

¢ vectoriéle veldprofielen in een structuur, inclusief reflectie- en trans-
missiegedrag voor een willekeurig invalsveld.

e banddiagramma’s voor een oneindige periodieke uitbreiding van
een basisstructuur.

e lasermodes van een arbitraire caviteit, inclusief hun resonantie-
golflengte en drempelwinst.

e respons van een willekeurige caviteit op een willekeurige bron.

Rekentijden in CAMFR vallen bijzonder voordelig uit in vergelijking met
andere methodes, vooral dan met deze gebaseerd op ruimtelijke dis-
cretisatie zoals FDTD. Dit is grotendeels te danken aan het feit dat



eigenmode-expansie in staat is om gebieden met constante brekingsin-
dex analytisch in rekening te brengen. Dit alles betekent dat reken-
tijden in CAMFR typisch van de grootteorde seconden of minuten zijn,
terwijl FDTD uren of zelfs dagen zou rekenen op dezelfde structuur.

We hebben aangetoond dat CAMFR ingezet kan worden bij het be-
studeren van een waaier aan verschillende optische componenten en
structuren. We hebben het gebruikt bij de studie van banddiagramma’s
in fotonische kristallen en om de eigenschappen te berekenen van golf-
geleiders, bochten en splitsers in deze materialen. We hebben een
gedetailleerde ontwerpsstudie verricht aangaande de verschillende op-
sluitingsmechanismes in verticale-caviteitslasers en hebben wat meer
klaarheid gebracht in de afwegingen die in dergelijke aangelegenheden
moeten worden gemaakt. Tenslotte hebben we het proces van spontane
emissie in halfgeleiders bestudeerd en hebben we een nieuw concept
voor een resonante-caviteit-LED voorgesteld dat een grotere extractie-
efficiéntie vertoont naar optische vezel toe.

Wat richtingen voor toekomstig onderzoek betreft, ligt het voor de
hand om te denken aan uitbreidingen naar nieuwe geometrieén, zoals
circulaire geometrieén met een arbitrair aantal radiale indexsprongen
of een volledig 3D cartesische geometrie. Vooral dat laatste is een grote
uitdaging, maar wel een veelbelovende onderzoeksrichting, aangezien
een dergelijke aanpak potentieel kan leiden tot een bijzonder efficiénte
behandeling van 3D optische problemen, iets wat vandaag de dag enkel
haalbaar is met behulp van extreme krachtige (en dure) computers.






Chapter 1

Introduction

“What else is research but a blind date with knowledge?”
Will Harvey

1.1 Context

These are exciting times. Never before has the rapid evolution of sci-
ence and technology had a greater impact on our daily lives. This is
visible not only in the swiftly advancing medical and life sciences, but
especially in the fields of electronics, computing and information tech-
nology.

The electronics revolution started off when the transistor was in-
vented just after World War II. For most of its lifetime, the transistor’s
performance has been doubling every eighteen months, which resulted
in the explosive growth of consumer electronics and computers we now
take for granted.

Another revolution started a decade later, when Maiman built the
first laser. Together with the introduction of the optical fibre in the
1970s, this spurred the rapid take-off of telecommunications. Thanks
to this so-called photonics technology, it was possible for the first time
to send information over larger distances and with better quality than
would have been possible with electronic means.

Very recently, these two revolutions sparked the birth of the inter-
net, which has already made a profound impact on the way we com-
municate, work or do business and that promises to do so even more
in the future. However, the current telecommunications infrastructure
will start to feel the strain as more and more people find their way to
the internet and start demanding increasing amounts of bandwidth. In
fig. 1.1, we plot the evolution of the number of computers connected to
the internet, which clearly shows an exponential growth.
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Figure 1.1: Internet host count (source: Internet Software Consortium
- www.isc.org).
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Figure 1.2: Rough sketch of the internet.

The technology underlying the current internet is a mixture of elec-
tronics and photonics, a happy marriage of electrons and photons.
Fig. 1.2 sketches the rough topology of the internet, and is also rep-
resentative for a large class of other telecommunications systems.

The information exchanged by computers on the net passes through
a number of nodes, which are connected by a series of links. The links
transmit the actual information, while the nodes do the routing, i.e.
they decide which path the information should follow on its way from
source to destination. The links nowadays are mostly optical connec-
tions: on one side of the link, data is converted into bursts of light,
which are sent through an optical fibre and captured on the other side
of the link. While the links are optical, the nodes are still mostly electri-
cal: digital electronics takes the data from the incoming links, converts
the light signals to electrical ones, decides to which outgoing links the
data has to go and finally launches a new set of optical pulses in the
correct outgoing links.

This combination of optical and electronic technology has served the
internet well in the past. However, there are more and more indications
that the current infrastructure is running out of steam when faced with
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the exponential growth of users that we saw in fig. 1.1. This means
that there clearly is a need for new technologies, or at least drastic
improvements in the old ones.

Currently, the largest bottleneck seems to reside in the electronics.
In the past, chip makers have been able to improve the performance
of their transistors by miniaturising them. Typical feature sizes on a
chip nowadays tend to approach 0.18 ym. However, pushing towards
ever smaller feature sizes becomes increasingly harder, not to mention
ever more expensive. In the long run, one can already foresee that this
miniaturisation cannot continue indefinitely, because eventually tran-
sistors will become so small that they will be comparable in size to a
single atom, which obviously represents the ultimate limit in miniatur-
isation.

If we still want to assure a relatively painless growth of the internet
over the next few decades, one particularly attractive route would be
to give optics a more prominent role in the telecommunications infras-
tructure. The first place where electronics would have to go is in the
nodes, where one could try to do the routing in an entirely optical fash-
ion. Routing photons instead of electrons would eliminate the need for
time-consuming conversions from optical signals to electrical signals
and back again, which would be a major win.

However, this effectively requires building a photonic chip instead of
an electronic one, where the information is carried by photons instead
of electrons. This is no mean feat. In the past, considerable progress
has already been made in fabricating these PICs (Photonic Integrated
Circuits), but they still seem rather primitive and bulky when compared
to their electronic counterparts. The main reason why it is so hard to
miniaturise these devices, is that it has been very difficult to fabricate
structures that allow light to take sharp bends. A typical light bend
on a PIC currently takes more space than an entire electronic IC! A
technology that would allow for smaller bends would therefore pave the
way for the miniaturisation of PICs, and we could expect from that the
same kind of drastic improvements that have befallen the electronic
ICs in the last decades.

So far, we have focused our attention on the role of optics inside
the communications network. However, also at the edges of the net-
work, in the computers that are connected to it, electronics is running
into trouble, especially when it comes to interconnecting different ICs.
This is now mostly done electrically, but the main problem with this
approach is that two closely spaced interconnections tend to disturb
each other, a phenomenon known as cross-talk. This becomes increas-
ingly an issue now that the miniaturisation has driven interconnections
closer to each other and now that signals change much faster as the
clock rate keeps increasing. Optical interconnections can come to the
rescue here, because they are largely immune to these issues. Two
light beams can cross or pass arbitrarily close without disturbing each
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Figure 1.3: Optically interconnected IC.

other, which cannot be said of electrical wires.

Replacing electrical connections between chips by optical ones seems
therefore very promising. The largest gain would occur if we could use
light sources emitting perpendicularly to the substrate. In this way,
we could use the entire surface area of the chip for massively par-
allel interconnections using a two-dimensional array of light sources
(fig. 1.3). These light sources should satisfy a number of constraints.
They should be able to be made with a very small diameter, to get a
large number of interconnections on a small area. They should also be
very efficient, in order to limit power consumption.

In summary, there is a real need for new advances in photonics,
which will enable compact PICs and optically interconnected ICs. In the
next two sections, we will describe such emerging technologies, which
have strong potential to solve a number of outstanding problems facing
the telecommunications industry today.

1.2 Photonic crystals

Photonic crystals are the optical analogy of 'regular’ crystals. A ’reg-
ular’ crystal (of a semiconductor material for instance) is a periodic
arrangement of atoms or molecules. In such structures, the electronic
potential varies periodically in space. Electrons travelling through this
lattice will be scattered by this periodic potential. For certain elec-
tron energies, the backscattering from the different lattice sites will
interfere constructively, so that the electrons cannot penetrate into the
crystal. This is the well-known phenomenon of an electronic band gap,
which in semiconductors separates the conduction band from the va-
lence band, and has given rise to all sorts of interesting applications,
the most prominent of which is the invention of the transistor.

A photonic crystal is based on the same principles, but this time the
lattice is formed by a periodic arrangement of macroscopic dielectric
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Figure 1.4: Examples of 1D, 2D and 3D photonic crystals.

materials!, on a length scale several orders of magnitude larger com-
pared to the electronic crystals. The periodicity in space can be either
one, two or three-dimensional (fig. 1.4).

One-dimensional photonic crystals are very well-known. In fact,
they have been known even before the term ’photonic crystals’ was
coined, see e.g. [Yeh1977]. A special case of them are none other
than the familiar Distributed Bragg Reflectors (DBRs) or quarter-wave
stacks, alternating layers of two different materials. When light im-
pinges on such a structure under normal incidence, it will be reflected
and transmitted at each of the individual layer interfaces of the stack.
By choosing the layer thicknesses equal to a quarter wavelength, all the
different contributions to the transmitted beam will interfere destruc-
tively, so that most of the light will be reflected backwards. By taking
an infinite number of periods, none of the light will be transmitted and
we have in fact created a perfect reflector. Or, in electronic crystal par-
lance, we have created a band gap that forbids the propagation of light
under certain circumstances. Because it is a band gap for photons and
not for electrons, it is called a Photonic Band Gap (PBG).

Due to their one-dimensional nature, such DBR mirrors only reflect
light well for light incident perpendicular to the layers. Light propa-
gating parallel to the layers will not ‘feel’ any sequential scattering by
the layer interfaces and will therefore not be reflected. The obvious so-
lution to this problem is resorting to two-dimensional crystals. When
carefully designed, such structures can reflect light coming from all di-
rections, provided that it is propagating in the plane of periodicity of
the crystal. Finally, if we want to reflect out-of-plane light too, we will
have to use three-dimensional crystals.

Although 1D photonic crystals have been known for a long time, the
study of 2D and 3D structures is quite a recent phenomenon. The first

IEach of these materials is a regular’ electronic crystal in its own right, such that a
photonic crystal is in a sense a crystal-of-crystals.
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Figure 1.5: Waveguide in a photonic crystal.

suggestion that a material with a 3D PBG might be fabricated appeared
in [Yablonovitch1987]. One of the first 3D crystals exhibiting a full
photonic band gap was proposed in [Yablonovitch1991]. Fabricating
these materials in the 1.5 ym wavelength range suitable for optical
communications has only been achieved very recently [Chengl996].
The nanotechnology skills required for these feats are currently out of
reach for most research institutes however.

Photonic band gap materials offer us a way of reflecting light coming
from all directions. However, their usefulness does not end there. Just
as in electronic band gap materials, they show their full potential when
defects that break the perfect periodicity are deliberately introduced in
the crystal.

Fig. 1.5 shows the example of a line defect in a 2D photonic crys-
tal, created by omitting a row of rods. Light propagating along the line
defect finds itself surrounded on both sides by a photonic band gap ma-
terial. This PBG forbids the light to enter the crystal, so that it has no
other choice than to follow the line defect. We have created in effect a
photonic crystal waveguide, which is based on completely different con-
cepts than a traditional optical waveguide. Traditional waveguides are
based on the fact that light prefers to travel in regions with high refrac-
tive index. In photonic crystals on the other hand, light can be trapped
in an air region surrounded by two PBG materials. One obvious advan-
tage of guiding light in air rather than in a high index material, is that
air is insusceptible to the non-linear phenomena that plague dielectric
materials at high optical powers.

A second advantage of a photonic crystal waveguide is that it allows
for light to take a very sharp bend (fig. 1.6). Creating a bend using a
conventional waveguide requires a radius of curvature of approximately
1 mm. PBGs are much better at confining the light, such that bends
can be fabricated within an area of a few square microns, several orders
of magnitude smaller [Mekis1996]. Using this technology, one could
therefore start to imagine a miniature optical chip consisting of PBG
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Figure 1.6: Bend in a photonic crystal waveguide.

Figure 1.7: Photonic crystal cavity

material, where the light is guided from one place to the next by defects
in the crystal lattice.

Going one step further, we can use point defects in PBG materi-
als to create photonic crystal cavities that are completely surrounded
by strongly reflecting walls (fig. 1.7). If we could incorporate a light
emitter in such a cavity, it would pave the way for very efficient laser
structures.

In conclusion, we can say that photonic crystals offer us tremen-
dous possibilities to control the behaviour of light, much more than
with conventional technologies. They effectively enable us to 'mold the
flow of light’, which is also the subtitle of an excellent introductory book
on this matter [Joannopoulos1995].

1.3 Microcavity light emitters

Traditional semiconductor lasers have been edge-emitters (fig. 1.8). In-
side an active layer in these devices, light is generated which then prop-
agates horizontally, parallel to the substrate. This light bounces back
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Figure 1.8: Edge-emitting laser.

and forth between two cleaved wafer facets that act as mirrors. These
facets typically reflect 30% of the light, and so transmit 70% of the light
to the outside world. Not only can the active region emit light, it can
also amplify it. This means that if the active region can provide enough
amplification, the gain in the cavity can compensate for this loss of
light out of the mirrors and laser action ensues. Typical dimensions of
such laser diodes are a length of 300 ym and a cross-section of 30 by
30 pm.

These edge-emitters and their cousins have been the workhorses
of the optical communications industry for a long time. However, as
we already mentioned in section 1.1, it would be very advantageous
to have at our disposal a much smaller structure that emits light ver-
tically, perpendicular to the direction of the layers. In the past few
years, a device has emerged that does just that: the Vertical Cavity
Surface-Emitting Laser or VCSEL (fig. 1.9). A tutorial-like introduc-
tion to VCSELs can be found in [Giboney1998], for a more thorough
treatment we refer to the book [Sale1995].

In a VCSEL, light propagates vertically instead of horizontally and
the role of reflecting facets is now taken over by DBR mirrors, which
were already introduced in section 1.2. An important fact to note is that
in VCSELSs the light only passes through the active layer during a short
fraction of its round-trip time. In edge-emitters however, it travels along
the active layer during its entire round-trip. For this reason, VCSEL
active regions have less opportunity to amplify the optical field, and
therefore it is imperative that VCSELs have highly reflecting mirrors to
minimise the cavity losses. DBR mirrors used in these devices have
typical reflectivities of around 99.9%, which requires a large number of
layers.

The VCSEL cavity length is defined by a crystallographic growth
step, rather than by a mechanical cleave as was the case with edge-
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Figure 1.9: Vertical-cavity surface-emitting laser.

emitters. This means that VCSEL cavities can be very short, on the
order of the wavelength, which is why they are also called microcavity
light-emitters. The main advantage of this short cavity is an inherent
longitudinal modal stability, something which requires a complicated
design to achieve in edge-emitters.

A further advantage of VCSELs is their wafer-level testability: de-
vices can be tested before the wafer is cut into different chips. This is
impossible with edge-emitters, which explicitly require the presence of
cleaved facets for their operation.

Finally, because of their surface-emitting character, VCSELs can be
integrated into two-dimensional arrays, opening the way for massively
parallel optical communication.

VCSELs have improved tremendously over the years, evolving from
a laboratory curiosity to a commercial reality. They now achieve perfor-
mance levels on par or even surpassing those of edge-emitters, making
them very interesting for low-cost data communication [Huffaker1999]
[Grabherr1999] [Eitel2000].

Another device of the family of microcavity light-emitters is the so-
called Resonant-Cavity Light-Emitting Diode or RCLED. It has a struc-
ture very similar to that of a VCSEL, but it employs mirrors with a
much lower reflectivity (fig. 1.10). One of the mirrors is typically a
metal layer, which also doubles as a current injection contact.

In RCLEDs, the mirrors serve an altogether different purpose than
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Figure 1.10: Resonant-cavity light-emitting diode.

in VCSELs: their aim is not to provide high reflectivity to achieve lasing,
but rather to redistribute the spontaneous light emission in the cavity
[Schubert1994]. The multiple reflections of the light off the mirrors
cause an interference effect that favours light emission in the direction
perpendicular to the mirrors. This is important from a practical point
of view, since light that impinges on the mirrors with an angle that is
too oblique, will be totally internally reflected and is therefore unable
to reach the outside world. In traditional LEDs (i.e. without a micro-
cavity) 98% percent of the light emitted is lost in this way. Thanks to
their internal redistribution of light, RCLEDs can enjoy a much higher
extraction efficiency of up to 20% [De Nevel997c], compared to the 2%
in traditional LEDs.

1.4 Optical modelling

Fabricating prototypes of optical components is very time-consuming
and costly. This is especially true for today’s advanced structures like
VCSELs or devices that incorporate photonic crystals. It is therefore
no longer feasible to choose the best design by fabricating a large set
of possible alternatives and then evaluating them experimentally. This
is true in an academic environment, but even more so in a commercial
context, where time-to-market constraints demand rapid design cycles.
The only possible approach therefore is to resort to computer models
that simulate the behaviour of the different designs in an accurate and
speedy manner.

In this work we will concentrate on developing models that describe
the optical behaviour of complex structures. While the optical char-
acteristics are only part of all the phenomena that govern the device’s
behaviour (next to e.g. electrical and thermal effects), they neverthe-
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less give crucial insight into the component. Moreover, electrical and
thermal models are relatively well-developed in literature, while there
still is a real need today for optical models that are both accurate and
fast at the same time.

There exists a veritable plethora of optical models, and covering
them all in depth is beyond the scope of this introduction. For a more
detailed overview, we refer to the review articles [Scarmozzino2000] and
[Vassallo1997] or the textbook [Itoh1989]. Roughly speaking, optical
models can be divided into two different classes. On one hand, there
exist a number of models that make certain a-priori assumptions con-
cerning the optical fields. These assumptions allow for a drastic sim-
plification of the equations governing the device behaviour, which leads
to models with a very fast run time. However, these assumptions are
not always valid and can therefore seriously compromise the accuracy
of the obtained results.

On the other hand, there have been a lot of attempts to solve the gov-
erning equations exactly, without resorting to any approximation. Due
to the general nature of these methods, they can be used to tackle a
much larger class of problems, but they typically demand much greater
computational resources in terms of memory and running time.

One of the more popular examples in the class of approximative
models is the Beam Propagation Method (BPM) [Scarmozzino2000].
This method assumes that the field propagates paraxially, i.e. that
it keeps close to a predefined optical axis. Moreover, in its most basic
form it neglects the influence from reflections. This means that BPM is
mostly restricted to structures with weak refractive index contrast that
exhibit low scattering. Using BPM then to model e.g. a bend in a pho-
tonic crystal waveguide is therefore out of the question, because PBGs
have strong refractive index contrasts and because the bend in the
waveguide violates the paraxiality constraint. Nevertheless, the BPM
has been widely used to model less demanding structures, like e.g.
waveguide tapers or laser facets.

In the class of exact models, most methods employ some form of
spatial discretisation, i.e. they overlay the structure to be modelled
with a grid and they then solve for the optical field at each of these grid
points (fig. 1.11). While these methods are very general, they quickly
introduce a large number of unknowns. This typically leads to pro-
hibitively large computational requirements for all but the simplest of
structures, sometimes making them almost equally ill-suited to rapid
design cycles as prototype fabrication.

Not all methods that use spatial discretisation use the same tech-
niques to solve for the unknowns at the grid points. A first important
subclass is that of the finite element methods, that often use a vari-
ational technique to minimise an energy functional [Itoh1989]. In the
past, these techniques sometimes had the drawback of yielding spuri-
ous (i.e. unphysical) solutions, but progress has been made to alleviate
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Figure 1.11: Spatial discretisation.

this problem.

A second subclass is based on finite differences, by approximating
the derivatives occurring in the formulas by differences. One of the
more popular methods in this class is the so-called finite-difference
time-domain method (FDTD), which discretises the fields both in the
spatial and in the time domain [Taflovel995]. This method too can
demand hefty computing resources, but its time domain character has
the advantage that a single run with a well-chosen input pulse can yield
information on the device’s behaviour over a large range of frequencies.
Frequency-domain methods can only handle a single frequency at the
same time and therefore have to perform multiple runs in order to span
a certain frequency range.

Nevertheless, these exact methods are still relatively brute force, so
there clearly is a need for another class of models, which also solve
the equations exactly, but in far less time. A useful observation in this
respect is that the vast majority of the structures to be modelled do not
have a totally arbitrary refractive index profile, but rather one where the
profile is piecewise constant and does not change over large regions of
space. Since the solutions of Maxwell’s equations in a uniform space
are known analytically, it makes sense to construct the full solution
by stitching together the different analytical expressions in each of the
individual regions.

Eigenmode expansion techniques do just that. They start out by
slicing up the structure into layers where the index profile does not
change in a given direction (fig. 1.12).

In each of these individual layers, we can write any optical field as
a sum of so-called eigenmodes. An eigenmode of a particular layer can
be considered as a natural optical field profile that can exist in this
layer and that can propagate indefinitely without changing its form.
The expansion of an optical field in terms of eigenmodes is completely
analogous to the well-known Fourier expansion in other domains of
engineering, where any periodic function can be described as a sum of
different sine and cosine functions.
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Figure 1.12: Eigenmode expansion.

In this way we create a very compact representation of the optical
field, as a small set of weighing coefficients for each of these eigen-
modes, rather than as a large number of points where the field is ex-
plicitly specified. Eigenmode expansion methods therefore offer the
potential of very fast models due to the small number of unknowns.

Despite being fast, these models are still rigorous in the sense that
they try to solve Maxwell’s equations exactly, without making a priori
assumptions like paraxiality or scalar fields. They become mathemat-
ically rigorous in the limit of an infinite number of terms in the series
expansion using a complete set of eigenmodes.

Eigenmode expansion techniques have already been developed sev-
eral years ago [Pengl981], [Sudbgl1993], [Sztefkal993]. Also at the
INTEC department there has been quite a significant amount of work
on this topic and related issues, e.g. in the PhD work of [Willems1995],
[Haes1996], [Dhoedt1996], and [Demeulenaerel997]. However, eigen-
mode expansion has so far mainly been applied to small problems, of
the kind that can also be modelled with e.g. BPM. At the start of this
work, it was still largely an open question whether this method could
also efficiently tackle more complicated geometries, like photonic crys-
tal devices or advanced VCSEL designs. More specifically, there was
the worrisome matter of the influence of the finite computational do-
main. Indeed, although optical structures are in reality located in an
open infinite space, for numerical purposes we are obliged to truncate
this open space, e.g. by placing the structure that we want to study in-
side a metal box. The problem here is obviously that we are modelling
a different structure than the real physical one. This can be an issue
because light can be reflected at the metal box and be sent back to the
structure and disturb the results.
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1.5 Outline of this work

It is the aim of this work to extend and improve the eigenmode expan-
sion method, so that it can be successfully applied to a much larger
class of complex optical structures, like photonic crystal devices and
advanced VCSEL designs. While still maintaining the same accuracy of
the previously mentioned exact models, it should offer substantial im-
provements in computational efficiency, so that simulation times can
be measured in minutes or hours, rather than in days or even weeks
using the other methods.

In chapter 2 we will give an introduction to the eigenmode expansion
technique. We will classify the different modes and introduce the mode
matching method as a way to calculate the scattering matrix that de-
scribes the interface between two layers. Different schemes to calculate
the scattering matrix of an entire stack of layers will be compared. We
will also show how we can calculate the fields at an arbitrary location
inside a stack.

Crucial to the success of eigenmode expansion is the use of suitable
boundary conditions that will alleviate the problems of parasitic reflec-
tions at the boundaries of the computational domain. Therefore, we will
give special attention to this topic in chapter 3. Apart from discussing
more traditional boundary conditions, like electric or magnetic walls,
we will also introduce a recently proposed and very effective boundary
condition called a Perfectly Matched Layer (PML). We will discuss the
relation of PML to leaky modes. Finally, we will also investigate another
kind of walls, namely Transparent Boundary Conditions.

After the more mathematical and physical descriptions in chap-
ters 2 and 3, we will focus in chapter 4 on software engineering aspects
related to CAMFR, the eigenmode modelling tool we developed. Special
attention will be paid to the concept of abstract waveguides and ab-
stract scatterers, which allow us to rapidly extend the framework with
other geometries.

In the next chapters, we will turn to specific application domains for
CAMFR and illustrate its usefulness in designing complicated optical
structures. Chapter 5 will focus on photonic crystal devices. We will
first show how eigenmode expansion can be used to calculate band
structures for infinite crystals. Then, we will model some devices like
photonic crystal waveguides or bends. We will also investigate whether
or not it is possible to introduce special lateral boundary conditions to
model semi-infinite crystals. In this context, we will also clear up some
common misconceptions appearing in literature about the reflection
from semi-infinite photonic crystals.

VCSELs will be the topic of chapter 6. We will discuss some exten-
sions to CAMFR that will allow us to locate the lasing wavelength and
the threshold material gain of any cavity. We will use this to perform a
thorough design study comparing different forms of transverse optical
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confinement. This is crucial when we want to design advanced devices
with ultra-low threshold currents.

Chapter 7 will deal with RCLEDs. In order to model these, we will
extend CAMFR to calculate the optical response of an arbitrary cavity
to an arbitrary current source. In this way, we can model the modifica-
tion of spontaneous emission rates and extraction efficiencies. We will
also discuss a novel design for RCLEDs, which we coined the RC2LED,
because it uses two resonant cavities. This design allows us to achieve
much higher extraction efficiencies and narrower radiation profiles as
compared to traditional designs.

Finally, chapter 8 will offer some conclusions and perspectives for
future work.
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The work carried out during this thesis has led to a number of publi-
cations in international refereed journals:
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B. Dhoedt, R. Baets, IEEE Journal of Quantum Electronics, vol.
35, no. 3, pp. 358-367, 1999.

¢ "Simulation results of transverse-optical confinement in airpost,
regrown and oxidized vertical-cavity surface-emitting lasers", P.
Bienstman, B. Demeulenaere, B. Dhoedt, R. Baets, Journal of the
Optical Society of America B, vol. 16, no. 11, pp. 2055-2059,
1999.

e "The RC?LED: a novel resonant-cavity LED design using a sym-
metric resonant cavity in the outcoupling reflector”, P. Bienstman,
R. Baets, IEEE Journal of Quantum Electronics, vol. 36, no. 6,
pp. 669-673, 2000.

e “Analysis of cylindrical waveguide discontinuities using vectorial
eigenmodes and perfectly matched layers”, IEEE Transactions on
Microwave Theory and Techniques, vol. 49, no. 2, pp. 349-354,
2001.

e “Optical modelling of photonic crystals and VCSELs using eigen-
mode expansion and perfectly matched layers”, P. Bienstman, R.
Baets, accepted for publication in Optical and Quantum Electron-
ics.

e “Out-of-plane scattering losses in 1D photonic crystal slabs”, W.
Bogaerts, P. Bienstman, D. Taillaert, R. Baets, D. De Zutter, ac-
cepted for publication in Optical and Quantum Electronics.
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e “Out-of-plane scattering in photonic crystal slabs”, W. Bogaerts,
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publication in IEEE Photonics Technology Letters.
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genmode expansion and perfectly matched layers", P. Bienstman,
R. Baets, draft in preparation for IEEE Journal of Quantum Elec-
tronics.
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conferences:

e "Waveguide and resonator modeling based on vectorial eigenmode
expansion and perfectly matched layers", P. Bienstman, R Baets,
invited paper, Progress In Electromagnetics Research Symposium
(PIERS) 2000, p. 175, Cambridge, Massachusetss, USA, July 5-
14, 2000.

e "Rigorous optical VCSEL modelling based on vectorial eigenmode
expansion”, P. Bienstman, B. Demeulenaere, B. Dhoedt, R. Baets,
invited paper, IEEE LEOS Summer Topical Meetings, paper ThA1.2,
San Diego, July 28-30, 1999.

e “Out-of-plane scattering losses in photonic crystal slabs”, W. Bo-
gaerts, P. Bienstman, D. Taillaert, R. Baets, postdeadline paper,
IEEE LEOS annual symposium, PD 1.5, Puerto Rico, November
13-16, 2000.

e “Out-of-plane scattering losses in 1D photonic crystal slabs”, W.
Bogaerts, P. Bienstman, D. Taillaert, R. Baets, IEEE LEOS Bene-
lux symposium, pp. 35-38, Delft, October 30, 2000.

e "VCSEL modelling based on vectorial eigenmode expansion and
perfectly matched layers", P. Bienstman, R. Baets, European work-
shop on VCSELs, paper M1, Brussels, August 28-30, 2000.

e "Optical VCSEL modelling based on vectorial eigenmode expan-
sion and perfectly matched layers", P. Bienstman, R. Baets, IEEE
LEOS Benelux Symposium, pp. 155-158, Mons, November 15,
1999.
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¢ "Preliminary results on high total dose testing of semiconductor
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Chapter 2

Eigenmode expansion

“There is nothing so practical as a good theory.”
Kurt Lewin

2.1 Introduction

Our aim in this chapter is to outline the theory of eigenmode expansion,
so that we will be able to calculate the reflection and transmission at
an arbitrary stack of arbitrary layers, for an arbitrary incident field.

We will do this in three steps. First, in section 2.2, we will deal
with individual layers and describe the properties of the eigenmodes
that can exist in these layers. Then, in section 2.3, we will describe
how to calculate the scattering that occurs at an interface between two
different layers, using the well-known mode-matching method. Subse-
quently, in section 2.4, we will compare two methods to calculate the
reflection and transmission at a stack consisting of an arbitrary num-
ber of layers. Calculating field profiles inside a stack will be the subject
of section 2.5.

Scattering properties of a layered stack are in many cases not the
desired end result of the simulations, but merely a required intermedi-
ate step. However, in this chapter we will restrict ourselves to this basic
building block and leave more advanced models for chapters 5, 6 and 7.

We will try to describe the scattering at a stack as much as possible
without any reference to the underlying layer geometry, i.e. whether the
layers are best described in a cartesian coordinate system, a circular
one, or indeed any other one. While such a general development of the
eigenmode expansion method might seem overly abstract at first, such
an approach will prove fruitful when we will consider implementation
aspects of the model in chapter 4. In this chapter, we will only in-
clude geometry-dependent descriptions in appendices A and B, for slab
waveguides and circular waveguides respectively. For a more tutorial-

19
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like introduction to basic waveguide theory, we refer the reader to any
standard textbook, like e.g. the excellent [Lee1986].

2.2 Eigenmodes in z-invariant media

2.2.1 Maxwell’s equations

Maxwell’s equations describe the behaviour of electromagnetic fields.
Assuming monochromatic fields that vary harmonically in time accord-
ing to e/t these equations look like (see e.g. [Chew1990]):

VxE = —juB 2.1)
VxH = J+jwD 2.2)
V-D = p 2.3)
V-B = 0 2.4)

By taking the divergence of the curl equations 2.1 and 2.2 and af-
ter using the continuity equation V - J + jwp = 0, we recover the time
derivative of the divergence equations 2.3 and 2.4. This shows that the
divergence equations can be considered as the initial conditions for the
curl equations. Since we restrict ourselves to time-harmonic fields, we
do not require initial conditions and can therefore suffice by solving
just the curl equations.

In this work, we will consider only linear media, where the following
constitutive relations hold:

D = ¢E (2.5)
B = pH (2.6)

In its most general form, ¢ and p are tensors, but we will restrict
ourselves to isotropic media where these quantities are scalars.

2.2.2 z-invariant media

Consider the structure in fig. 2.1, where ¢ and p do not change in the
z-direction and where no sources are present. The volume considered
can be bounded by a cylindrical surface .5, oriented along z, but it can
also be completely open when 65 tends to infinity.

In these structures, there exist field profiles that have the following
dependence on z (see e.g. [Vassallo1985]):

E(r) = E(r)e 75
{ni 2 e 27
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Figure 2.1: z-invariant structure.

Here, r is the spatial coordinate vector, which can be split up in
its longitudinal component z and its transverse component r,. Equa-
tions 2.7 describe the so-called eigenmodes of the structure, which
are fields that can propagate in the absence of any sources and that
maintain their general shape during propagation. f is called the prop-
agation constant of the eigenmode. When this quantity is real, the only
z-dependent field variation is a phase factor, while the field amplitude
remains constant. For complex values of /3, the amplitude increases or
decreases exponentially, but its shape is maintained. A related quan-
tity is the effective index n.;; of the mode, defined as

2T
B = et s

with \ the wavelength of the light.

These field profiles are called eigenmodes, because they satisfy the
following mathematical eigenvalue problem, which can be derived from
Maxwell’'s equations:

(Vi +w?ue) E = B°E (2.8)

Here, 32 is the eigenvalue. A similar equation can be derived for H.

When we have a set of eigenmodes {E;,H;} at our disposal, we can
try to write any forward-propagating field as a linear combination of the
modes in this set:

Er) = Y AB(r)e %
{H(r) = S A;H; (ry) e 5 (2.9)

Providing our set of eigenmodes is complete, we can represent any
forward-propagating field in this z-invariant structure as an algebraic
vector of expansion coefficients:
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Figure 2.2: Distribution of eigenmodes of an open structure in the n.s¢-
plane.

(E(r),H(r)) «— A = [4]]

How exactly these eigenmodes are found is not relevant at the mo-
ment. This depends on the geometry of the cross-section S and as al-
ready mentioned, these aspects will not be discussed until appendices
A and B. We will now however briefly touch upon the kind of modes
that can exist in general structures like the one in fig. 2.1. We will have
to distinguish between open and closed geometries, depending on the
presence of a lateral cylindrical boundary §5.

2.2.3 Eigenmodes in open structures

For the sake of argument, we will consider a lossless reciprocal struc-
ture with a central core region with refractive index n., and an outer
cladding region with a lower index n.. When plotting the distribution
of the different modes in the complex n.ss-plane, we get a picture like
the one in fig. 2.2.

A first feature of fig. 2.2 is the inversion symmetry around the origin:
if § is a propagation constant of a mode, then so is —3 . A propagation
constant with a positive real part corresponds to a forward propagating
wave, while one with a negative real part is a backward propagating
wave with otherwise a similar field profile. This symmetry is not present
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in the most general case of non-reciprocal media, but for the situations
we will consider it is always true.
Otherwise, the modes can clearly be separated into four groups:

e Guided modes are located on the real axis. They form a dis-
crete set, and have effective indices between the cladding index
ne and the core index n.,. Their field is concentrated mainly in
the high index core of the structure and it decays exponentially
in the cladding regions. Because of their real effective index, they
propagate undamped in the z-direction. Hence the name guided
modes, since they can guide power along the core in the propaga-
tion direction.

e Radiation modes form a continuum along the real and the imagi-
nary axes. Their field profiles oscillate in the cladding and extend
all the way to infinity. This is why they are called radiation modes,
because they can carry energy away from the core in the trans-
verse direction. Radiation modes can be propagative (real (), in
which case their amplitude does not decrease in the z-direction,
or evanescent (imaginary ), in which case they damp out expo-
nentially along the propagation direction.

e Leaky modes are located in the complex plane. They can be
seen as a continuation of the guided modes, in the sense that
they will become part of the guided modes as the frequency in-
creases. They have a field profile that increases exponentially in
the cladding, and are therefore not physical. Nevertheless, they
are still useful sometimes to describe fields under certain circum-
stances [Lee1995] and will be the focus of section 3.4.

e Complex modes occur in quartets § = +4,.. + jf;, in the complex
plane. Their occurrence is very rare, and they are only observed
when there is a resonant transfer of energy between TE and TM
polarised fields [Oliner1981]. It is impossible to excite a single
complex mode of a quartet. They are always excited in pairs, in
such a way that their combination carries neither active nor reac-
tive power [Omar1987].

The field profiles of the different kinds of modes are sketched in fig. 2.3.
The field of guided modes is concentrated in the core, radiation modes
show oscillatory behaviour in the cladding. Leaky modes increase ex-
ponentially in the cladding, and so do half of the complex modes. The
other half of the complex modes (located in the first and third quadrant)
decrease exponentially in the cladding, just like the guided modes.

We will now deal with the important aspects of physicality and com-
pleteness. A mode is said to be physical when the presence of this
individual mode can be measured experimentally. Guided modes are
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Figure 2.3: Mode profiles of the different kinds of modes.

undoubtedly physical and so is a pair of corresponding complex modes.
As already mentioned, a single complex mode is not physical, because
it violates power conservation in a lossless medium. Radiation modes
or leaky modes! are also not physical, because their fields extend all
the way towards infinity.

Another aspect, completely separate from physicality, is that of com-
pleteness. A set of modes is said to be complete when it can describe
any field using eigenmode expansion. For structures that are lossless
and that cannot support complex modes (like e.g. slab waveguides) it
can be rigorously proven[Sagan1989] that the guided modes together
with the radiation modes form a complete set. These proofs are based
upon the properties of general hermitian operators, like e.g. eq. 2.8
for lossless structures. For all other situations, like e.g. lossy media
or waveguides having complex modes, formal completeness proofs cur -
rently lack. However, guided and radiation modes are still a set that
for all practical intents and purposes appears to be complete, and they
are therefore used routinely, despite the absence of rigorous justifica-
tion. For lossy media, the combination of guided and radiation modes
still performs well. When complex modes are present, they have to be

1Some measured waveguide phenomena can be described by a single leaky mode, but
only in a limited region of space, close to the core. As such, leaky modes are not truly
physical in the sense that we described here.
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Figure 2.4: Distribution of eigenmodes of a closed structure in the n.;¢-
plane.

added to the set, because otherwise the eigenmode expansion does not
converge to the measured results [Chen1988]. Finally, as far as leaky
modes are concerned, they are known not to form a complete set, even
in combination with the guided modes [Snyder1983].

As said before, the radiation modes form a continuum, meaning that
in the simple series expansion of eq. 2.9 the sums have to be replaced
by integrals. Subsequently, we can no longer uphold the representa-
tion of the field by a discrete set of expansion coefficients A;. Although
it is possible to treat this continuum and the integrals it entails numer-
ically, such an approach is far from trivial due to singularities in the
integrand [Chew1990]. Because of this, we will not use this continuum
in this work, but rather resort to closed structures, where all modes
are discrete, as we will see next.

2.2.4 Eigenmodes in closed structures

For closed structures, the distribution of eigenmodes looks like fig. 2.4.

The presence of the boundary ¢S imposes additional constraints on
the fields, like e.g. the requirement that the tangential electric fields
should be zero at the boundary in the case of a perfectly conducting
metal wall. These extra conditions make that we no longer have a con-
tinuum of radiation modes, but rather a discrete set. In effect, it even
becomes questionable to talk about radiation modes, since these modes
are in fact guided by the boundary. Nevertheless, it is conventional to
refer to the modes with an effective index between n. and n., as the
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guided modes, and the other modes as the radiation modes.

Leaky modes are not present in closed structures. They are a typical
open structure phenomenon, with their field profiles increasing expo-
nentially towards infinity. Complex modes however can still occur in
closed structures, but they remain relatively rare.

The field profiles of modes in closed structures are qualitatively very
similar to the ones in fig. 2.3, but are of course limited to the region
inside the boundary.

As far as the completeness is concerned, similar conclusions apply
as for open geometries. In case of lossless structures, guided modes
together with radiation modes form a complete set.

2.3 Scattering at an interface between two
layers

Before tackling the problem of calculating the scattering at an arbi-
trary interface, we will first derive a very powerful theorem known as
Lorentz reciprocity. We will subsequently use this theorem to derive
orthogonality relations for eigenmodes.

2.3.1 Reciprocity

Consider two different solutions to Maxwell’s equations in the same
structure: one solution (E;, H,), caused by the source J;, and a second
solution (E., H,), due to a source J,. We now write Maxwell’s equations
for these fields:

VxE = —jwuH, (2.10)
VxH; = J;+jweE; (2.11)
VxEy, = —jwuH, (2.12)
VxHy, = Jy+ jweE, (2.13)

Forming the expression H,-(2.10)—-E;-(2.13)+E»-(2.11)—H;-(2.12), and
making use of the vector identity V- (A xB)=B-VxA—-A -V xB, we
finally arrive at

V'(ElXHQ—EQXHl):Jl'EQ—JQ'El (214]

Integrating both sides over a volume V' and making use of Gauss’
theorem yields

//S(E1><H2—E2><H1).dS:///V(Jl.EZ_Jz_El)dV 2.15)



CHAPTER 2. EIGENMODE EXPANSION 27

(5

\

Figure 2.5: Surface over which the Lorentz reciprocity theorem is to be
evaluated.

Here, S is the surface that surrounds the volume V. Equation 2.15 is
known as the Lorentz reciprocity theorem. For our z-invariant media,
we can further simplify this formula by choosing for S the surface indi-
cated in fig. 2.5, a cylinder parallel to the z-axis, with an infinitesimal
length Az.

The surface integral on the LHS of eq. 2.15 can be split into three
parts: the contribution from the boundary 45, and from the bottom and
top parts S; and S, of the cylinder. The 4S-contribution is determined
by the boundary conditions, and those will be extensively treated in
chapter 3. Let us suffice at this moment by saying that this term will be
zero for most of the cases considered in this work. For guided modes in
open structures, this is because of the exponential decay of the fields
at infinity. In closed structures with electric or magnetic walls, the
boundary contribution vanishes because either the tangential electric
or magnetic field is zero at the wall.

Defining

FEE1XH2—E2XH1 (216)

we can write for the two remaining terms on the LHS of eq. 2.15

// F-dSl—l—// F-dS, = —/ deS—i—/ F.dS (2.17)
S1 Sz Sl 52
//(F2+Az_Fz)dS

S

For the RHS of eq. 2.15, the fields contained in the volume V are
independent of z as Az approaches zero, so the volume integral reduces
to a surface integral times the length Az:

///V(Jl.E2—J2-E1)dV:Az//S(J1.Ez_J2,E1)dS 2.18)
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Equating eq. 2.17 and 2.18, dividing both sides of the equation by
Az and taking the limit Az — 0 then yields the Lorentz reciprocity
theorem for z-invariant media:

//ag(ElXHQ—EQXHl)'uzdS://(Jl‘EQ—JQ‘El)dS (219)
5 0% s

2.3.2 Orthogonality

We start from the Lorentz reciprocity theorem for z-invariant media,
and take for (E;,H;) and (E.,H,) the field distributions of two eigen-
modes m and n of the stucture:

(B 2 plee
Brn = By(mes o0
{Hn(r) = H, (r;) e /0n*

Eigenmodes can exist in sourceless media, so the RHS of eq. 2.19
vanishes:

—J (Bm + Bn) / /S (E,, xH,—-E, xH,,) -u.dS =0 (2.21)

Realising that only the tangential field components contribute, we
can write:

(ﬂm + Bn) // (Em,t X Hn,t — En,t X Hm,t) . llZdS = 0 (2.22)
S

We now investigate what happens if we write a similar expression,
but this time for the backward propagating mode n. It is relatively
easy to show [Leel986] by splitting Maxwell’s curl equations into their
transverse and z-components, that for any eigenmode solution

(En,taEn,ZaHn,taHn,Za/Bn) (223)
there exists also a second solution corresponding to a backward
propagating eigenmode:
(En7t7 _Emza _Hn7t7 Hn,27 _Bn) (224}
Making the necessary substitutions in eq. 2.22 we get:

(er - Bn) // (Em,t xHp:+ Ep; ¥ Hm,t) ‘u,dS =0 (2.25)
S

If we assume that the modes are non-degenerate, such that 3, # f,,
we can add equations 2.22 and 2.25 to arrive at the following orthogo-
nality relation:
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Figure 2.6: Interface between two layers.

// (Eth X Hth) . uzdS =0 (2.26]
S

This will allow us to simplify the expressions when calculating the
scattering matrix of an interface, as we will do next.

2.3.3 Mode matching

Consider the flat constant interface between two waveguides I and II,
as shown in fig. 2.6. It is placed at z = 0 and a single mode with
index p is incident from medium I. This incident mode will give rise
to a backward-propagating field in medium I, which we expand in
terms of the eigenmodes of this medium. Likewise, we expand the
transmitted field in the eigenmodes of medium II. The following deriva-
tion is none other than the well-known mode-matching technique (see
e.g [Zakil988]). It starts off by imposing the continuity of the tangential
components of the total field:

EL,+> Rj,El, = > T;,El 2.27)
j j

H), - R;,H, = > 1;,H (2.28)
j j

The minus sign for the reflected H field is due to the symmetries
for the backward-propagating modes already discussed in eq. 2.24. To
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calculate the unknown expansion coefficients R;, and T}, (which can
be seen as reflection and transmission coefficients), we take the right
cross product of eq. 2.27 with Hl{t and the left cross product of eq. 2.28
with Eft Here, i is an arbitrary index. After integrating over the cross-
section, we get:

(E!, H! +ZR,P E/,H]) = ZT,I, E;’,H]) (2.29)
(EL,H!) ZRJ, E/,H!) = ZT,I, E/,H]') (2.30)

where the scalar product is defined as the following overlap integral:

(Em,Hy) // (Epn x Hy) -u.dS

If we decide to truncate the series expansion after N terms, we
have 2N unknowns: N reflection coefficients and N transmission co-
efficients. Eq. 2.29 and 2.30 provide us exactly with 2N equations,
since we can write them for all i in 1 — N. However, we can reduce
the dimensionality of this linear system by invoking the orthogonality
relation eq. 2.26:

Sip (BL,H) + R; , (Bl H})

Z T;, (EX HI) (2.31)

Sip (BL,H) — R; , (B, HJ)

Z T;, (Ef HIT) (2.32)
Adding and subtracting these equations yields:

S [(BLHL) + (Bl BT, = 26, (), 1) 239
J

Rip = EI H) > (& H]) - (Bl H)] T;, (2.34)
J

)

This shows that we can first calculate the transmission coefficients
by solving an N x N linear system, and then obtain the reflection coef-
ficients by a simple matrix multiplication.

After obtaining R and 7" upon incidence of mode p, we can of course
repeat the whole procedure using all modes p in 1 — N. Important to
note is that this changes only the RHS in the linear system in eq. 2.33,
so that we do not have to invert? another system matrix.

2Actually, when solving the system even an explicit inverse is not required, as we can
use the LU decomposition of the system matrix.
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Usually, we will choose to normalise our modes such that (E/,H!) =
1. We can then write eq. 2.33 and 2.34 more compactly after defining
the following overlap matrices:

~
~
~
—~
~
S
~
Il

(E],HI") (2.35)
(E{',HJ) (2.36)

o
~
=
~

~
"@
S

N
|

With the subscript T' denoting transpose, we finally get:

Trir = 2(Ornm+ 0}}71)_1 (2.37)

1
R = 3 (0?171 —Or1) - Trr (2.38)

In these expressions Ty ;; and Ry ;; are the so-called transmission
and reflection matrices. Their p-th columns consist of the 7;, and
R;, from eq. 2.33 and 2.34. If we collect the expansion coefficients of
an arbitrary incident field in a column vector A;,., we can write very
compactly for the reflected and transmitted fields:

Arcsi = Rrr-Aine (2.39)
Atrans = TI,II'Ainc (240)

Obviously, we can repeat the entire procedure for incidence from
medium II, which gives us the matrices R;;; and Tyr ;. These four
matrices completely characterise the scattering that occurs at an in-
terface.

Finally, we want to point out the similarity in structure between
eq. 2.37 and 2.38 and the well-known Fresnel equations to calculate
reflection and transmission for normal incidence of a plane wave upon
the interface between two semi-infinite media:

2

T — M (2.41)
ny + N2

R = M—™ (2.42)
ny + N9

In fact, eq. 2.41 and 2.42 can also be derived from the more general
treatment presented here. For homogeneous layers, where the refrac-
tive index does not vary in the transverse direction, it turns out that the
overlap matrices are diagonal, meaning that there is no cross-coupling
between the different modes. Further evaluation of the formulas re-
veals that the Fresnel equations are indeed recovered.
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Figure 2.7: T-scheme.

2.4 Scattering at a layered stack

To calculate the reflection and transmission matrices of an entire stack,
we basically need to combine two things:

e For each interface between two layers, calculate its R and T-
matrices, as per section 2.3.3.

e For each layer, propagate the field using the explicit knowledge of
the z-dependence of the eigenmodes, given by eq. 2.9.

The precise way in which these two contributions are combined is very
important, because some approaches are numerically more stable than
others. In the next sections, we will discuss two of these methods:
the T-scheme (based on transfer matrices) and the S-scheme (based on
scattering matrices). The latter scheme is slower, but numerically more
robust, and is therefore to be preferred.

2.4.1 T-scheme

Transfer matrices relate the forward and backward modes on the far
side of a structure to the forward and backward modes on the near
side of that structure (fig. 2.7):

Fu | _+ | Fr
R eaa

The attractiveness of transfer matrices lies in the fact that they are
easy to cascade: the T-matrix of a structure composed from substruc-
tures is simply the product of the T-matrices of each substructure.

To determine the transfer matrix I;» of an interface from its reflec-
tion and transmission matrices, we start from (see fig. 2.7 for the mean-
ing of the subscripts):

F;, = Ti2-Fi+Ro By (2.44)
B: = Ry F1+Ty- B (2.45)
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These equations express that e.g. the forward field in medium 2 is
the superposition of the transmitted forward field from medium 1 and
the reflected backward field from medium 2. Rearranging eq. 2.44 and
2.45 into the form of eq. 2.43, yields after some matrix manipulations
the matrix I;»:

{F2]:{T12—R21-T2_11-R12 R21'T2_11]_[F1] (2.46)

B, ~T, -Ris T, B,

The transfer matrix P,3; of a z-invariant layer is easy to write down
using eq. 2.9:

F; | | diag (efjﬁidzg) 0 F,
|: Bs ] B |: 0 diag (ejﬁidzs) ' B, (2.47)

where the submatrices are diagonal matrices containing the propa-
gation factors of each eigenmode and where ds;3 is the thickness of that
layer.

After calculating the I and P matrices for the interfaces and layers,
the transfer matrix for the whole stack is

T=IL1n . "Pss - I34-Pa3-I1o (2.48)

With the knowledge of the transfer matrix of the stack, we can cal-
culate the reflection and transmission matrices from equations 2.44
and 2.45. First we write the transfer matrix in block form:

A B
T:{C D] (2.49)

R, is then simply —D~! - C, the other matrices follow in a similar
way.

The big disadvantage of the T-scheme is that for evanescent modes
eq. 2.47 contains a mixture of increasing and decreasing exponentials,
which is very detrimental for numerical stability. Indeed, during the
calculation very small numbers will be added to very large numbers,
which will obviously result in a loss of precision. In the next section,
we will discuss a different scheme, where this problem does not occur.

2.4.2 S-scheme

The scattering matrix relates the outward-propagating fields of a struc-
ture to the inward-propagating fields. From eq. 2.44 and 2.45, we know
that for an interface this is (see fig. 2.8 for the slightly modified sub-
scripts)

Fi+ | | Tipr Rysn | | Fu
{ B, ]_ [ Rip+ Ti+g B+ (2.50)
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Figure 2.8: S-scheme.

In the S-scheme, we divide the stack into chunks consisting of an
interface and propagation over a given distance in the exit medium of
the interface [Li1996]. For e.g. the first chunk, we write the scattering
matrix as

F, tip T2 F,
= | B2 T 2.51
{ B, ] { rio> to; ] { B, ] ( )

The chunk matrices r and t follow easily by combining eq. 2.50 and
2.47:

ti» = diag (e /%2). T 4 (2.52)
ro; = diag(e7/7%2) . R+ ; - diag (e /74?) (2.53)
I'172 - R171+ (254]
ton = T+, -diag (e 7Fi%2) (2.55)

We can write such expressions for any chunk in the stack. Note that
only exponentials with the same sign occur in these equations, which
makes them numerically more stable than the T-scheme.

Now we only need to determine how to calculate the scattering ma-
trix of the entire stack, given the scattering matrices of the individual
chunks. More specifically, we will do this by calculating S for the first
p chunks. given that S for the first p — 1 chunks is already known. So,
the following quantities are given:

REE I

By Rip Tpa By
We want to calculate the matrices
Fpi Tipr1 Rpt1a F,
= ’ ’ 2.57
[ B, Ripr1i Tpn By (2.57)

We do this by combining eq. 2.56 with the expressions for the chunk
matrices in chunk p. After some straightforward but rather tedious
algebra, we eventually arrive at (I is the unit matrix)
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Tipryi = tppr-T-Rpy- 1'1J71)+1)_1 “Tip (2.58)
Rprin = tpper- (I-Rpa- rp7p+1)71 “Rp1 - tpi1p +1pp1,p (2.59)
Ripr1 = Tpi-(IT—rppir- prl)i1 “Tppt1 - Tip+Rip (2.60)
Tprin = Tpo-T—rpps1- RpJ)i1 “tpi1p (2.61)

Using these formulas, we can calculate the scattering matrix of the
entire stack, starting from the first chunk (eq. 2.51) and working our
way through the rest of the chunks.

We already mentioned that only decreasing exponentials occur in
these formulas. More rigorous studies [Li1996] show that the numer-
ical stability of the S-scheme is indeed far better than that of the T-
scheme. However, this stability comes at a price, because more matrix
multiplications have to be performed in the S-scheme.

Finally, we would also like to mention the existence of a third scheme,
the R-scheme, which relates the electric and magnetic fields on both
sides of a structure. Such a scheme is popular in the Method of Lines
[Pregla1996], a semi-numerical eigenmode method which employs spa-
tial discretisation in the transverse direction. However, the R-scheme
seems to have an even higher numerical overhead [Li1996].

2.4.3 Finite periodic stacks

In many cases we have to calculate the scattering matrix of a stack
that consists of a finite number of repetitions of the same basic period.
This is e.g. the case when dealing with Bragg mirrors or other photonic
crystal structures. In eq. 2.58 through 2.61, we have seen how to
concatenate different substacks using the S-scheme formalism. If we
define the concatenation of two substacks A and B by the operation
A® B, we could calculate a stack Sy consisting of NV periodic repetitions
of S by performing the following concatenation:

SN=5S®S®..®S (N times) (2.62)

The computational cost associated with this expression is linear in
the number of periods. However, we can do better than that, if we make
use of the following recurrence relations:

Sai = Si®S5; (2.63)

Sorigr = 5208 (2.64)

This is the same principle as calculating e.g. o' as (a2)2, rather

than as aaaa. The former expression requires only two multiplications,
whereas the latter requires four.
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For practical purposes, such a recursive formulation requires much
more memory, since all the intermediate results have to be stored. This
can easily be avoided by formulating this scheme iteratively, rather
than recursively. We can do this by using the binary representation IV,
of the number of periods, as illustrated in the following pseudocode:

result < S
| oop fromsecond bit in N, to last bit:
result < result ® result
if current bit in N, equals 1
result < result ® S

In this way, the computation time is only logarithmic in the number of
periods, rather than linear. This can mean substantial savings, espe-
cially for large numbers of periods.

Also note that we do not sacrifice numerical stability in any way. In
chapter 5, we will touch upon another technique to perform periodic
extension, based on the eigenvectors of the transfer matrix, but this
approach is numerically less robust and is therefore to be avoided.

2.5 Fields inside a stack

The scattering matrix of a stack gives us information about the field
(or rather its expansion in eigenmodes) on the near and far edges of the
stack. Sometimes it is also useful to know the fields at a position inside
the stack, given a certain incident field. We will only consider ourselves
here with interior positions at the interface between two layers, since
the fields inside a layer can easily be propagated from the fields at the
surrounding interfaces using eq. 2.9.

Suppose that we excite a stack with an incident field F; from the
left, and that no exterior field B3 is coming from the right (fig. 2.9). The
presence of F, will give rise to a reflected field B; = Ry3-F;, with R;3 the
reflection matrix of the entire stack. To calculate the internal fields F,
and B,, we divide the stack S;3 in two substacks S;» and S»3, for which
we can calculate the reflection and transmission matrices. We can now
proceed in two ways, depending on whether we use a T or an S-like
formulation for the incident fields. Note that this has no bearing on the
scheme used to calculate the scattering matrices, which is preferably
the S-scheme. We will discuss both formulations for the incident fields
and discuss their numerical advantages and disadvantages.
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Figure 2.9: Fields inside a stack.

2.5.1 T-excitation

Eq. 2.46 describing the transfer matrix immediately yields for the un-
known fields that

[FZ]_[le—Rzl'Tzf'Rlz R21'T211].|: Fy ] (2.65)
= —1 —1 .
B2 —T21 - R12 T21 R13 ’ Fl

For a position deep inside the stack however, T,; can become nu-
merically close to singular. This is due to higher order modes, which
will be strongly damped when propagating and which will therefore
have near zero transmission through S;»;. This introduces numbers
close to zero on the diagonal of the otherwise diagonally dominant ma-
trix Ts;. In chapter 5 we will discuss a “best effort”-attempt at inverting
this matrix, but because this method is only an approximation, it is not
recommended when full precision is required.

2.5.2 S-excitation

An alternative is to start from the scattering matrix equation 2.44 and
to also involve the right-hand part of the stack in our discussion:

F;, = Ti-Fi+Ro By (2.66)
B, = Ro3-Fo+Ts-Bs (2.67)
In the absence of an incident field B; in medium 3, we can therefore

write

F, = [[—Roi-Ros] Ty -Fy (2.68)
B = R F» (2.69)
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In this way we avoid inverting T»;. The numerical effort is however
higher, because we also have to calculate the scattering matrix of the
right-hand part of the stack.

It is instructive to take a closer look at the matrix I — Rs; - Rg3, that
we have to invert in eq. 2.68, because similar terms also figure in the
expressions for the S-scheme (eq. 2.58 through 2.61). This matrix will
become singular if Rs; - Ra3 equals the unit matrix, which means that a
field first reflecting off the right stack and then off the left stack will re-
produce itself. This condition of unit round trip gain is precisely the one
that determines lasing (or eigenmode) resonances of the entire stack.
When this happens, the expressions 2.68 and 2.69 will become singu-
lar and cannot be used. However, this is rarely a problem, because
in these cases we typically first determine the fields in the middle of
the stack®, and then propagate them through either the left or right
substack, which by themselves will not exhibit these resonances.

As a final note in this chapter, we want to point out that because
of all the matrix manipulations involved, the calculation time of ei-
genmode methods roughly scales as N3, with N the number of modes
retained in the series expansion. Any technique therefore that allows
us to obtain results with the same accuracy, but with a smaller num-
ber of modes, will present significant time savings. In the next chapter,
some methods will be presented that do precisely that.

Appendix A: Slab waveguides

We will now fill in the final missing pieces of the puzzle by providing the
geometry-dependent information that is needed for the eigenmode ex-
pansion: the dispersion relations that determine the propagation con-
stants, the field profiles of the modes and the overlap integrals between
two modes. In this appendix, we will do this for arbitrary slab waveg-
uides, while in the next appendix, we will deal with circular structures
consisting of a central core and an outer cladding. For the bound-
ary conditions, we will choose the simple perfectly conducting electric
wall, and leave more sophisticated boundaries for chapter 3. In or-
der to avoid an overly large number of equations, we will focus on the
broad outline of the derivation and leave the intermediate steps for the
interested reader to verify.

A.1 Dispersion relation

Consider a slab waveguide consisting of an arbitrary number of lay-
ers with refractive index n; and thickness d;. The structure is two-
dimensional, i.e. the geometry does not vary in the y-direction. These

3See also chapter 6.
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Figure 2.10: Slab waveguide.

layers are placed between two metal walls that force the tangential com-
ponent of the electric field to zero (fig. 2.10). We will derive the disper-
sion relation for TE modes, the one for TM modes follows similarly. If
we assume a given (but so far unknown) propagation constant g for an
eigenmode, the transverse components of the wavevector in each layer
i are then determined by [Schlereth1990]

2 2
ke = <_nz> - p? (2.70)
Ao
Here, )¢ is the vacuum wavelength of the light. The electric field in
each layer can be written as a sum of forward and backward propagat-
ing plane waves, with a wavevector as per eq. 2.70:
E; (z,y,2) = u, E; (z) e 7°* (2.71)

E; = Fe keile=2) | peikuile—ei) (2.72)

We can now relate the fields in subsequent waveguides with the
T-formalism. For the scattering matrix of the interface, we use the
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Fresnel formulas [Lee1986], while the propagation matrix is once again
given by eq. 2.47. Combined, these give eventually [Smith1991]

Fi | L[ (W +keifkeir) e dReide (1 —ky i /ky o) efheidi | Fia
Bi | 72| (1 —keifkeion)e dReidi (14 kyi/kyiq) edheidi B;_;
(2.73)

To determine the equation that will give us the values of § that
satisfy the boundary conditions, we start out by choosing Fy = 1 and
By = —1 at one boundary, such that Fy + By = 0. Subsequently, we
calculate Fy and By at the other boundary using eq. 2.73 and impose
that there too Fy + By = 0.

Because we are only interested in the ratio of /' and B, we can factor
out and discard the increasing exponential e/*+i¢ from the matrix in
eq. 2.73, such that only decreasing exponentials remain. In this way,
we avoid numerical instabilities associated with mixing large and small
numbers.

A.2 Field profiles

Calculating field profiles can be done from eq. 2.73: start by choos-
ing Fy, = 1 and By, = —1 at the lower boundary and subsequently work
through all the layers. However, for numerical stability is a preferable
to use the S-scheme rather than the T-scheme for calculating field pro-
files.

A.3 Overlap integrals

Because of the simple structure of eq. 2.72, the overlap integrals can
be calculated analytically very easily. They all involve integrals similar
to

/ " e Ike 1@ o=ike 112 g (2.74)

T1

which of course evaluates as

J e*jkm.lz.efjkm,uz]cw

—_— if k,;+k, 0 2.75
Fot t ot be gl F ( )

T1

Ty — 1y if k‘z,[ﬂ-k‘z,[}:O (2.76)

Appendix B: Circular waveguides

Fig. 2.11 shows a circular waveguide, consisting of a core with refrac-
tive index n., and radius r, and a cladding with index n.. The whole
structure is enclosed in a perfectly conducting cylinder with radius R.
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Figure 2.11: Circular waveguide.

B.1 Field profiles

The nabla operator in cylindrical coordinates takes the following form:

V—gu +13u +£u
S Op " pOd R P

Inserting this into Maxwell’s equations for z-invariant media ulti-
mately leads to the following equation for £, and H, [Vassallo1985]:

2 10 1 8 E.
ot oapt a0 f=0 e

The general solution to this equation in any uniform medium is

(2.77)

(AJn (ktp) + BH® (ktp)) (Ccos (n¢) + Dsin (ng)) (2.79)

Here, k; = \/k? — 5% and n is an integer describing the order of the
Bessel function J and of the Hankel function of the second kind H®),
In fact, J can be seen as the cylindrical equivalent of the sin or cos
functions, while H? acts like an outgoing wave e¢~7*", The solutions
for different n are mutually orthogonal, as are those for cos(n¢) and
sin (ng).

In what follows, we will take the solution of E, proportional to cos (n¢),
and that of H, proportional to sin(n¢). The dual case follows simi-
larly. Making abstraction of the angular dependence for the moment,
we can propose the following behaviour for E, and H, in the core and
the cladding:

In (kt7cop)
Jn (kt cor)

)

E.(p) = A , p<r (2.80)
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In (ke R) HS? (K p) — HED (ky o R) T (Ke.c1p)

= A - : , p>r
JIn (kt,clR) HﬁuZ) (kt,clr) - HﬁuZ) (kt,clR) JIn (kt,clr)
Jn (kt cop)
H, = B heol) 2.81
(p) Tt eor) p<r ( )
_ plulbal) B (ap) = H (ko) Jn (brap) -
I (ke R) HS? (kpar) — HY' (kyaR) Jy (kear)

These expressions automatically take care of the continuity of E,
and H, at p = r. Also, the tangential electric field is identically zero
at the wall. In the core, no Hankel function can be present, because
it is singular at the origin. Note that the primes in eq. 2.81 denote
derivation with respect to the whole argument. A and B are currently
unknown, but their ratio will follow from the dispersion relation, as will
of course the propagation constant £.

With the knowledge of the z-components of the fields, we can also
derive the other field components according to [Vassallo1985]

B i Wi 0H., B OF,

E, = k2< T ) (2.82)
_j ( 0H. PBOE.

E;, = k2< ; a¢> (2.83)

H, = k%( EaE ) (2.84)
g 6E B@H

H, = k_?< e ; (%) (2.85)

B.2 Dispersion relation

Imposing the continuity of £y and H, at p = r leads to

Bn 1 1
= A— | — - 2.
) r (k/'t{co kifz cl) ( 86)

_ Bn 1 1
) =7 r (kfco kfcl) (287)

Buwpio Kret ATE — Hrco J;b
kt,cl bTE k/'t7co Jn k/'t7cor

kt cl bTM kt co Jn k/'t7cor
with
arg = J, (keaR)HP (kar) — H?' (kaR) J, (kar) (2.88)

brg = J, (keaR) H? (kyar) — H® (ky.aR) Jy (kear)  (2.89)
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arv = Iy (kaR) HY (kear) — H? (keqR) J, (kar)  (2.90)

n

Jn (ke aR) H® (kg o) — H® (ke R) Jy (ki cr) (2.91)

n

brm

Eliminating A and B from eq. 2.86 and 2.87 gives us the required
dispersion relation:

Fﬂ bTM kt,co Jn (kt,cor)

2
_ fn? 1 1
B r2 k?,co kt2,cl

Contrary to slab waveguides, the modes generally cannot be sep-
arated into TE and TM, due to the cross-coupling that occurs at the
interface. The only exception is the case n = 0, where the dispersion
relation factors into a TE and TM part.

Hr,cl OTE  Hr,co Jrly, (kt,cor) Er,cl ATM _ Er,co Jrly, (kt,cor) (2.92)
k/'t7cl bTE kt,co Jn (kt,cor) )

B.3 Overlap integrals

The overlap integral to be calculated has the following form:

// (E[ X H[]) -uzdS: // (Ep7[H¢711 —Hp7[[E¢71) pdpd¢ (293)
S S

The angular argument runs from 0 to 27, while the radial domain
can be split up in parts where the material properties do not change
for both media. From eq. 2.82 through 2.85, we can gather that in
these expression, two types of integrals will figure:

10A0B 10A0B
L = ——— = ——55 | pdpd 2.94
! //(p3p3¢ p5¢3p>pp¢ (299
_ 0AOB 1 0A0B
b= [](55 5 a) e &

where A and B stand in for either E, or H. and are linear combi-
nations of Bessel and Hankel functions. If we assume for A a cosine
angular dependence and for B a sine dependence, the first integral be-
comes

2 2 . 0A 0B
I d 2 ——B +sin® A—> dp (2.96
1 n/o qﬁ/pl (cos (no) o + sin” (n¢) ap p )

P2 6
= mr/p1 o (AB) dp (2.97)

= nn[AB]’ (2.98)
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The second integral is less obvious to calculate. It is useful to derive
an auxiliary relation for Bessel functions first. We start from the Bessel
differential equations eq. 2.78:

10 0A n? N
SO () (I A
pOp <p 5p> <p2 kt"‘)
10 ( 0B n? N
S92 (- B
pop ('D 0/)) <p2 kt’B>

Multiplying eq. 2.99 by B, eq. 2.100 by A, substracting both equa-
tions and integrating by parts gives

p 0B 0A
AB =——— |A— - B— 2.101
/ pdp kifz,A - kifz,B [ op p (2.101)

Coming back to our integral />, we can write it after introducing the
angular dependencies like this:

I
o

(2.99)

I
o

(2.100)

A OB >, [ AB
L=7x 6—8—,0d,0 + mn? / —pdp (2.102)
dp Op p?
Integrating the first term by parts yields
2
12:7rA8—Bp—7r/A 8—B+16—B pdp-l—7rn2/A—dep (2.103)
dp op*  pOp p?

Combining the second and the third term and using the Bessel dif-
ferential equation 2.100 now gives

B
I, = ﬂ'ABa—pp + 7k} g / ABpdp (2.104)
This last integral can be solved by using eq. 2.101 to give
wp , 0B , _0A
IL=—5——|kisA— — ki gB— 2.105
= (g e 2109

In the case where k; 4 = k: B, like e.g. when normalising a mode, we
can follow a similar line of reasoning, but this time by using a modified
version of eq. 2.101, obtained after taking the limit k; p — k: 4 with
de L'Hopital’s rule:

2 2 1 [0A\’
Apdp=""1(1- a2+ (L
/ P = K iz, ) TR, 9

(2.106)




Chapter 3

Boundary conditions

“It’'s got to be perfect”
Fairground Attraction

3.1 Introduction

Choosing the right boundary conditions is crucially important for the
accuracy and efficiency of the eigenmode expansion method, or indeed
any numerical method, which is what warrants their treatment in a
separate chapter. We will illustrate the principles of several different
boundary conditions using the TE modes of the multi-slab waveguide.
The treatment of TM modes follows along similar lines, as does that
of circular waveguides. We will try to present a unified treatment of
the different boundary conditions, and therefore we will first derive
the dispersion relation for a slab waveguide between two generalised
boundaries.

Consider the situation depicted in fig. 3.1. The actual waveguide
structure will be treated as a black box, described by its transfer ma-
trix. The boundary at = 0 will impose a certain relation between for-
ward and backward-propagating waves, e.g. described by a reflection
coefficient ro = Fy/By. Here F relates to the forward-propagating field
in the +« direction (i.e. away from the boundary), and B to the back-
ward field propagating along —z. We can therefore write this boundary
condition as

Fo - ToBo =0 (31)

For the TE case, F' and B are directly proportional to the electric field
E, (see appendix A of the previous chapter). A field distribution that
satisfies this condition is trivially Fy = ry and By = 1. Using the trans-
fer matrix formalism, we can propagate this field through the lower
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Figure 3.1: Slab waveguide with general boundaries.

46



CHAPTER 3. BOUNDARY CONDITIONS 47

cladding, the black box and the upper cladding to arrive at the second
boundary. At this wall, we impose a similar boundary condition:

TNFN—BNZO (32)

Note that in this case the reflected field propagates in the —z direc-
tion. Expressing that the field at the upper boundary satisfies eq. 3.2,
gives us the dispersion relation for a slab waveguide with generalised
boundary conditions:

Toe_jdlk””’l

[ rye~idnke N _gtidvke N ] . { Tu T ] T etidikan ] =0 (3.3

T2 1 T22

In the following sections, we will discuss different boundary condi-
tions that can be expressed in this way. Note that in the most general
case, the reflection coefficients ry and ry can be functions of k,. Stated
otherwise, this means that the boundary conditions can depend on the
incidence angle. We will concentrate on the boundary at z = 0, the
other one obviously being completely analogous.

3.2 Hard walls
3.2.1 PEC and PMC walls

The most straightforward boundary conditions to use are perfect elec-
tric or magnetic conductors (PECs or PMCs). An electric wall imposes
that the total tangential E-field vanishes at the boundary, which corre-
sponds to the well-known Dirichlet boundary condition:

E, (v =0) = Fe™i*k=% 4 Betik=® — (3.4)

Demanding that '+ B = 0 amounts to choosing r = —1.
A magnetic wall imposes a zero tangential H-field. We can easily
derive from Maxwell’s equations that this means for TE modes that

j dBE, k.

HZ = = —_— =
(z=0) kocp dx kocp

(Fe ke — Betik=v) =0 (3.5)

So, for a PMC we choose r = 1. Imposing a vanishing derivative of
E, also means that this is a von Neumann boundary condition.

Both electric and magnetic walls are what is commonly referred to
as ’hard’ walls: they reflect all the incident power, because |r| = 1. This
can be problematic, especially when we want to model structures with
high radiation losses, i.e. structures that emit radiation that would
otherwise propagate freely towards infinity. The presence of a PEC
or a PMC wall will send this radiation back to the structure that we
want to study, and this reflected power can seriously compromise the
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electric wall magnetic wall
odd modes even modes

Figure 3.2: The use of PEC and PMC walls to exploit symmetry.

accuracy of the obtained results. We will show an example illustrating
this problem in the next section.

A use of PEC and PMC walls that is not plagued by parasitic reflec-
tions is in exploiting the symmetry of a structure in order to reduce
the computational effort. This is illustrated in fig. 3.2. The waveguide
there has a mirror symmetry along the central axis. Such a structure
contains even and odd modes, which do not couple among themselves
(i.e. the overlap integral of an even mode with an odd mode is always
zero). By placing either an electric or a magnetic wall at the symme-
try axis, we can effectively cut the structure in two. Therefore, we can
separate the problem into two non-interacting subproblems, involving
only even or only odd modes. In this way, we reduce the computation
time from (2N)3 to N3 + N3,

3.2.2 Parasitic reflections

To illustrate the nefarious effects of parasitic reflections from hard
walls, we model the 1D grating (or 1D photonic crystal) from fig. 3.3.
This structure was the subject of a modelling exercise within the Eu-
ropean COST268 action. It consists of a SizNy (n = 2) waveguide on a
SiO; (n = 1.45) substrate, with a 20-period grating etched into it. The
top cladding is air, with a metal wall placed at a distance d from the
waveguide. The waveguide is 500 nm thick, while the etch depth is
125 nm. The period length is 430 nm, and the filling factor of the grat-
ing is 50%. We excite the structure from the left with the fundamental
mode of the unetched waveguide. Part of this incident light is reflected
back into the waveguide (R), part of it is transmitted to the fundamen-
tal mode of the exit waveguide (T'), while the rest of the power is lost
to radiation and scattering (L). The thickness of the substrate layer
between the waveguide and the bottom wall is chosen to be 1.45d, to
have a similar optical thickness as the air cladding. The number of
modes used in these simulations is N = 120/A = d/5. The convergence
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metal wall

metal wall

Figure 3.3: Waveguide with a shallow grating etched into it.

as a function of N will be illustrated in section 3.5, but the number of
modes in this example is large enough to be independent of a further
increase in N.

Fig. 3.4 shows the reflected power R as a function of the wavelength,
for different thicknesses d of the air layer between the waveguide and
the top electric wall. We see that the grating acts like a Bragg mir-
ror around the design wavelength of 1.55 pym, with a reflectivity of
around 50%. The different curves in the figure overlap very well around
this wavelength, meaning that there is no influence from parasitic re-
flections. For short wavelengths however, the curves start to exhibit
spikes, and the spike maxima are at different wavelengths for different
values of d. This behaviour is even more prominent if we plot the loss
L of the mode in fig. 3.5, definedas L=1—-R - T.

It is very clear that the presence of the perfectly reflecting boundary
conditions disturbs the results. To illustrate the seriousness of this
problem ever further, fig. 3.6 shows the loss at a wavelength of 850 nm,
as a function of the distance d to the metal wall. This plot is strongly
oscillating, and it is very difficult to predict to what final value the loss
will converge.

This is a serious issue, that could potentially threaten the applica-
bility of the eigenmode expansion method to this kind of problems. It
is therefore important to introduce better boundary conditions that do
not reflect all the incident power.



CHAPTER 3. BOUNDARY CONDITIONS 50

Reflectivity of fundamental mode
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Figure 3.4: Reflectivity of the fundamental mode of the waveguide grat-
ing

Loss of fundamental mode
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Figure 3.5: Loss of the fundamental mode of the waveguide grating.
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Loss of fundamental mode
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Figure 3.6: Loss of the fundamental mode as a function of the distance
to the metal wall.
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et
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Figure 3.7: Lossy material as an absorber, with parasitic reflections
occuring at the interface with the absorber.

An approach that seems attractive at first sight is to place a lossy
material in front of the wall. In this way, any radiation that propagates
in this lossy medium will be damped, hopefully to such an extent that
all the power is absorbed before it has any chance to reflect at the
metal wall. The problem here is that now it is possible for the light
to reflect at the interface with the absorber, rather than at the metal
wall (fig. 3.7). We could tweak the parameters of the lossy medium
to minimise this reflection, but this is time-consuming, dependent on
the geometry of the structure we want to model and difficult to achieve
over a wide range of incidence angles and wavelengths [Noble1998].
In the next section, we will introduce another approach to absorbing
radiation that does not suffer from this problem: the use of perfectly
matched layers (PMLs).
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3.3 Perfectly matched layers

A perfectly matched layer or PML is an artificial material that can
absorb radiation without any parasitic reflections at its interface, re-
gardless of wavelength, incidence angle or polarisation. The concept of
PMLs can be introduced in a variety of ways. In this work, we will opt
for the formalism of complex coordinate stretching, because it allows
us to reuse the formulas presented in chapter 2 virtually without any
modification. The other ways of describing a PML will be introduced
briefly in the next section, together with a historical overview describ-
ing the evolution of the use of PML. For more details on these other
formalisms, we refer to the Ph.D. dissertation [Derudder2001a].

3.3.1 A brief history of PML

PML was originally introduced in the context of FDTD simulations in
[Bérenger1994]. This seminal paper used the so-called ’split field’ for-
malism, in which e.g. the H, field component is artificially split up into
H. = H.,+H.,. This leads to a modified version of Maxwell’s equations,
where the introduction of split fields provides extra degrees of freedom
that can be used to achieve a perfect reflectionless matching at the ab-
sorber interface. This produced nothing short of a revolution, since it
quickly became apparent that PML vastly outperformed any boundary
condition previously known.

In the subsequent years, a flurry of papers was produced on the
properties of PMLs. In [Sacks1995], it was shown that the seem-
ingly ad hoc introduced, non-physical, non-Maxwellian concept of split
fields was in fact equivalent to a 'regular’ physical medium, albeit an
anisotropic one with rather peculiar permittivity and permeability ten-
sors. In planar stratified media, these tensors take the form ¢ = ¢pe,A,

p = popr A with
«
A= « (3.6)
ofl

Here, o is a complex number with a negative imaginary component
providing absorption. By explicitly splitting a into its real and imag-
inary components in eq. 3.6, it can be seen that the z-compoment of
the tensor has a positive imaginary part. This means that PML is in
fact an active medium containing sources, which unfortunately makes
it rather unsuited for actual fabrication.

A very elegant way of looking at PML was introduced in [Chew1994],
which states that PML can also be considered as a regular isotropic
medium, but this time with a complex thickness. We will discuss this
in depth in the next section, but we can already provide a hand-waving
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argument that an imaginary thickness is able to damp radiation. Con-
sider the formula describing a plane wave:

e Jhon 8.7)

This plane wave can be damped by letting it propagate in a medium
with a complex refractive index n, as already mentioned in section 3.2.2.
However, since both n and the spatial coordinate z appear on equal
footing in eq. 3.7, it is clear that a complex thickness will just as well
provide absorption. Moreover, this can be done without any parasitic
reflections, as we will explain in section 3.3.2.

All this work focused on applications in FDTD methods. The spatial
discretisation used in those methods meant however that the PML layer
had to be discretised as well. Going from a continuous, analytic PML
to a discrete PML can introduce parasitic reflections that are solely due
to the spatial discretisation. Therefore, careful attention had to be paid
to the absorption profile a(z) inside the PML [Lazzi1997].

In [Derudder1998], our colleagues from the electromagnetics group
at our department showed that PML could also be very useful in ei-
genmode methods. They modelled discontinuities on microstrip lines,
using a stepwise approximation of an anisotropic PML.

We built upon their work and expanded it to circular geometries
[Bienstman2001d], in order to model VCSELs, and later also to arbi-
trary slab waveguides [Bienstman2001c], in order to model photonic
crystal devices. We opted for a full analytic treatment involving com-
plex coordinate stretching, rather than for a stepwise anisotropic PML,
in order to eliminate the reflections due do the spatial discretisation.
This also had the additional advantage of not having to engineer the
absorption profile in the PML, as we will see later.

3.3.2 Complex coordinate stretching

Consider the situation depicted in fig 3.8. A structure that we want to
study is enclosed by a metal wall. This structure has an outer cladding
layer with thickness dy, and index n. Between the cladding and the
wall, we insert the PML, a layer also with refractive index n, but with a
complex thickness d; . — jdi im. We want to prove in this section that a
wave propagating in the cladding will be absorbed in the PML, without
any reflections occurring at the cladding-PML interface. To this end,
we first define a one-to-one mapping of the traditional z variable to a
complex stretched z variable [Chew1997]:

zZ= /Z s, (2")dz' (3.8)
0

To make this more concrete, we have drawn in fig. 3.8 the case were
R(s;) = 1 everywhere, and S(s,) = —a in the PML and zero everywhere
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Figure 3.8: Complex coordinate stretching.

else. This leads to z being equal to z, except in the PML, where z has
a linearly increasing imaginary component (in absolute value). The use
of an integral in eq. 3.8 assures that z varies smoothly, even if s, has
discontinuities.

Now, we take Maxwell’s equations and analytically extend them to
the complex spatial domain. This means that the equations remain
identical, but the coordinates are allowed to assume complex values.

VXxE = —juuH (3.9)
VxH = jweE (3.10)

The stretched nabla operator is

T 0 0
= %uw + 8_yuy + a_’gu;
At this point we can already understand why PML provides reflec-
tionless absorption. From a purely formal point of view, the cladding
combined with the PML is a uniform medium with refractive index n ev-
erywhere, but with stretched coordinates. Because coordinate stretch-
ing does not formally change the appearance of Maxwell’s equations, we
can continue to use all the well-known solutions for these equations in
unstretched coordinates. For uniform media, we know that these solu-
tions are plane waves, which of course do not reflect when propagating
in a uniform medium. At the same time, the imaginary component of
the stretched z-coordinate absorbs the propagating wave, as we already
discussed using eq. 3.7.

(3.11)
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We can give this explanation a mathematically more rigorous foun-
dation by deriving the wave equation for the stretched medium. Once
again, this is formally identical to the wave equation in unstretched
coordinates:

V2 +k2p=0 (3.12)

Introducing eq. 3.8 leads to

2 2 1010
(5 + 3+ acmence +H8) 9 =0 819
Proposing a solution ¢ = e=/*»2¢=iks¥¢(7), this becomes

1919 5\~
<5£5£+k2>¢_0 (3.14)

where k? = ki — k3 — k2. We try a solution of the form
6 (2) = 1B (3.15)
such that f'(z) = k,s.(z). Now, we have

gaqﬁ(z) = +jk.0(2) (3.16)
Ld1ld~ -
g£g£¢(z) = —kio(2) (3.17)

which satisfies eq. 3.14. Therefore, the general solution of eq. 3.14
is

§(z) = A 9k Jo 5= getiks [ oD (3.18)

The crucial thing to realise here is that both terms satisfy eq. 3.14
seperately. This means that both the forward and the backward propa-
gating solution are uncoupled. Put differently, one of them propagating
will not excite the other one. Therefore, they can propagate without
reflection, and this irrespective of wavelength, incidence angle or po-
larisation.

Finally, one can wonder if this rather ad hoc introduction of mate-
rials with complex thickness has any physical bearing whatsoever. In
fact, as already mentioned previously, a description in terms of complex
coordinates is equivalent to the description of PML as an anisotropic
material [Teixeiral997]. This material can of course be described com-
pletely by the traditional Maxwell’s equations, without resorting to un-
physical constructs like stretched coordinates. However, the mathe-
matics of using anisotropic materials are much more involved, which
is why we opted for using complex coordinates.
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3.3.3 Mode structure

Before illustrating the effectiveness of PML as an absorber, let us first
investigate the influence it has on the propagation constants and field
profiles of eigenmodes.

The dispersion relation of a slab clad with PML is identical to the one
without PML, except for the fact that the outer media have a complex
thickness. The dispersion relation can therefore also be cast in the
general formalism of eq. 3.3.

Fig. 3.9 shows the distribution of the TE modes in the n.;s-plane,
for a GaAs waveguide (n = 3.5) with a thickness of 1 ym, surrounded
on both sides by an air cladding with real thickness of 2 ym. The op-
erating wavelength is 1.55 ym. Three figures are shown, for different
imaginary thicknesses of the cladding (-0.2, -0.4 and -0.6 ym). A num-
ber of conclusions can be drawn from these pictures. Let us first turn
our attention to the guided modes, located on the real axis. Guided
modes have exponentially decreasing tails, because they have an imag-
inary wavevector component in the direction perpendicular to the wall.
If the cladding is thick enough, these tails will be negligible by the time
they reach the PML, so they should not be influenced by it. We see
indeed from the figures that the presence of PML does not change the
location of the guided modes. Moreover, it is interesting to point out
that the imaginary PML thickness cannot absorb the tails of the guided
modes, because of their imaginary wavevector in eq. 3.7. Only the real
part of the PML thickness is effective in absorbing these modes.

The opposite is true for the radiation modes, with a real wavevector
component perpendicular to the wall. The imaginary thickness absorbs
these modes, so that they are no longer located on the coordinate axes,
but in the complex plane. In fact, when the absorption in the PML
is strong enough, the modes clearly start to cluster in two groups: a
first group, where the modes eventually converge to a final location for
increasing PML absorption, and a second group, where the modes keep
on moving further into the complex plane as the absorption increases.
There is a profound reason for this behaviour, but we will have to wait
until section 3.4 to fully understand it.

Let us now turn our attention to the field profiles of such modes.
Fig. 3.10 plots the absolute value of the E-field for a radiation mode
with n.ry = 0.416 — 1.6005 in the case of an imaginary cladding thickness
of -0.4 ym. Fixing the total imaginary cladding thickness seems to
leave us with the freedom of choosing the exact stretching profile to
achieve this total thickness. Therefore, we plot two cases, both with a
piecewise constant stretching profile s,. In the first case, we choose the
real thickness of the PML to be half of the cladding layer (1 pm), with
the other half remaining unstretched. In the second case, we halve
the PML thickness, but at the same time double its absorption. The
field profiles in the central region are the same for both cases. In the
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Figure 3.9: Distribution of eigenmodes for different absorption levels in
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Figure 3.10: Field profile of a radiation mode in the presence of PML.

cladding region, the field increases, but as soon as it enters the PML,
it decreases exponentially to fall to zero at the metal wall. For the thin
PML, the field is allowed to increase further into the cladding, but this
is exactly compensated by a stronger absorption inside the PML.

We want to stress that for the calculation of the dispersion rela-
tion, of the overlap integrals and of the scattering matrices, the exact
stretching profile is totally irrelevant, because all the expressions there
involve only the total complex thickness of the uniform medium formed
by the combination of cladding and PML. This is a huge advantage com-
pared to the use of PML in e.g. FDTD, where the stretching profile has
to be carefully engineered in order to minimise reflections due to the
spatial discretisation.

Finally, we want to point out that a similar mode structure exists
for TM polarisation and for circular geometries. Fig. 3.11 plots the
TM eigenmodes (crosses) alongside with the TE eigenmodes (circles) for
the waveguide from fig. 3.9 with an imaginary cladding thickness of
-0.4 pm. Once again, there is a branch containing modes that do not
move for increasing PML absorption, and this branch is located closer
to the imaginary axis than any TE branch. On the other hand, the sec-
ond TM branch lies further in the complex plane than any TE branch.
For the corresponding circular structure (i.e. with a core diameter of
1 pm), TE and TM modes are no longer uncoupled, but combine to form
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Figure 3.11: Distribution of eigenmodes for TE (circles) and TM
(crosses) slab modes.

hybrid modes if the Bessel order n differs from 0. Fig. 3.12 shows the
mode structure for n = 1. The two branches closest to the imaginary
axis are insensitive to further increase in the absorption, the other two
are not.

3.3.4 Examples

Let us now return to the example of the waveguide grating, and see if
adding an imaginary component to the cladding thickness will solve the
problem of parasitic reflections. Fig. 3.13 shows once again the radia-
tion loss of the fundamental mode, but for different values of the imag-
inary thickness. We see indeed that the PML is successful in damping
the oscillations from the parasitic reflections. For a moderately strong
PML (d;;, = —0.1 pm), there are still a few residual oscillations left. Al-
though there are no parasitic reflections at the PML interface, the field
is not damped sufficiently by the time it reaches the metal wall, so that
some part of the radiation will still make it back to the structure under
study. In summary, we can say that although PML is perfectly matched
(no reflections at its interface), it is not a perfect absorber, because its
absorption is still finite!. Increasing the imaginary thickness to -0.2 ym
is however sufficient to get rid of the remaining oscillations.

To further illustrate the beneficial effects of PML, we plot in fig. 3.14
the field profiles both with and without PML for A = 0.85 ym. Without
PML, there clearly is a resonance building up in the claddings, due to

1We will discuss PMLs with infinite absorption in section 3.4.
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Figure 3.13: Loss of the fundamental mode as a function of the distance
to the metal wall, for different imaginary cladding thickness.
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Figure 3.14: Field profiles for the waveguide grating, both with and
without PML.
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Figure 3.15: Comparison of different models using the waveguide grat-
ing structure.

parasitic reflections from the walls. This resonance disappears when
PML is introduced. Moreover, when observing the time evolution of
these field patterns, it quickly becomes obvious that the waves in the
cladding are standing waves without PML and purely travelling waves
in the presence of PML.

Finally, since the structure from fig. 3.3 was the subject of a Euro-
pean modelling benchmark, we can validate our results against those
of other models. This is illustrated in fig. 3.15. Shown are results
using the Method of Lines and several implementations of the eigen-
mode expansion method (called here BEP for bidirectional eigenmode
propagation). The implementation at IREE (the Institute of Radio En-
gineering at Prague) is modelled after ours and includes PML. The one
implemented at the University of Brno does not use PML and clearly
suffers from parasitic reflections. Apart from that, all the models are in
excellent agreement.

3.4 Leaky modes

Eq. 3.3 also contains the dispersion relation for the open structure, i.e.
without any walls. To retrieve this dispersion relation, we simply have
to impose that there are no reflected waves in the cladding by putting
the r coefficients equal to zero. It then follows immediately that 75, = 0,
which is the required dispersion relation.

We already mentioned in section 2.2.3 that the dispersion relation of
the open structure can have solutions in the complex plane. These so-
called leaky modes are unphysical, because they increase exponentially
towards infinity in the transverse direction. They can be considered as
guided modes below cut-off, because they will evolve into proper guided
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Figure 3.16: Distribution of guided and leaky modes.

modes as the frequency increases. In fig. 3.16, we plot the distribution
of these modes in the n.;¢-plane, for the same waveguide as in fig. 3.9.

Although these modes are non-physical, they form a discrete set
and people have tried to use them in eigenmode expansion techniques.
The hope here is that every leaky mode can represent a subset of the
radiative continuum in open structures. In this section, we will repli-
cate some of the results in literature, where this approach has been
successfully applied to model certain structures. We will also investi-
gate whether or not it is possible to extend this technique to a larger
class of structures. Finally, we will point out the link connecting leaky
modes and PML, leading to a deeper understanding of the properties of
modes in the presence of PML.

3.4.1 Normalisation and overlap integrals

When we want to apply the formalism of chapter 2 to leaky modes, we
quickly run into a problem concerning the overlap integrals. Indeed,
these modes have infinite fields at infinity, meaning that the overlap
integrals will diverge. A couple of techniques exist to deal with this
issue [Lee1995], the most elegant of which is given in [Sammut1976].
The method presented there consists of deforming the integration path
used to calculate the overlap and normalisation integrals. Normally,
this path runs along the real z-axis, but it is deformed into the com-
plex plane, as shown in fig. 3.17. The analytical solution of the overlap
integrals from the appendices in chapter 2 depends only on the begin-
ning and end points of the interval. Therefore, the precise integration
path is not important, only the end points are. If the damping provided
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Figure 3.17: Deformation of the integral path to calculate overlap inte-
grals for leaky modes.

by the complex coordinate at infinity outweighs the field increase in
the cladding, then this contribution at infinity vanishes and the total
overlap integral remains finite.

3.4.2 Example: twin waveguide

We now use leaky modes to model the structure from fig. 3.18 [Lee1995].
It is a twin waveguide section embedded in a single waveguide, which
can be used as an interference type device like a directional coupler
or a Mach-Zehnder interferometer. All the waveguide sections have
n = 3.381, while the background has n = 3.38. The cores have a width
of 4 pm, while the cladding section separating the twin guides has a
thickness of 8 ym. The operating wavelength is 1.15 pm. Once again,
the propagation is along the z-direction.

Fig 3.19 shows the transmission of the fundamental even guided
mode through this structure, as a function of the length L of the central
section. A magnetic wall was used to exploit the mirror symmetry along
the central axis. One curve is calculated using only a guided mode and
a single leaky mode. The other curve uses a cladding thickness of
50 — 0.1 pm and 20 modes.

We can compare our curves to the ones published in [Leel995].
When we first consider their exact results, i.e. those not involving
leaky modes, we can conclude that our PML simulations are in ex-
cellent agreement. In [Lee1995] however, hard walls were used and the
authors claimed they needed many hundreds of modes to achieve con-
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Figure 3.19: Transmittivity in the twin waveguide structure. The PML
curve coincides with the exact calculations from [Lee1995].
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vergence, which would have resulted in significantly longer calculation
times. We on the other hand needed only 20 modes thanks to the use
of PML.

If we compare the leaky mode approximations, it turns out that
ours performs less well than the one in [Lee1995], but still follows the
trend of the exact results quite well. The difference between the two
leaky mode approximations are most likely due to the different way
of normalising the leaky modes and calculating the overlap integrals.
Further research is needed in order to evaluate and compare these
techniques more thoroughly.

There are however still a few issues with both leaky mode expansion
methods. First of all, for L = 0 our approach gives a transmission
of 85%, instead of the correct value of 100%. In the original paper
[Lee1995], a value of 120% was obtained, equally wrong, but different.
We can therefore conclude that leaky mode expansion has some trouble
in accurately representing the near field. Secondly, in the cladding
far from the waveguides, there still is an unphysical exponential field
increase. This means that the leaky mode formalism has a domain
of validity limited to regions of space close to the core. This point of
view is also expressed in [Snyder1983], where a critical angle §. with
the z-axis is derived, beyond which the field profiles can no longer be
considered as physical.

It has to be stressed that the twin guide structure is relatively easy
to model, because of the very weak index constrast that causes little or
no backreflection or scattering. The loss mechanism in this device is
therefore very similar to that of an infinitely long twin waveguide, and
leaky modes seem to be able to capture these physics well. For the
grating waveguide structure we presented earlier, we were unable to
use this method successfully. There however, the mechanisms at work
are completely different. The strong index contrast causes substantial
scattering, and the amount of loss is very strongly dependent on the
period of the grating, rather than on the natural leakage of long un-
perturbed waveguide sections. Also, the grating period obviously has
near-field effects, which seem to be difficult for the leaky mode expan-
sion to model.

Moreover, it is possible to prove conclusively that the set of leaky
modes is not complete (see e.g. [Smith1995]). In view of this, it is
quite ill-advised to rely solely on leaky mode expansion without any
verification from another method.

3.4.3 Relation to PML

The path deformation used to normalise leaky modes is strongly remi-
niscent of the complex coordinate stretching PML technique. This sug-
gests a closer relation between the two techniques, which we will try to
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uncover in this section.

Let us consider once again the general slab waveguide from fig. 3.1
and its general dispersion relation eq. 3.3, in which we have factored
out etidike.1 gand etidzks2 . We will assume a very strong PML present in
both claddings.

. —2jd1ks,1
[ rye 2dnken 17, [ T ] . { roe ] 0 (3.19
21 22

If a certain mode is strongly attenuated in the top PML layer, then
dnk, 1has a large negative imaginary component and e~2/dnken 1,
Similarly, e=2/d*=0 < 1 for strong absorption in the bottom PML. We
can now distinguish between four cases, depending whether a mode is
strongly absorbed in both PML layers, only the top one, only the bottom
one, or neither of them.

For the first set of modes, we assume strong absorption in both
PMLs, such that most of the field is located in the central regions of the
slab:

Ty Th 0
[0 1]{T21 TmHl]‘O (3.20)

This is satisfied when 75, = 0, which is nothing other than the dis-
persion relation of the open structure. Mathematically, this is also
obvious, since infinite PML absorption (exp(—2jdk) = 0) has the same
effect in eq. 3.20 as considering a truly open structure (r = 0). This
is also what one expects from a physical point of view: as long as the
absorption in the PML is high enough, no wave will make it back to the
core after reflecting at the outer walls. Therefore, viewed from the core,
a very strong PML cannot be distinguished from a truly open structure.

We already know what kind of modes are found with the dispersion
relation of the open structure: on one hand the guided modes, but on
the other hand also the unphysical leaky modes. This is precisely why
some modes converge to a fixed location in fig. 3.9: they converge to
the leaky modes of the open structure for sufficienty large absorption
in the PML.

For the second set of modes, we assume a field strongly damped in
the PML at z = 0, but not so in the other PML layer. We now get for the
dispersion relation

Thorye 2idnken _ Ty, = () (3.21)
which can be recast as

T,
TN ei-]dN,”w:N . T—;; = ]_ (3.22)

e*Jdem,N
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This equation has a clear physical significance. The first factor de-
scribes propagation over a distance dy in the PML, the second factor is
the reflectivity at the wall, the third one describes the wave as it propa-
gates from the wall back to the core, and the final term is the reflection
of the core as seen from the top.2. In other words, eq. 3.22 clearly im-
poses a round-trip gain of unity in the cavity formed by the top wall
and the central slab.

A similar set of modes can be found that resonate in the bottom
PML. Because the properties of these modes obviously depend more
strongly on the PML than on the central core region, these modes are
sometimes called Bérenger modes [Derudder2001b]. These Bérenger
modes are the ones in fig. 3.9 that move further into the complex plane
as the PML absorption increases.

Finally, the case where the modes are neither absorbed in the top
nor the bottom PML is purely academic, since it contradicts our initial
assumption of a strongly absorbing PML.

3.4.4 PML with infinite absorption

In the previous section, we showed that for strong absorption in the
PML, some modes converge to the leaky modes of the open structure.
This result was first presented in [Rogier2001], but for the less general
case of a microstrip substrate.

Now, we want to take the argument one step further, and show
that for infinite absorption in the PML, eigenmode expansion becomes
completely equivalent to leaky mode expansion. In order to prove this,
we need to elaborate on a couple of points.

First of all, for an infinitely strong PML, the modes from eq. 3.20
coincide exactly with the leaky modes of the open structure.

Secondly, the Bérenger modes vanish entirely if the absorption of
the PML becomes infinite. This can be seen from eq. 3.22 and its corre-
sponding physical picture that a resonator with infinite losses cannot
sustain any modes. This also follows from the explicit formulas of the
Bérenger modes presented in [Rogier2001] for a microstrip substrate,
where no non-trivial solutions remain for infinite absorption.

Lastly, for infinitely absorbing PML, the calculation of overlap inte-
grals proceeds in exactly the same way as in the case of leaky modes.
Indeed, both use complex coordinate stretching to achieve absorption.
For an infinitely strong PML, the contribution to the overlap integrals
at the walls vanishes, just as the contribution at infinity in the case of
leaky modes.

Together these arguments show that leaky mode expansion is noth-
ing else than using a PML with infinite absorption. This sheds some

2This can be seen immediately from [ 71" ] = [ ;; %; ] . [ g ]



CHAPTER 3. BOUNDARY CONDITIONS 69

more light on the physics behind each of these methods.

This also leads to some important observations with respect to the
completeness of the set of eigenmodes in the presence of PML. If we
assume an otherwise lossless structure, increasing the absorption in
the PML leads from a set that is proven complete (for zero absorption)
to a set that is proven incomplete (for infinite absorption). This sug-
gests that while the set of modes in the presence of PML might not be
mathematically complete, for all intents and purposes it is still close
enough to complete if we restrict ourselves to moderate absorption. All
the empirical evidence of the simulations performed in this work seems
to show that this is indeed the case: for moderately strong absorption,
using PML modes seems to be a very valid and practical approach. By
moderate absorption, we mean a situation whereby the modes are still
located relatively close to the coordinate axes, and where there is not
yet a clear distinction between the Bérenger and the leaky branch.

Finally, it is worth noting that, just like leaky modes, PML modes
exhibit an exponential field increase in the cladding before entering the
absorbing region (see e.g. fig. 3.10). This also indicates that the validity
of the fields in the presence of PML seems to be limited to an area of
the cladding immediately around the central region.

3.5 Transparent boundary conditions

3.5.1 Derivation using the orthogonality requirements

Now would be a good time to revisit the eigenmode orthogonality re-
quirements at the boundaries (eq. 2.15):

// (El XH2—E2XH1)'dS:0 (323)
0S

For the TE modes of the general slab waveguide and at the lower
boundary at z = 0, this becomes

/(E?JJHZJ - Ey,2Hz,1) dz=0 (3.24)

At PEC or PMC walls, this is always fulfilled, since these boundaries
impose the vanishing of the tangential electric field E, or the tangential
magnetic field H, respectively. The presence of PML does not change
this conclusion, since the PML is backed by a PEC or a PMC wall that
imposes the same boundary conditions. Likewise, the orthogonality
holds for the leaky modes as the special case of PML with infinite ab-
sorption.

Let us now decompose the fields at z = 0 in forward and backward
propagating plane waves (see eq. 3.4 and 3.5):
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E, = F+B (3.25)
K
. F-B 2
e (P B) (3.26)
We can then write eq. 3.24 as
(Fy + B1) kg2 (Fy — By) — (Fy + Ba) ky 1 (F1 —By) =0 (3.27)
or as
F, - B - B
2 =kt (3.28)

z,2 F2 +BZ z,1 Fl + Bl
This suggests using the following form of boundary condition, with
k.0 an arbitrary constant:
F-B
‘F+B
Rewriting this in the canonical form F —rB = 0 (eq. 3.1) gives us for
the reflection coefficient

k —kyo (3.29)

kw - kw,O

= T Foo (3.30)

r
Note that this is a case where the reflection coefficient depends on
the incident angle. The absolute value of r is always smaller than or
equal to 1, and is identically zero for the angle corresponding to k, =
kg.o-
Another way of looking at this boundary condition is to reformulate
eq. 3.29 in terms of £, = F' + B and its derivative E; = —jk.(F — B):

~jkenEy + E, =0 (3.31)

This is a mixed von Neumann-Dirichlet boundary condition with
constant coefficients. For k, = k, o it is satisfied by e*J k=z which is a
plane wave propagating downward from the core to the wall, without
the presence of any reflected wave e 7%=,

This kind of boundary condition was presented in [Hadley1991],
where it was called “transparent boundary condition” (TBC) and ap-
plied to the beam propagation method. A similar boundary condi-
tion was already presented in a different context in [Leontovich1948].
The TBC is also quite popular among MoL practitioners [Gerdes1992].
Its use in eigenmode expansion methods has to our knowledge never
been thoroughly studied, although the technique has been hinted at in
[Smith1995].
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Figure 3.20: Distribution of modes in the presence of a transparent
boundary condition.

Fig. 3.20 plots the distribution of eigenmodes for the slab waveguide
from fig. 3.9. The cladding is once again 2 ym thick, and the walls are
TBCs with a k, ¢ corresponding to 45 degrees incidence angle.

A striking feature of this figure is that the modes are located much
closer to the coordinate axes, compared to e.g. PML and leaky modes.

3.5.2 Example: laser facet

As an example, we take another benchmark problem that has been ex-
tensively studied in numerous papers in the literature ([Ikegamil972],
[Herzinger1993] and [Haes1996] among others). Its aim is to calculate
the reflectivity of the cleaved end facet of a semiconductor laser, with
the geometry of fig. 3.21. The core has a width of 275 nm, and we
consider the incidence of the fundamental TM mode at a wavelength of
860 nm, propagating horizontally to the facet on the right. An electric
wall was used to exploit the symmetry.

In fig. 3.22, we plot the convergence of the reflectivity as a function
of the number of modes, and this for different boundary conditions.
We compare a PEC wall placed at 2 ym from the core, a PML layer with
the same real thickness but with an imaginary thickness of -0.2 um,
and finally a TBC with zero reflection for 45 degrees placed at the same
real distance. All curves show a similar behaviour, i.e. they require
about the same number of modes to converge to their final value. The
reflectivity of the PML and TBC curve is in excellent agreement. The
PEC curve however converges to a wrong value because of parasitic
reflections. We can also obtain the correct result with a PEC, but only
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Figure 3.22: Reflectivity of fundamental TM mode at laser facet.
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if we place the wall much further from the structure. This is of course at
the expense of having to retain a much larger number of modes because
of the larger computational domain. Advanced boundary conditions
like PML and TBC therefore have an additional benefit next to their
increased accuracy: because the walls can be placed much closer to the
structure under study, the calculation times can be drastically reduced
(remember that these scale as N3).

3.6 Comparing the different boundary condi-
tions

We will now briefly compare the different boundary conditions pre-
sented so far. It is clear that hard walls are not very effective in mod-
elling open space. Their only valid use is the exploiting of symmetries.
Leaky mode expansion can give very good approximations with only a
small number of modes, but unfortunately this method is only useful
for long waveguide sections with small index contrasts. PML boundary
conditions are very efficient, and have a much wider domain of applica-
bility. They are reflectionless for any wavelength and provide moderate
to strong absorption, making them very suited to model open space.
Transparent boundary conditions exhibit zero reflectivities for a sin-
gle angle and moderate to high reflectivities for other incidence angles.
The fact that the zero-reflection angle has to be known in advance is
sometimes a disadvantage.

In fig. 3.23, we plot the power reflectivity of some of these boundary
conditions: two PMLs with imaginary thickness of -0.2 and -0.3 ym
respectively backed by a PEC, and two TBCs with zero reflection at
either 30 or 60 degrees. The wavelength considered is 1 pm. The
incident fields are plane waves that are propagative in the direction
normal to the walls.

From fig. 3.23, it can be seen that PMLs exhibit their lowest reflec-
tivity for normal incidence, because this corresponds to the highest
value of k, in eq. 3.7. A larger imaginary thickness obviously means
lower residual reflections. It is clearly visible that the TBCs have zero
reflection for a single angle. If this zero-reflection angle moves to larger
angles (i.e. towards grazing incidence), their reflectivity for the other
angles increases. All the curves share the fact that their reflection ap-
proaches unity for grazing incidence. This means that it will still be
very difficult to absorb modes close to cut-off.

Finally, it has to be noted that nothing forbids us to combine both
PML and TBC in a single boundary condition, in which case the total
absorption in dB is the sum of the absorption of each of the individual
boundary conditions. Such a combination is probably overkill in most
situations, but could be useful for some simulations where extremely
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Figure 3.23: Power reflectivity of different boundary conditions.

powerful absorbers are required.

3.7 Locating complex propagation constants

So far, we have not yet elaborated on the method used to find the zeros
of the dispersion relation in the complex plane. This is nevertheless
very important, because if locating these zeros is too time-consuming,
the benefit of using advanced boundary conditions like PML or TBC is
essentially lost.

A popular method of complex zero finding is the argument principal
method (APM), which was first presented in [Delves1967]. This method
numerically calculates contour integrals of the form

!
Ro= - ¢ +E)y, (3.32)
2rj Jo o f(2)

The coefficients R, can then be used to form a polynomial which
has the same zeros as f within the contour C. Alternatively, one can
use the fact that in the absence of poles, Ry equals the total num-
ber of zeros within C. After successive refinements of C' to find sub-
regions that contain only a single zero, an iterative method (like e.g.
the Muller method [Muller1956]) can be used to locate that single zero
[Derudder2001a]. The routines we used that implemented this method
were due to [Blomme1996], but they were not fully optimised and not
100% robust in all corner cases, especially when zeroes were located
close to the contours.

Therefore, we explored a different technique to locate the modes in
the presence of PML [Bienstman2001d]. Without PML, the eigenmodes
are located on the coordinate axes®, where they are readily found using

3Apart from the rare complex modes, which have to be dealt with seperately.
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e.g. Brent’s method [Press1993]. If we now gradually increase the
absorption in the PML to the desired value, we can track the modes
as they move into the complex plane. This method of root tracking
proved to be quite fast and robust, and has been our preferred method
to locate PML modes.

Finally, it has to be mentioned that there exist other methods for
complex root finding, which seem very promising to investigate and
to implement in a future version of the software. The so-called ADR
method, adapted to waveguide problems in [Anemogiannis1994], uses
integrals of the form

1 2k

The main advantage of this method is that it does not require the
numerical evaluation of the derivative f’, making it significantly faster.
Moreover, it can be used for contours that enclose poles or branch point
singularities, which should make it far more robust that the APM.






Chapter 4

CAMFR

“To err is human, to really foul things up requires a com-
puter.”
Farmers’ Almanac, 1978.

4.1 Introduction

In this chapter we will pay some attention to the software engineer-
ing principles that underly the design of our eigenmode expansion
CAD tool. These aspects are often overlooked, but are nevertheless
of paramount importance if we want to produce modelling tools that
are performant, flexible, and easy to maintain and to extend.

The approach we took was to try and produce a framework where
different building blocks could be recombined at will, preferably even
in ways that were not envisaged originally. It is important to stress that
we did not want to focus the software on a single application, but rather
conceive it as a flexible framework. This is also reflected in its name
CAMFR, short for CAvity Modelling FRamework. The validity of this
framework approach will also be illustrated by the next three chapters,
where we will combine the CAMFR components to model three different
application domains.

In order to achieve such a component level flexibility, it is really
helpful to make use of the object-oriented (OO) capabilities of an ad-
vanced programming language like C++ [Stroustrupl1997]. In the re-
mainder of this chapter, we will discuss some aspects of the object-
oriented paradigm that can aid us in achieving these goals. We present
this material without any claim to originality or completeness, but
merely as an illustration that recently developed software engineering
techniques can be applied successfully to the field of scientific comput-
ing. A considerable fraction of the members of that community are still
relatively conservative and slow to embrace new techniques. Many of

77
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them keep on developing new applications in Fortran77, blissfully un-
aware of the advances in software engineering in the last decades. It is
our hope that this chapter might persuade them to at least give these
new developments some consideration.

4.2 Abstract data types

On many occasions, it can be useful for a programmer to define new
(abstract) data types and to deal with them in a way that is just as
natural as when using the built-in types of a language, like e.g. floating
point numbers or integers.

A typical example of this is performing elementary operations on
matrices, where one would prefer to write

A =B+ 2*C
rather than something along the lines of

matrix_scalar_mult(C, 2, tmp)
matri x_add(B, tnp, A

For relatively simple expressions like these, the difference is still rather
small, but for more complicated formulas, it quickly becomes quite
difficult to construct and to debug expressions using functions like
matrix_add() and their relatives. However, in languages like C or Java,
this approach is the only option. C++ on the other hand allows the
programmer to redefine operators like + and * and to give them the
desired behaviour for the data types under consideration. It is clear
that such functionality greatly benefits the clarity of the code, making
it easier to develop, read and debug.

Other data structures where this is useful are complex numbers,
spatial coordinates or data structures representing the electromagnetic
field. Another perhaps unexpected application lies in the definition of
waveguide structures. In CAMFR, we can write

DBR = air(0) + 20*(GaAs(.070) + Al As(.084)) + air(0)

This definition does exactly what one thinks it does: it describes a
20 period GaAs/AlAs DBR sandwiched between two air layers. The
thickness of the layers is 70 nm for GaAs and 84 nm for AlAs. This
way of defining structures is very concise and yet very clear, especially
when compared to a more traditional and popular approach, where this
structure would be defined in a 42 line text file with each individual
layer specified on a separate line.
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Figure 4.1: Procedural versus object-oriented programming.

4.3 Encapsulation and data hiding

It could be argued that the material presented in the previous section,
however useful it may be, is nothing more than syntactic sugar. Object
orientation however goes much deeper, and presents a fundamental
paradigm shift from the traditional style of procedural programming.

In procedural programming, code is organised as a set of procedures
or functions that call each other and that operate on data (fig. 4.1). This
application data is often visible throughout the entire code and can be
modified at will from within different functions. If not applied carefully,
such an approach can quickly lead to an unintelligible mess, when the
responsibility for certain data is scattered throughout many functions.
Some functions might modify this data in ways that are not expected
by other functions and these unanticipated side effects can make the
code hard to understand or introduce subtle bugs that are tough to
track down. Also, in this approach it is not uncommon that all the
functions have to concern themselves with fairly low-level details, such
as the precise way in which the data is stored in memory.

In object orientation, the code is constructed as a set of objects that
interact in precise and well-defined ways (fig. 4.1). Objects can be seen
as abstractions of real-life entities. They exhibit a certain behaviour,
i.e. they can provide certain services to other objects. These services
are expressed as a set of functions (or ‘'methods’ in OO parlance) that
the outside world can call on this object. To do their work, objects also
have some internal data, but this data should not be made accessible
directly to other objects. Rather, they should be given the information
they need through methods, as part of the functionality provided by the
object that owns the data. In this way, the object’s data is encapsulated
and hidden from the outside world, which prevents the kind of direct
tampering that is typical for procedural programming.

To make this less abstract, in CAMFR e.g. we have objects that de-
scribe Waveguides and other objects that model the Interface between
two Waveguides. The Interface object will obviously need to know about
the modal propagation constants in the Waveguides, and will kindly
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ask the Waveguides this information by calling the appropriate func-
tion. The Interface object should not need to concern itself with the
internal details of how the propagation constants are stored inside the
Waveguide object. It shouldn’t care less if the data is read from disk,
from memory, or calculated on the fly. Conversely, a Waveguide should
not need to know about the internal details of an Interface, and should
continue to work equally well if Interface suddenly decides to use a
different algorithm to calculate its scattering matrix. This approach
makes it a lot easier and transparent to implement certain optimisa-
tions. For example, Interfaces between two uniform Waveguides have
diagonal scattering matrices. Interface can then use more efficient al-
gorithms and storage schemes, without us having to change anything
to the other classes that use Interface.

In summary, the OO approach strives for a clear decoupling of the
‘what’ from the 'how’. Other objects expect certain information or be-
haviour from an object (what’), but exactly how’ this functionality is
realised is irrelevant for them. The software should be constructed as
a set of objects, each of them with a clearly defined responsibility. They
do not interfere in the internal workings of other objects ('separation
of concerns’). These objects should be designed such that they inter-
act as little as possible, but when they interact, they should do so in
well-defined ways, without any unexpected side effects.

These observations might seem trivial, but many programs continue
to be written that do not follow these principles. They scatter the re-
sponsibility for functionality over a large set of unrelated functions that
can interact in complicated ways. For very large projects, this can re-
sult in a maintenance and debugging nightmare.

4.4 Polymorphism

Let us return to our example of Waveguides and Interfaces. Obviously,
we will want to model different kinds of waveguides, like SlabWaveguide
or CircWaveguide, that each take care of the details specific to a given
geometry. However, we know from the treatment in chapter 2 that the
Interface’s mode matching algorithm can be formulated without any
reference to the geometry. As long as Waveguides can give Interface
the information concerning the overlap integrals, Interface can do its
job and does not have to know anything about the underlying geometry.

A language like C++ offers us the tools to express this kind of be-
haviour. We can define an abstract class Waveguide, that outlines all
the functionality the outside world can expect from it, like getting infor-
mation on propagation constants or on overlap integrals. This abstract
class only concerns itself with the 'what' question, it does not provide
any implementation details. These details (the 'how’) are filled in by
SlabWaveguide and CircWaveguide, according to their geometry. Slab-
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Waveguide

SlabWaveguide CircWaveguide

Figure 4.2: The abstract class Waveguide.

Waveguide and CircWaveguide are said to inherit from Waveguide, i.e.
they are a specialisation of a more general class Waveguide (fig. 4.2).

Inheritance is a very powerful mechanism to express generalisation-
specialisation relations, but it is especially useful in combination with
a feature called polymorphism. This allows an abstract class like Wave-
guide to dynamically take the form of a SlabWaveguide or a CircWave-
guide at run time. This means that we can implement the mode match-
ing in Interface entirely in terms of abstract Waveguides. The class
Interface does not even have to know that there exist classes like Slab-
Waveguide. During the execution of the program, the C++ run time
environment will make sure that the function calls on the abstract
Waveguide will get passed to the correct concrete class.

The main benefit in this is a substantial amount of code reuse. If
we decide in the future to implement an EllipticWaveguide, also derived
from Waveguide, we do not have to change anything in the implemen-
tation of Interface. As far as Interface is concerned, EllipticWaveguide
is just another Waveguide, just like SlabWaveguide or CircWaveguide.
This makes the Interface class extremely future-proof.

This separation between algorithms that are geometry-dependent
and those that are geometry-independent is pervasive throughout our
software, and is precisely what gives CAMFR its framework properties.

Another abstract class is that of the Scatterer, which is defined as
anything that has a scattering matrix, regardless of its geometry. An
Interface is actually also a Scatterer, just like the class Stack, which
describes a sequence of Waveguides separated by Interfaces.

The abstract class Scatterer is then used by the extensions that we
will describe in the next three chapters: calculating band structures of
an infinite periodic repetition of a Scatterer, finding the lasing modes of
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Figure 4.3: Concept diagram for CAMFR.

a Cavity between two Scatterers, or calculating the response of a Cavity
to an arbitrary Source. Once again, we stress that these routines only
have to be implemented in terms of abstract scatterers, without any
reference to the underlying geometry, being it a currently implemented
geometry or one that was not envisaged at the time of the original de-
sign. This is a significant advantage over a non-OO paradigm, where
e.g. the effort of implementing a band structure routine would have to
be duplicated N times to write a slightly different routine for each of
the geometries.

Fig. 4.3 gives a general overview of how different classes and aspects
of CAMFR interrelate. It also shows the separation between geometry-
dependent and abstract entities.

4.5 Abstraction penalty

An often heard criticism about the object-oriented approach is that
it can lead to slower programs, because the abstraction mechanisms
induce a certain amount of overhead (the so-called abstraction penalty).
However, there are a number of reasons why this is not as problematic
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as one would first think:

e As compiler technology continues to evolve, we can expect the
influence of the abstraction penalty to reduce. We already experi-
enced this in practice, where new compiler releases improved the
performance of CAMFR without us having to do any recoding.

e Run time is not the only relevant figure of merit in software engi-
neering. Other aspects to take into account are ease of develop-
ment, whether or not the code is hard to understand and to debug,
and if it accommodates future extensions and maintenance with-
out much problems. Object-orientation can be a clear win with
regard to these issues.

In conclusion, one could say that in spite of the abstraction penalty, OO
is definitely the most future-proof approach when developing software.
We can contrast this to the other end of the spectrum, where we would
write software in a low-level language like assembler. This would most
definitely result in improved performance, but developing the software
would take exponentially more time. Moreover, this work would only
have a limited useful lifespan, as future versions of the processor or
entirely new chip architectures would render it obsolete.

4.6 Computational steering

We already mentioned that CAMFR is constructed as a set of commu-
nicating objects or components. However, to run a simulation, it must
be specified how these separate pieces should work together in order
to obtain results.

Originally, this was done by writing a separate C++ file for each sim-
ulation, a file that 'glued’ all these components together to describe the
structure to be modelled and the calculations to be performed. While
this approach worked, it still presented a number of problems. The
biggest drawback was that each C++ file specifying a particular simu-
lation had to be compiled before it could be used. This could take a
long time, such that for small simulations the compile time could be
longer than the actual run time. Clearly, a faster and more flexible
solution was called for.

A very popular approach in these kinds of simulations is to describe
the structures to be modelled in textual input files that are read in and
processed by the main program. These input files usually take the form
of a long series of numbers, without any semantics attached to them.
This means that accidentally omitting a number or changing the posi-
tion of two numbers can lead to hard-to-track-down problems, if the
software desperately tries to analyse materials with a refractive index



CHAPTER 4. CAMFR 84

z < >

Figure 4.4: Waveguide with a widening and narrowing core width.

of 500 nm. Additionally, when we want to sweep a certain parame-
ter of the simulation, separate input files have to be created for each
parameter value, a process that is tedious and error-prone.

What is really needed is an interpreted scripting language (as op-
posed to a compiled one) that has all the expressiveness of C++ to cre-
ate e.g. loops and to use compact expressions to define structures
as in section 4.2. We could design and implement such a scripting
language from scratch, custom-made for CAMFR, but this would be
time-consuming and beyond the true focus of our work. Rather, true
to the principle that programming is judiciously applied laziness, we
chose to integrate CAMFR in the existing scripting language Python
[van Rossum2000]. This scripting language is inherently based on
object-oriented principles, which makes that it can be seamlessly in-
tegrated with an OO framework like CAMFR. Python also boasts a very
clean syntax and a gentle learning curve. Moreover, many other pieces
of software besides CAMFR have been wrapped in Python, which makes
it possible e.g. to perform a simulation in CAMFR and send the results
to Matlab for visualisation, all from within the same script file. In other
words, Python is acting as a glue language that 'steers’ the C++ CAMFR
framework and other software packages, and that can even do so in an
interactive way.

The Python approach proved to be very valuable to increase the flex-
ibility and improve the turn-around time and visual feedback from the
simulations. As an illustration, we present here a Python script to cal-
culate the scattering caused by an abrupt widening and narrowing of
the width of a GaAs waveguide (fig. 4.4). The reflectivity of the fun-
damental mode back to itself is calculated as a function of the length
of the wider section. The results are saved to a file and imported in
Matlab to visualise them.
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Cal culate reflection caused by embedding a section with
a 0.7 umwi de core in a waveguide with a core width

of 0.5 um

Do this for different lengths of this section, wite the
results to a file and plot themin Matlab.

3O3R HOHH

fromcanfr inport *

# Set constants.

set _| anbda( 1. 5) # Set wavel engt h.

set _N(20) # Set nunber of nodes used.
set_pol arisation(TE) # Set pol arisation.

# Define materials.

GaAs
air

= Material (3.5)
= Material (1.0)

# Define wavegui de sections.

nor mal
thick

Slab(air(2.0 - 0.1j) + GaAs(0.5) + air(2.0 - 0.1j))
Slab(air(1.9 - 0.1j) + GaAs(0.7) + air(1.9 - 0.1j))

# Calculate reflection of the fundamental node for different
# lengths of the thick section.

outfile = open("outfile","w)

L =00

while L <= .500:
stack = Stack(normal (0) + thick(L) + normal (0))
stack. cal cRT()
print >> outfile, L, abs(stack.R12(1,1))
L += .010

outfile.close()

# Start Matlab and plot the results.

frommatlab inport *

m = matl ab()

m"load 'outfile' ™)
n("plot (outfile(:,1),outfile(:,2))")

4.7 Three-tier architecture

The three-tier or three-layer architecture is a logical extension of the
information-hiding principle and the separation of interface from im-
plementation. It identifies three commonly used layers in software,
and suggests that they should be decoupled as much as possible. They
should be designed and implemented in isolation, without relying on
any assumptions concerning the other layers. This facilitates modu-
larity and code reuse.
The three layers in question are:

e User interface. This can be a graphical user interface, a scripting
language, or any other interface.

e Core logic. In the case of CAMFR, all the algorithms implementing
the eigenmode expansion model.
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e Low-level numerical routines!. For CAMFR, this is e. g. the LAPACK
library that performs linear algebra calculations.

These layers should be orthogonal to each other as much as possi-
ble. This means that changing the user interface from a C++ based
approach to Python scripts can happen with zero effect on the rest of
the code. Also, the core logic should be unaware of the precise nature
of the low-level numerical routines. This is accomplished by creat-
ing wrapper functions around these routines and by having the core
logic call these wrapper functions rather than the underlying numeri-
cal code directly. For legacy Fortran numerical routines, this also has
the additional benefit that they can be wrapped in C++ functions with
a less arcane systax than the underlying original Fortran routine. If we
decide later on e.g. to use linear algebra routines optimised for multi-
processor systems, we only have to change the wrapper code, which is
located in a single well-defined source file. We do not have to modify the
core logic, where calls to the numerical routines are typically scattered
throughout many different source files.

4.8 Final remarks

Finally, we want to stress that using an OO-language like C++ is no
guarantee for obtaining ‘good’ software. OO is no ’silver bullet’ (see e.g.
[Brooks1987]) that instantly solves all software engineering problems.
It is perfectly possible to write 'bad’ code in C++, just as one can also
write 'good’ code in C. A shrink-wrapped set of methodologies can never
be a substitute for hard work and experience.

More specifically with respect to scientific computing, there is an
entire area of expertise that we can only briefly touch upon in this work,
and that is the field of numerics and numerical stability. For example,
a naive and straightforward implementation of the dispersion relation
given by eq. 2.92 will soon turn out to be useless due to numerical
instabilities. Identifying and correcting these can be a time-consuming
process and requires special attention and care. This kind of work is
nevertheless crucial for the success of a numerical model.

IFor business software, this last layer is instead the storage layer, that deals with how
the relevant information is stored in a database system.



Chapter 5

Photonic Crystals

“The purpose of computing is insight, not numbers.”
R.W. Hamming

In this chapter, we will use the basic building blocks provided by our
tool CAMFR to model 2D photonic crystal devices. First of all, we will
show in section 5.1 how to calculate the band diagrams of 1D periodic
structures. We will also discuss how these techniques can be applied
to 2D crystals. In section 5.2, we will introduce line defects in 2D crys-
tals, and calculate the properties of the waveguides formed in this way.
We will show how these waveguides can be used to create very compact
bends and splitters. Section 5.3 will focus on semi-infinite crystals
and will investigate some of the misconceptions in literature regarding
the reflection characteristics of these crystals. To end this chapter, we
will briefly mention in section 5.4 some of the CAMFR simulations per-
formed by other people in our department on various photonic crystal
devices.

5.1 Band structures

5.1.1 Calculating 1D band structures

Consider the structure from fig. 5.1, which consists of an infinite num-
ber of repetitions of the same basic period in the z-direction. The struc-
ture itself can be two-dimensional, but for the moment we restrict our-
selves to 1D periodicity. We know from Bloch theory [Bloch1928] that
the solutions of the wave equations in such a periodic medium take the
following form:

Yr, (2) =€ 7w (2) (5.1)

87
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Figure 5.1: 1D periodic medium.

Here, ¢ represents any component of the electromagnetic field and
uy, is a function with the same periodicity as the crystal, i.e. uy, (z +p) =
uk. (2). There are different functions ¢ corresponding to each wavevec-
tor k., which is why we write k£, as an index to ¢ and u.

To find the unkown solutions k. and 1, we start by writing eq. 5.1
in a different way:

Y. (p) = e 7P 4y (0) (5.2)

Once again, we expand the electromagnetic field in terms of the
eigenmodes in each individual layer. We retain N modes in this series
expansion. Since the total field consists of both a forward and a back-
ward propagating component, we can represent ¢ in z = 0 by a 2N x 1
column vector:

we[g] (5.3)

Here, F' and B are N x 1 column vectors representing the forward
and backward propagating fields respectively.

We know from chapter 2 that we can construct a transfer matrix
of the basic period that relates the forward and backward propagating
fields on both sides:

A B [ F(z=0)] [ F(z=p)
{C D]'_B(;;:O)]‘[B(z:p)] 5.4)
Combining this with eq. 5.2, we get
{é g-. g]:e—jkzp.{g] (5.5)

This means that the vectors describing the field profiles are the
eigenvectors of the transfer matrix. Using the eigenvalues A of this ma-
trix, we can calculate the Bloch vectors k, from A = e 7*-P[McRae1968]
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[Gralak2000]. Because of the multi-valued nature of the complex expo-
nential function, the k. values are only defined up to an integer multiple
of 2 /p. We can therefore choose to restrict the values of k, to the range
+7/p, which also happens to be the range corresponding to the first
Brillouin zone of a 1D periodic structure.

Since the transfer matrix is a 2N x 2N matrix, we will find 2N Bloch
modes. It turns out that half of these have % (k,) > 0, the other half is
the mirror image with  (k,) < 0, so that we find only N modes in the
irreducible Brillouin zone.

If for a given frequency (or wavelength), we find only evanescent
Bloch modes (for which S (k) # 0), this frequency is said to lie within a
band gap. In a band gap, no propagative modes can exist and any light
incident on the structure from the outside will be completely reflected,
because it can find no modes to couple to.

5.1.2 Inverting 7, using SVD

Let us recall the explicit form of the transfer matrix from eq. 2.46:

_ | T2 — Ry - T -Ris Ry - T35

T - -
_T211 “Rio T211

(5.6)

We already mentioned that T»; can become singular in the presence
of higher order modes. So, in order to calculate band diagrams, we
somehow need to take care of this problem. We will therefore now dis-
cuss a method to invert nearly singular matrices using singular value
decomposition (SVD).

SVD is the numerical applications programmer’s best friend: not
only does it diagnose the presence of singularities in matrices, in many
cases it will also provide a useful numerical answer when performing
operations on these matrices. SVD is based on the fact that any square
complex matrix A can be written as [Press1993]

A=U-%.-VH (5.7)

Here, U and V are unitary matrices, i.e. their hermitian conjugate
is also their inverse (I is the unit matrix):

U.UHE = 1 (5.8)
v.vil = 1 (5.9)

The matrix ¥ is a diagonal matrix containing non-negative real num-
bers:

Y = diag (o;) (5.10)
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These numbers are called the singular values of A and are ordered
in decreasing magnitude, i.e. o1 > 02 > ... > on.
Using this decomposition, we can easily form the inverse of A as

i

Al =V - diag <i> .U (5.11)

When A is mathematically singular, one or more of the ¢;’s will be
identically zero and the previous equation will fail. If A is not math-
ematically singular, but numerically very close to it due to round-off
errors, one or more of the o;’s will be very small, on the order of the
machine precision. This means that SVD can diagnose how close to
singularity a matrix is. In this context, one defines the condition num-
ber of A as the ratio of the largest singular value to the smallest one:

_ maxi (o) (5.12)
min; (o;)

The smaller C, the better A is conditioned numerically.

Not only can SVD diagnose ill-conditioned matrices, it can also be
applied to give a useful numerical approximation of A~!. To do this,
we zero the elements of diag (1/0;) in eq. 5.11 when the magnitude of
o; is smaller than some threshold, effectively replacing 1/0 = oo by 0.
This might seem like a strange approach at first, because this zeroing is
equivalent to throwing away information present in the original matrix.
However, it turns out that the information we throw away is precisely
the one most affected by round-off errors. So, we keep only the ’stable’
part of the problem and dispose of the 'unstable’ part. Physically, this
means throwing away some of the contributions of the higher-order
modes, which are numerically unstable in the T-scheme because of
their strong damping.

This engineer’s explanation can of course be grounded more math-
ematically, but for that we refer the reader to [Press1993]. The gist of
the matter is that eq. 5.11 constructs a kind of pseudo-inverse in the
least-squares sense, because the columns of U span the range of A,
and those of V its nullspace.

5.1.3 Example: DBR

As a first trivial example, we calculate the band structure of a DBR
stack, a sequence of planar layers with a refractive index alternating
between a high and a low value. For these two refractive indices, we
take n; = 3.4 and ny, = 1. If we design the structure for high reflectivity
at A = 1 um, the layers should be a quarter wavelength long at A = 1 um,
meaning lengths of d; = 1/4n; and d» = 1/4n,. The period of the stack
is therefore p = d; + dy = 0.324 ym in this case.
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Figure 5.2: Band diagram of a DBR stack for normal incidence.

Fig. 5.2 shows the calculated band diagram of the DBR for normal
incidence. The design wavelength of A = 1 um corresponds to a nor-
malised frequency f = p/A = 0.324. We clearly see that there is a band
gap in this region. Light incident with a frequency in the gap will find
no propagating modes to couple to, and will therefore be fully reflected.

5.1.4 Example: 2D square lattice

We will now try to use this method to calculate the band structure
of a 2D square lattice of square dielectric rods with n = 3.4 in an air
background (fig. 5.3). The ratio of the side of the square rods to the
crystal period is 2r/a = 0.25. This crystal is known to have a band gap
for TE! polarised modes, i.e. when E is oriented parallel to the rods,
perpendicular to the plane of the figure.

We will first concentrate on Bloch modes propagating along the I'X
crystallographic direction, indicated by z in fig. 5.3. We take a unit
cell with length a as drawn on that same figure. For lateral boundary
conditions, we place PEC walls parallel to the z-axis. These will act as
mirrors and model the infinite extent of the crystal in the lateral di-
rection. In order to get all modes, we also need to perform a seperate
calculation with two PMC walls. The results from these two calcula-
tions are brought together in fig. 5.4. The k.-axis is labeled with the

In other works, e.g. [Joannopoulos1995], this is called the TM polarisation.
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Figure 5.3: Square lattice of dielectric rods
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Figure 5.4: Band structure along I'X for the TE modes of a square
lattice.
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Figure 5.5: Square lattice with unit cell in I'M direction

high-symmetry points of the Brillouin zone of the square lattice: k., =0
corresponds to the I'-point, k., = 7/a is the X-point. When we compare
fig. 5.4 to e.g. the results in [Joannopoulos1995], we obtain a very good
agreement. The band structures from [Joannopoulos1995] are calcu-
lated with the plane-wave method [Meade1993], which is based on vari-
ational principles and expands the fields in plane waves rather than in
eigenmodes. Compared to the plane-wave method, the technique pre-
sented here seems to be very computationally efficient: the results from
fig. 5.4 were obtained using a mere five eigenmodes, while plane-wave
methods typically require hundreds if not thousands of plane waves.

Let us now consider modes that propagate along I'M, i.e. under
an angle of 45 degrees with I'X. Fig. 5.5 shows the unit cell we have
to construct in this case. To calculate the band structure along this
direction, we can exploit the mirror symmetry of the unit cell along
the dashed line. Both of these half unit cells have of course the same
scattering matrices, but with the medium indices 1 and 2 interchanged.
We made a staircase approximation of the rods, using 32 slices for half
a unit cell.

From fig. 5.5 we also see that the unit cell has a period p of v/2a.
We know from the description in section 5.1.1 that our algorithm will
yield propagation constants in the range +7/v/2a. But let us now recall
the layout of Brillouin zone of a square lattice in fig. 5.6. From this
figure, we can deduce that the distance I'M is v/27/a, which is twice as
large as our maximum attainable k-vector My = 7/+/2a. Bloch theory
then dictates that modes beyond Mr will be folded back in the range
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Figure 5.6: Reciprocal lattice and Brillouin zone of a square lattice.

I'My (F as in ’Folded’), as indicated in fig. 5.7. For clarity, we have
also plotted the unfolded band diagram, obtained simply by mirroring
the bands between I'Mp along the Mp-axis. As a guide to the eye,
the mormal’ band structure (as would be obtained by e.g. the plane-
wave method) is plotted in full lines, its mirrored copy in dashed lines.
Our algorithm finds both the dashed and the full lines in the I'My
range. The fundamental reason for this complication is that there is not
necessarily a connection between distances in a 2D reciprocal lattice
and the reciprocal lattice of a 1D periodic structure we impose on a 2D
periodic structure. This issue will be even more important when we
study triangular lattices.

To end this section, we want to make a final remark with regard
to the lateral mirroring walls that express the infinite nature of the
crystal. One could rightfully ask why we choose the same type of wall
on both sides of the cell. In fact, if we place a PEC wall on one side
and a PMC wall on the other side, we do find modes, but they are of a
different nature than the ones found with the same type of wall on both
sides. We illustrate this with the transverse (z-direction) mode profiles
sketched in fig. 5.8. For a TE mode, a PMC wall imposes a maximum of
the electric field, while a PEC wall forces E to zero. In the case of PMCs
on both sides of the unit cell, all cells have equal electric fields, both in
amplitude and in phase. For the mixed PMC/PEC case, half of the cells
have positive fields, the other half negative fields. This however results
in modes with a lower symmetry: if we pick a row of cells at random, it
is impossible to predict which of the two groups the row will belong to.
For that reason, we do not include them in our band plots. They also
do not show up in plane-wave calculations.
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Figure 5.7: Band structure along I'M for the TE modes of a square
lattice.
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Figure 5.8: Influence of walls on symmetry of TE modes.
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Figure 5.9: Triangular lattice of air holes.

5.1.5 Example: 2D triangular lattice

In this section, we will calculate the 2D band structure of the crystal
from fig. 5.9. It is a triangular lattice of round air holes in a dielectric
matrix with e, = 13. The ratio of the rod radius to the period is r/a =
0.48. This structure is known to possess a complete band gap, both for
TE and TM polarisations and for any in-plane propagation direction.

Fig. 5.9 also shows the unit cells used to calculate the band struc-
tures in the I'K and I'M directions. The reciprocal lattice is drawn in
fig. 5.10. It is a triangular lattice as well, but with period 27/a and
rotated over 90 degrees. From these figures, we can calculate that the
distance I'K is 27/ v/3a, while the maximum Bloch vector our algorithm
will yield in that direction is only 7/a. For the I'M direction, these num-
bers are 7/a and 7/+/3a respectively. This means that the folding-over
at Ky and My will occur at roughly 60% of the Brillouin zone, as shown
in the actual calculated band structures (fig. 5.11).

For comparison purposes, we give in fig. 5.12 the band structure as
computed by the plane-wave method [Joannopoulos1995]. It scans the
full outer edge of the Brillouin zone, including the KM edge. Because
Ky and My lie at about 60% of the edge of Brillouin zone, the folding-
over process will not reach back to the I'-point, as was the case in the
previous section, but only to the points K' and M’, indicated for the
lowest order TM branches on fig. 5.11. However, between K and M/,
the algorithm still finds branches which cannot be accounted for by the
folding-over process. Careful comparison with fig. 5.12 however reveals
that these branches behave just like the modes along KM, suggesting
that they are formed by the projection of these modes along either the
I'K or the I'M direction.
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Figure 5.10: Reciprocal lattice and Brillouin zone of a triangular lattice.
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Figure 5.11: Band structure of a triangular lattice.
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Figure 5.12: Band structure of a triangular lattice, as per
[Joannopoulos1995].

So, in summary, the algorithm finds two kinds of branches for the
triangular lattice case. One set of branches corresponds to the modes
in the range 'Ky or 'Mp in the regular band diagram. The other set of
branches has a different interpretation in the range I'K' (or 'M') than
in the range K'Kr (or M'My). In the former case, they correspond to
the modes along KM in the regular band diagram. In the latter case,
they are the folded-over modes that lie in the range KK (or MgM) in
the regular diagram. Fig. 5.11 therefore contains exactly the same
information as fig. 5.12, but presented in a different way.

Finally, we want to mention that the method presented here fails
when we want to calculate the mode structure at points inside the
Brillouin zone, for directions for which no suitable unit cell can be
found. However, since we are mostly interested in the location of the
band gap, which is adequately described by the edges of the Brillouin
zone, this is no serious drawback.

5.2 Photonic crystal waveguides

If we introduce a line defect in a photonic crystal, e.g. by removing
a row, we can create a photonic crystal waveguide (fig. 5.13). Light
captured in this line defect finds itself surrounded on both sides by a
highly reflecting crystal which it cannot penetrate, so it has no other
option than to follow the line defect.

Fig. 5.14 shows the dispersion relation of the fundamental TE wave-
guide mode when we remove a row of rods from the square lattice of
dielectric rods in air we studied in section 5.1.4. We see that this wave-
guide mode has a frequency inside the band gap, which is precisely
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Figure 5.13: Photonic crystal waveguide.
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Figure 5.14: Band diagram of a photonic crystal waveguide, made by
removing a row of dielectric rods in the I'X direction in a square lattice.
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Figure 5.15: Field profile of a photonic crystal waveguide mode propa-
gating in a finite crystal.

what one would expect because outside of the band gap the crystal is
not highly reflecting. The structure is taken to be finite in the trans-
verse direction, with three rows of rods on either side of the defect.
Because this structure now has a 1D periodicity, the technique from
section 5.1.1 to calculate the Bloch modes is useable without any com-
plications.

In fig. 5.15, we show the electric field of the fundamental defect
mode at f = 0.4 as it is propagating in a finite structure with 10 periods
in the horizontal z-direction. We see that the mode is indeed confined to
the line defect. It is quite remarkable that this waveguide guides light in
air, rather than in a high index material as is the case in conventional
waveguides.

It is worth pointing out that fig. 5.15 shows the entire computa-
tional domain used in the calculations. Other methods (e.g. the FDTD
method) place a point source inside the waveguide to excite it. This re-
quires a rather long stretch of waveguide to achieve an equilibrium field
distribution containing only the desired mode. In eigenmode expansion
methods things are different. Using the techniques from section 5.1.1,
we can first calculate the expansion coefficients of the forward and
backward fields that make up the Bloch mode in a waveguide that is
infinite in the z-direction. We can then use the forward propagating
component as the incident field to excite the left hand side of the finite
structure in fig. 5.15. As we can see, this gives us a near equilibrium
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field distribution immediately, without the need for a larger computa-
tional domain.

The explicit knowledge of the Bloch mode field profiles in the infinite
structure also allows us to calculate quite easily the reflection coming
from the right end facet of the waveguide, where it opens up into free
space. FDTD calculates this reflection by sending a short pulse through
the structure and by looking at the time evolution of the fields. In or-
der to spatially distinguish the reflected pulse from the incident pulse,
the computational domain has to be taken much larger than the actual
structure of interest, which dramatically increases calculation times
[Mekis1996]. Using eigenmode methods however, we can simply calcu-
late the backward propagating field at the entrance of the finite struc-
ture and compare it to the backward field in the infinite structure. The
difference between these two fields is then due to the reflections occur-
ring in the finite structure. Because of standing wave effects, we have
to average this reflection over several structures containing different
numbers of periods in the z-direction. The end results of these calcula-
tions show that the termination of the waveguide reflects no more than
2% of the incident light. This is not surprising, given the fact that most
of the light is trapped in an air core and does not have to cross a re-
fractive index step in order to reach the semi-infinite air exit medium.
This contrasts sharply with the 30% reflectivity at the end facet of a
traditional semiconductor waveguide.

To illustrate the ability of CAMFR to deal with more complicated
photonic crystal structures, we show in fig. 5.16 the field profiles in
a 3dB splitter followed by a 90 degrees waveguide bend. In a very
small area, the incident light is split into two equal fractions and guided
around a very sharp bend. All this clearly shows the potential of pho-
tonic crystals when it comes to integrating optical functionality in an
extremely compact way. The bends can be made within a very small
area (a few square microns), which compares very favourably to tradi-
tional waveguide bends in PICs, which have a radius of curvature of
about 1 mm.

We now give some execution times for this splitter simulation in
order to quantify the speed of eigenmode expansion methods. These
times were measured on a 250 MHz Sun UltraSparc processor, which
corresponds to a medium-end PC by today’s standards. Still, using 50
modes, it takes no more than two seconds to calculate the Bloch vectors
and their field expansion coefficients of the infinite waveguide. Plotting
the spatial field profile with a resolution of /20 using the slow but ac-
curate S-type excitation formalism takes about two minutes. Memory
requirements are only a few megabytes. Similar calculations in FDTD
would take at least an order of magnitude more resources, both in
terms of time and memory. Moreover, for many simulations, the spatial
field profile is not required. For example, when calculating the wave-
guide end-facet reflectivity, the knowledge of the expansion coefficients
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Figure 5.16: 3dB splitter in a photonic crystal.

is sufficient, while FDTD always needs to construct the full field profile
and afterwards extract the reflection coefficient from it. In eigenmode
methods, it is rather the other way around: a lot of useful information
can be derived from the quickly calculated expansion coefficients, with
the slighty slower spatial field profiles being optional.

5.3 Semi-infinite crystals

5.3.1 Reflection from semi-infinite crystals

Let us return to the eigenvectors of the transfer matrix we calculated
in section 5.1.1. For simplicity, we will assume a 1D periodic medium
consisting of layers that are uniform in the lateral z-direction. In this
case, the reflection and transmission matrices of the basic period are
diagonal, which means that in every layer the different modes (or differ-
ent angles of incidence) are uncoupled. We can therefore consider each
mode seperately, so that we can describe its reflection and transmis-
sion by scalars. This lightens our notational load, but the conclusions
we will derive in this section are equally valid for the more general case
involving matrices rather than scalars.

We already mentioned that the eigenvalues and eigenvectors of T
can be divided into two groups according to the direction of propagation
of the corresponding Bloch mode? (as determined by the sign of its

2In this section, it is important not to confuse Bloch modes with layer modes. Bloch
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Figure 5.17: Reflection from semi-infinite crystal.

group velocity). In the case of uniform layers we consider here, T is
a 2 x 2 matrix, with one eigenvector corresponding to a positive group
velocity, the other to a negative one. We can collect the eigenvectors in
a 2 x 2 matrix E, where each column represents a separate eigenvector:

E= (5.13)

Bt B~

Ft F]

It is often found in literature [Nicorovici2001][Ctyroky1998] that
the ratio BT /F*can be considered as the reflection coefficient of the
forward layer mode at a semi-infinite repetition of the basic period
(fig. 5.17). While this may be plausible at first sight, a thorough justi-
fication for this claim has to our knowledge never been presented. We
will investigate this here in more detail, and at the same time show that
this expression is not valid under all circumstances.

Suppose we have an arbitrary structure with the following transfer

matrix:
FE,| | A B Fi

The reflection of this structure as seen from medium 1 is r = —C/D,
which can be seen by setting /7 =1, By =r, Fr, =t and B, =0.

We will now calculate the reflection from a finite number n of rep-
etitions of the basic period and try to take the limit as n — co. We
start by writing the transfer matrix T of the basic period in terms of its
eigenvectors E and eigenvalues A:

T=E-1 7

A0 ]-El (5.15)

Here, \; correponds to the forward Bloch mode and can be written
as \; = e /%<7 . Similarly, \, = et7*<P.

modes are related to an infinite periodic structure, while layer modes are the eigenmodes
of each z—invariant layer in the structure. In each layer, we expand the Bloch modes on
the layer modes of that particular layer.
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The transfer matrix T, of n periods can be derived quite simply from
eq. 5.15:

—_mn — A? 0 -1
T, =T _E-{ 0 )\g]-E (5.16)

This is in fact another way of quickly calculating the scattering prop-
erties of a periodic stack (see section 2.4.3), but we prefer not to use it
in practice because of the numerical instabilities associated with cal-
culating T,;' for the determination of T.

Using the explicit form of the eigenvectors from eq. 5.13, we can
write

C[FY P o [/ 0] 1 B -F-
T”_[B+ B‘]'Az'[ 0 1] dwg | B+ rt+ | G170

Since we are only interested in the ratio —C/D, we can factor out
AY/detE from eq. 5.17. If we assume that \; < A;, which will be the
case if the forward Bloch mode is damped exponentially, (\;/)2)" will
tend to zero as n — oco. This means that

Ft F- 0 0
SRy 519
In this case r,, is indeed

C -B~Bt Bt
ro =5 =~ Hpr = FF (5.19)

However, for lossless Bloch modes k. is purely real and |A;/\z]| = 1.
In this case, the limit (A\;/)\2)" as n — oo is undetermined! This means
that it is not possible to define the reflectivity from a semi-infinite stack
under such circumstances. However, it turns out that B+/ Ftis still a
good measure for the average reflectivity as a function of the number of
periods n. This is illustrated in fig. 5.18, where we plot the amplitude of
the reflection coefficient for the DBR from section 5.1.3 at a wavelength
of 1.7 pym. The reflection exhibits a complicated, but periodic behaviour
as a function of n. The average of this curve is well approximated by

Foo-

5.3.2 Semi-infinite crystals as boundary conditions

When simulating photonic crystal devices, we have so far only consid-
ered crystals with a finite number of periods in the lateral direction.
However, it is tempting to try and devise a scheme whereby one could
express that the crystal has in fact an infinite number of lateral peri-
ods. One approach of doing this would be to use boundary conditions
to describe this semi-infinite crystal. This is illustrated in fig. 5.19, for
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Figure 5.18: Reflection at a periodic structure as a function of the
number of periods.

a single z-invariant waveguide that makes up an arbitrary 2D struc-
ture. For each angle of incidence, we can calculate the (average) reflec-
tion coefficient of such a crystal using the technique from the previous
section. It is then straightforward to plug this information in the gen-
eral slab waveguide dispersion relation from section 3.1. In this way,
the semi-infinite crystal is reduced to a generalised boundary condition
with an angle-dependent reflection coefficient.

This could have several advantages. First of all, the edge effects due
to the finite lateral dimensions of the crystal could be eliminated. Sec-
ondly, the computational volume could be much smaller, which would
translate in faster run times. Unfortunately, this technique has a num-
ber of drawbacks, which makes it unsuitable for practical purposes.

The first drawback is that the modes of this slab waveguide are not
orthogonal anymore: we have seen in section 3.5.1 that the only angle-
dependent boundary conditions that give rise to orthogonal modes are
the transparent boundary conditions. Still, this is not an unsurmount-
able problem, because orthogonality is not required for the mode-match-
ing procedure. Eq. 2.29 and 2.30 describe a 2N x 2N linear system
from which the R and T matrices can be determined jointly. Calcula-
tion times however will be longer than for the case of orthogonal modes,
where we only have to solve an N x N system.

The second problem is altogether more serious, because we were
unable to achieve convergence with this method, e.g. when we tried to
find the Bloch modes of a defect waveguide in a triangular lattice. The
most likely explanation for this is that the modes of the slab with these
boundary conditions do not form a complete set. This is plausible from
the interpretation of ro, we gave earlier. Under some circumstances, r,
is the average reflection of the crystal, because the oscillating nature
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Figure 5.19: Boundary conditions describing semi-infinite periodic me-
dia.

of r, makes it impossible to define a limit value for n — co. It turns out
that in these regions of the dispersion relation, no modes are found for
the infinite crystal, while for finite crystals there are a number of modes
in this region. For different values of n, these modes oscillate within
this region without any limit value. This is illustrated in fig. 5.20, which
compares the dispersion relations for an air core surrounded on both
sides by the DBR from section 5.1.1. The wavelength is once again
1.7 pm and the air core is twice as thick as the air layer in the DBR.
The dispersion relation for the semi-infinite crystal has no zeros in the
region shown, while those for » = 10 and n = 11 periods clearly exhibit
zeros in this range. These modes are obviously needed to describe the
fields in finite crystals. The fact that they do not show up in infinite
crystals is most likely what makes the set incomplete.

5.4 Other photonic crystal simulations

In this section, we briefly present some simulation results on pho-
tonic crystal related devices obtained by some of our colleagues using
CAMFR. They form the core of their ongoing Ph.D. work, so we will only
briefly discuss the main conclusions here.

Ir. Dirk Taillaert used CAMFR to design a surface coupling struc-
ture, which transforms a horizontally propagating waveguide mode into
a vertical outcoupled field. This device has dimensions compatible with
butt-coupling to a single mode fibre, and achieves a simulated coupling
efficiency of over 90%.
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Figure 5.20: Dispersion relation for a core surrounded by DBRs with
different numbers n of periods.

Ir. Wim Bogaerts studied the scattering losses that can occur in 1D
photonic crystal slabs and investigated the influence of the refractive
index contrast on these losses.

Ir. Bert Luyssaert analysed the properties of CROW waveguides,
which are optical waveguides formed by coupled resonators. He is also
evaluating novel techniques to use these waveguides to form compact
tapers.

Finally, CAMFR also found its use to model waveguide bending
losses using conformal transformations (Ir. Mathias Vanwolleghem, Er-
win Six, Michael Roelens), to design a pickup head for a next-generation
optical storage system (Ir. Frederik Fransoo) and to study ring res-
onators (ir. Ilse Christiaens). We will not discuss these activities here,
because they have been started only recently, and because they are not
related to photonic crystals.

5.4.1 Surface coupler

The idea behind the surface coupler is to design a photonic crystal
structure that will allow light to butt-couple from an in-plane wave-
guide to a vertical single mode fibre (fig. 5.21). Compared to traditional
edge couplers, such a surface coupler could have a number of advan-
tages. First of all, it makes the PIC wafer-level testable, because no
facets have to cleaved. Secondly, it could potentially have a larger
coupling efficiency, if the photonic crystal is designed such that the
outcoupled field is well-matched to the mode profile of the fibre.

As a first prototype, a 1D periodic structure was designed. It con-
sists of a shallow second-order grating to perform the horizontal-vertical
coupling (fig. 5.22). The grating was chosen to be shallow, in order to
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Figure 5.22: Sketch of 1D surface coupler.
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Figure 5.23: Photonic crystal slab.

reduce reflections when the light enters the coupler from the left. Light
travels through the second-order grating section and is gradually cou-
pled out. At the right, a strong first-order grating reflects the light and
sends it back through the second-order grating for a second outcou-
pling pass. A DBR is placed underneath the entire structure, so that
any light travelling down to substrate is reflected back up again.

The parameters of this structure were optimised using CAMFR, re-
sulting in a compact 10 micron long device with a simulated outcou-
pling efficiency larger than 90%. We do want to point out that this is
not a trivial structure to model, because light propagation in this device
is completely non-paraxial. This means that it would be very hard to
model this structure with the BPM method. Nor is classical eigenmode
expansion with hard walls an option, because over 90% of the power
is heading straight for the metal walls, where it would be completely
reflected and disturb the simulation results. The FDTD method with
PML boundary conditions is capable of handling such a structure, and
in fact we did some verification runs against it, but its long calcula-
tion times make it rather unpractical for design work which requires a
lot of iterations. We can therefore conclude that eigenmode expansion
with advanced boundary conditions is a very powerful tool for these
structures.

5.4.2 Scattering losses in photonic crystal slabs

3D photonic crystal structures are very difficult to fabricate. An at-
tractive alternative therefore to achieve quasi-3D confinement of light
is to combine a 2D photonic crystal with a slab waveguide (fig. 5.23).
In these so-called photonic crystal slabs, light is confined in the ver-
tical direction by the index contrast of the slab waveguide and in the
in-plane direction by the photonic crystal, e.g. a lattice of etched air
holes. However, when these air holes are etched through the slab, the
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Figure 5.24: Radiation losses in a 1D photonic crystal slab.

vertical index confinement is essentially lost and light can be radiated
out of the holes.

The study of these scattering losses is very important for practi-
cal applications. Specifically, it has been hotly debated whether one
should go for high or low index contrast in these slabs to minimise
the losses. One school of thought is based on an approximate theory
to predict that these scattering losses will become more prominent as
the index contrast increases [Benisty1999]. Others prefer working in
high index contrast material systems [Chow2000], because then the
possibility exists to excite lossless guided Bloch modes [Johnson1999].

Our rigorous simulations of 1D photonic crystal slabs show that in
fact both points of view are valid. Fig. 5.24 plots the reflection, trans-
mission and radiation losses of a 1D photonic crystal slab as a function
of index contrast. For low index contrasts, we see indeed that radiation
losses increase for higher index contrast, because the stronger index
contrast entails more scattering. For high index contrasts however, we
arrive in a regime where these losses drop dramatically, because of the
existence of a lossless guided Bloch mode. This can be seen as a situ-
ation whereby all the scattering from the individual air holes interferes
destructively, such that the mode itself is completely lossless.

All this is illustrated further in the band diagrams for these two
regimes (fig. 5.25). An important feature in these diagrams is the so-
called light line, which separates the guided Bloch modes from the
radiation Bloch modes, which form a continuum in an open structure.
As the index contrast increases, this light line shifts upwards. For
low index contrast, we are working above the light line, so that light
can couple easily to the radiation modes and scatter. For high index
contrast, the light line shifts high enough to reveal a guided Bloch
mode, which is totally lossless.
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Figure 5.25: Band structure in photonic crystal slabs.
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Figure 5.26: Coupled resonator optical waveguide.

5.4.3 CROW waveguides and tapers

Recently a new waveguide concept was introduced [Yarivl1999], the
Coupled Resonator Optical Waveguide or CROW. This waveguide con-
sists of a series of resonators with a high Q-factor (fig. 5.26). Each of
these resonators confines the light, but at the same time also lets a
small part of it couple to the adjacent resonator. In this way, a loss-
less Bloch mode can be formed, not unlike the guided modes from
section 5.4.2.

This type of waveguide has a number of advantages. Its disper-
sion relation is very flat, leading to a low group velocity. This can be
an advantage in specific applications like second harmonic generation,
because it slows down the light and increases the interaction. Also,
by exploiting symmetries in the resonators, reflectionless bends can be
constructed, as well as intersections of CROWs without any cross-talk
[Xu2000].

Another application of CROWs currently under study at our depart-
ment is its use as a very compact taper structure (fig. 5.27). Such
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Figure 5.27: CROW taper.

a taper could be constructed by gradually changing the lateral dimen-
sion of the resonator, such that its mode broadens. Fig. 5.27 shows the
field profile in a first prototype taper structure. This design is currently
being optimised further.



Chapter 6

Vertical Cavity Lasers

“Only two things are infinite: the universe and human
stupidity, and I'm not sure about the former.”
Albert Einstein

This chapter is devoted to the modelling of laser cavities, in particu-
lar vertical-cavity surface-emitting lasers (VCSELSs). We start by briefly
reviewing the properties and advantages of VCSELs in section 6.1. In
section 6.2, we will describe how we can extend CAMFR to find laser
modes of an arbitrary cavity. We will use these techniques in sec-
tion 6.3 to perform a detailed study on transverse optical confinement
in VCSELs, which is a very important topic to achieve low-threshold
high-performance devices.

6.1 VCSELs

VCSELs are lasers where the light propagates perpendicular to the
wafer surface, rather than parallel to it, as is the case in traditional
edge-emitting lasers. The cavity is formed by placing an active layer
(like a quantum well or quantum dots) between two Distributed Bragg
Reflectors (DBRs). These DBRs have to be highly reflecting, because
the single-pass gain of these very thin active layers is rather small.
VCSELs have a number of advantages over edge-emitters. They can
be made in cylindrical shapes, which results in a beam profile that is
very well suited for coupling to optical fibre (fig. 6.1). Moreover, be-
cause they do not need cleaved facets as mirrors, they are wafer-level
testable. On top of that, VCSELs can have very small cavity volumes,
on the order of a few cubic wavelengths, which can result in very low
threshold currents compared to edge-emitters [Huffaker1999]. Also be-
cause of their short cavity lengths, they inherently lase only in a single

113
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Figure 6.1: Vertical-cavity surface-emitting laser.

longitudinal mode, which opens up the promise of high speed modula-
tion. One of their most promising aspects however is that they can be
integrated into 2D arrays [Grabherr1999], because they emit light per-
pendicular to the substrate. This opens up the possibility of massively
parallel optical data communication.

Contrary to photonic crystal devices, VCSELs are a commercial real-
ity today, especially in the short infrared wavelength range (850 nm). At
least a dozen companies worldwide fabricate these devices nowadays,
and new start-ups are being announced on a regular basis. Commer-
cial VCSELSs are currently positioned in the market as low-cost alterna-
tives to edge-emitting lasers in short to medium haul communications,
where the requirements in terms of modulation bandwith and spectral
purity are not as stringent as in long-haul communications. Especially
the forthcoming introduction of Gigabit Ethernet systems might prove
a real ’kill app’ for VCSELs. Even now, there are already reports that
the volume of VCSEL devices fabricated starts to outgrow that of edge-
emitters.

The reason why today’s best performing VCSELs emit in the short
infrared, is that they can be fabricated in the AlGaAs-material system,
where the growth technology is quite mature. Moreover, because of the
high index contrast between GaAs and AlAs layers, DBRs with high
reflectivity can be achieved with a relatively modest number of periods.

Things are rather less straightforward in other wavelength ranges,
where VCSEL fabrication is still largely a research topic rather than a
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commercial activity.

On the short-wavelength side, red VCSELs could be very attrac-
tive because that wavelength is very well matched to an attenuation
minimum of plastic optical fibre (POF). These devices are fabricated
in AlGalnP. Although this material system poses some problems with
respect to thermal properties and carrier leakage, current results are
promising [Onischenko2000] [Saarinen2000].

Another important wavelength range is long infrared, in particular
the telecommunications wavelengths of 1.3 and 1.5 pym, which are until
now mostly dominated by edge-emitters. Active layers at these wave-
lengths are fabricated in InP, but this material system can only provide
low index contrast, which makes it difficult to fabricate high-reflectivity
DBRs. Some approaches therefore combine an InP active layer with
AlGaAs DBRs through a process called wafer-fusion [Ohiso1998]. An-
other method is to use quantum dots as the active material in the Al-
GaAs system. These dots can emit at longer wavelengths than quan-
tum wells. Although only edge-emitters have been fabricated until
now using this technology, the prospects for VCSELs are quite good
[Maximov2000]. Finally, yet another material could be useful for long-
wavelength emission in combination with the AlGaAs system, and that
is the novel GalnNAs material [Larson1998].

There exist quite a number of VCSEL fabrication procedures. They
differ mainly in how they realise transverse optical confinement, i.e.
how they keep the laser beam together in the direction parallel to the
substrate. Rather than describing these different VCSEL types here,
we will introduce them more or less in chronological order in sec-
tion 6.3, where we will compare their performances with simulation
results. Another discussion of different VCSEL types can be found in
the overview article [Giboney1998]. A more thorough treatment on all
the aspects related to VCSEL design and fabrication is given in the
textbook [Sale1995].

6.2 Finding laser modes

In this section we will outline how we can easily extend CAMFR to locate
laser modes of arbitrary cavities. Once again, because of the abstract
nature of the framework, these techniques apply equally well to carte-
sian as to cylindrical geometries. However, because most VCSELs have
cylindrical symmetry (see e.g. fig. 6.1), all the examples in this chapter
will be for cylindrical cavities.

A laser mode is a resonant optical field distribution that can prop-
agate indefinitely back and forth inside the cavity without the need for
any external sources. To formulate this mathematically, we start by
dividing the cavity at an arbitrary location in a top and a bottom part
(fig. 6.2). Using eigenmode expansion, we then calculate the reflection
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Figure 6.2: Generic laser cavity consisting of a top and a bottom part.

R,,, of the top part as seen from the bottom, and similarly the reflection
Ryo: of the bottom part as seen from the top. Suppose we describe the
laser mode by its (so far unknown) eigenmode expansion coefficients
collected in the vector Ajqsing. A round trip of the field in the cavity
consists of first reflecting off the bottom part and subsequently off the
top part of the cavity. If this field profile is to propagate indefinitely
in the cavity without the need for external sources, it should exactly
reproduce itself after one round trip. This condition of unity round trip
gain can be expressed as

Rtop - Rpot - Alasing = Alasing (6 1)

Put differently, if the cavity matrix Q = Ry, - Ry, has an eigenvector
with an eigenvalue v of 1, this eigenvector describes a lasing mode.

For an arbitrary structure, Q will not have such an eigenvector, so
we will need to vary some parameters in order to achieve this reso-
nance. First of all, we will need to vary the wavelength A to get phase
resonance, which is when the largest eigenvalue v lies on the positive
real axis. In the absence of any gain in the active region, v will be
smaller than unity, because of the losses inside the cavity. This means
that we will also have to tune the material gain ¢,,,: in the active region,
in order to achieve amplitude resonance where the gain exactly com-
pensates the losses. We do this by simply changing the imaginary part
of the refractive index of the active layer, which is by definition related
to 9mat by

2
9mat = 27% (nactive) (6.2)

1

This quantity is usually expressed in units of cm™, and can be
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thought of as the power gain of a plane wave e~/(>7/)"* after propaga-

tion over 1 cm in a medium with refractive index n = ngcsive.

In summary, locating a laser mode consists of doing a search in the
two-dimensional (A, g,,.¢) Space to find a point where Q has an eigen-
vector with an eigenvalue of 1. This gives the laser mode’s resonance
wavelength, threshold material gain and field profile. Also note that
the exact location of the gain region(s) with respect to the cavity cut is
completely arbitrary.

To improve the numerical stability of this scheme, we could also
make use of Singular Value Decomposition [Demeulenaerel999]. To
show this, we start from the characteristic equation determining the
eigenvalues

det (Q—vI) =0 (6.3)

From this we can see that the matrix Q — I becomes singular if Q
has an eigenvalue v = 1. So, instead of looking for points where Q has
an eigenvalue of 1, we can look for points where Q — I has a singular
value of 0. In this way, we enjoy all the stability advantages provided
by SVD.

Finally, we want to point out that in practice, we do not really need
to perform a search in a 2D space to achieve resonance. It turns out
that in the vast majority of cases, we can suffice by doing a sequence
of 1D searches, as is illustrated in fig. 6.3. The VCSEL structure in
this example is a thin-oxide VCSEL (see section 6.3.4). Keeping the
gain fixed at zero, we first vary the wavelength until we arrive at a
minimum in the smallest singular value. Subsequently, we keep the
wavelength fixed at this minimum and increase the material gain until
we locate the laser mode. If we need higher precision, we can continue
to vary wavelength and gain around this point, but usually, we can
get a singular value on the order of 10~* with one wavelength and one
gain sweep. Locating the minimum is done numerically with Brent’s
algorithm [Press1993], which makes use of quadratic extrapolation to
reduce the number of iterations required. The dots in fig. 6.3 indicate
the actual iterations performed. Clearly, more iterations are needed
in the neighbourhood of the minimum, in order to locate it precisely.
Using 100 modes, the entire process of finding the wavelength and gain
of this laser mode only takes about five minutes.

6.3 Transverse confinement in VCSELs

To illustrate the model presented in the previous section, we will spend
the remainder of this chapter studying the important topic of trans-
verse confinement in VCSELSs. Transverse confinement deals with keep-
ing the laser beam from spreading out too much in the in-plane direc-
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Figure 6.3: Varying wavelength and gain in order to achieve a zero
singular value.



CHAPTER 6. VERTICAL CAVITY LASERS 119

tion, so that it remains focused in a narrow area in the active region.
In this way, we can create lasers with very small lateral dimensions. If
we are also able to inject current only into this focus spot in the active
region, these lasers will have very low threshold currents.

Over the past few years, several approaches to achieve transverse
confinement have been tried out experimentally, some of which are now
well-established, others are more speculative and research-oriented.
We will compare these approaches numerically, which will show among
others that designing transverse confinement in VCSELs is not a triv-
ial matter, because it involves some trade-offs and because its design
cannot be separated from that of the rest of the cavity.

We will also have a chance to compare our optical VCSEL model
to a significant fraction of the other existing VCSEL models through a
simulation comparison we organised [Bienstman2001a]. This will shed
some light on the validity of approximations some other models make
and on the necessity of the vectorial treatment of the optical fields.

6.3.1 Proton-implanted VCSELs

Proton implantation achieves confinement by selectively bombarding
areas of the substrate with protons. This destroys the lattice structure
of the semiconductor, turning the exposed regions into an isolator. By
leaving circular apertures free from implantation, conducting regions
surrounded by isolators can be created, which funnel the injected cur-
rent into a small area in the active region [Lear1994].

Proton implantation does not change the optical properties of the
exposed regions appreciably, so the only refractive index change in the
VCSEL is the localised gain in the active region below the aperture due
to current injection. For this reason, proton-implanted VCSELs are
also called gain-guided devices, because only the gain region inside the
active layer keeps the laser beam confined laterally. This is however
a very small confining effect, so thresholds in these devices tend to be
relatively high.

To illustrate this, we calculated the threshold material gain as a
function of aperture size for the VCSEL layer structure from table 6.1.
It is an AlGaAs VCSEL designed for emission around 980 nm. The
cavity is one optical wavelength long, has 29.5 bottom DBR pairs and
25 top DBR pairs. It has a single 5 nm thick quantum well (QW) as an
active region. The gain profile is taken to be piecewise constant. Inside
the aperture, there is a constant gain, with a level to be determined
by the laser mode locating algorithm. Outside the aperture, there is a
small constant loss, indicated by an imaginary refractive index of -0.01.
This structure is not chosen to mimic a realistic VCSEL design in all
of its details, but rather as an illustration of the fundamental optical
processes at work in VCSELs.
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Thickness (nm) | Material | Refr. index

air air 1.00
25 pair DBR 69.49 GaAs 3.53
79.63 AlGaAs 3.08
136.49 GaAs 3.53

lambda cavity 5 Qw 3.53+..j
136.49 GaAs 3.53
29.5 pair DBR 79.63 AlGaAs 3.08
69.49 GaAs 3.53
substrate GaAs 3.53

Table 6.1: Layer structure of a proton-implanted VCSEL.
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Figure 6.4: Threshold material gain for the proton-implanted VCSEL.

We can see from the results in fig. 6.4 that the threshold material
gain quickly increases for decreasing aperture sizes. The results are
plotted for the fundamental mode, i.e. the HE,; mode (the lowest order
mode with Bessel order 1). The trends from this figure can easily be
explained as follows. As the device size decreases, diffraction effects
will become more prominent and will cause the laser beam to spread
out. After reflecting at the DBRs, the mode will have a size much larger
than the pumped gain region, and this poor overlap of the optical mode
with the gain profile will lead to a very inefficient amplification process
of the laser beam.

Because the gain-guiding offers only a very weak confinement, these
diffraction losses will quickly lead to very high thresholds for small de-
vices. As a rule of thumb, a single QW can provide around 500 cm !
gain and typical VCSELs have 3 to 5 QWs. From fig. 6.4 we can there-
fore conclude that VCSELs with small diameters are not really feasible.

Until very recently, all commercially available VCSELs were of this
type, and they still form a large part of the devices on offer. Typical
characteristics of these devices are threshold currents of a few mA and
optical output powers of a few mW.
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Figure 6.5: Threshold material gain for the airpost VCSEL.

6.3.2 Airpost VCSELs

A second approach to achieve confinement in VCSELSs is etching away
the semiconductor material around the cavity to leave an “airpost”
standing (i.e. a post surrounded by air)[Geels1991]. Typically only
the top DBR is etched away, because etching through the active layer
will create centres for non-radiative recombination which will lower the
efficiency.

The etched post is in effect a waveguide, which will concentrate the
optical field because it contains high-index material. This provides a
much stronger optical confinement than pure gain guiding. We there-
fore expect the diffraction losses to be lower.

This is illustrated by the simulation results from fig. 6.5. The *back-
ground’ VCSEL structure is the same as from table 6.1, to allow easy
comparison between the different forms of optical confinement. The
gain diameter is taken to be the same as the post diameter. Clearly,
the airpost VCSEL has much lower thresholds, making lasing in de-
vices with a radius down to 3 ym feasible.

6.3.3 Thick-oxide-confined VCSELs

A technique that is currently very popular for lateral confinement in
VCSELs is the use of aluminium oxidation. This process was first de-
scribed in [Dallesasse1990] and consists of etching an airpost to expose
a semiconductor layer with high Al content, like e.g. Al,Ga,_,As with
the Al fraction z larger than 90%. The sample is subsequently intro-
duced in a furnace at a temperature of around 400 degrees, through
which a steady flow of water vapour is maintained. This hydrogen-rich
environment will laterally oxidise the exposed AlGaAs layer, i.e. starting
from the perimeter of the airpost and then working its way in, turning
the AlGaAs into AlOx.

If this process is controlled accurately and stopped at the right time,
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Figure 6.6: Threshold material gain for the thick oxide aperture VCSEL.

one can create a VCSEL where one layer consists of a central unoxi-
dised conducting AlGaAs layer and an outer ring of isolating AlOx. This
creates a current aperture, that can be used to restrict current injec-
tion to a small region in the active layer. Moreover, AlOx has a refractive
index of around 1.55, which means that the oxide aperture will also act
as a waveguide counteracting the diffraction losses.

Fig. 6.6 plots the threshold material gain of the reference VCSEL
from table 6.1, but this time with the bottom layer of the top DBR re-
placed by a partially oxidised A/4 thick AlGaAs layer. The gain diameter
is taken to be the same as the oxide diameter. We make abstraction of
the airpost that was etched to expose this layer, because this post typ-
ically has a diameter much larger than that of the oxide aperture itself.
It will therefore not affect the optical field appreciably.

From fig. 6.6 it is apparent that this oxide aperture performs even
better than the airpost VCSEL. At first sight this might seem surprising,
because the oxide clearly has a much smaller confining effect than the
airpost: the confining effect is only present in a single layer and the
refractive index contrast is lower. So, there clearly is a mechanism
other than diffraction loss at work in these devices.

To illustrate this, we compare the field profiles in an oxide-confined
and an airpost VCSEL with a radius of 1 ym. These figures show the
magnitude of the £, component of the optical field on a logarithmic
scale. The left-hand edge of the figures is the symmetry axis p = 0,
meaning that only the right half of the cavity is shown. Although the
airpost achieves much better confinement in the top DBR, a lot of the
light is lost at the corner interface between the unetched region, the
etched airpost and the surrounding air layer. There, the light radiates
out of the cavity in a wave travelling to the top right of the picture.
These scattering losses are typical when light encounters a sharp re-
fractive index step. For the oxide aperture, the weaker index contrast
results in reduced scattering losses. At the same time however, the
confinement is not as good, leading to higher diffraction losses. In this
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Figure 6.7: Field profiles in an airpost VCSEL and a thick oxide VCSEL
(the left edge of the figure is the rotational symmetry axis).
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case, the balance between these two effects is such that the oxide-
confined VCSEL has a lower threshold material gain than the airpost
VCSEL.

In general, we can say that introducing any confining structure into
a VCSEL will have two effects, one positive and one negative. On one
hand, it will keep the optical field together when it is inside the confin-
ing structure, leading to reduced diffraction losses. On the other hand,
coupling light into and out of this confining element disturbs the field
and can lead to scattering losses at the edges of the structure. These
effects tend to oppose each other in the sense that structures providing
tight confinement also exhibit rather high scattering, so there is a fine
balance to be struck.

6.3.4 Thin oxide-confined VCSELs
6.3.4.1 Aperture position dependent effects

This trade-off between diffraction and scattering losses leads to the
reasoning behind the use of oxide apertures that are thinner than a
quarter-wavelength layer. The fundamental question here is whether
we can sacrifice some optical confinement by reducing the thickness of
the oxide layer. This could be compensated by a reduction in scattering
loss since the thinner oxide will disturb the optical field less.

By reducing the thickness of the oxide layer, we also gain an ad-
ditional degree of freedom, namely the position of the aperture with
respect to the optical field. Fig. 6.8 illustrates how the aperture can
be placed at either a maximum (antinode) or a minimum (node) of the
optical field.

In fig. 6.9, we show the threshold material gain for a node and an
antinode aperture VCSEL with a thickness of /20, i.e one-fifth of the
quarter-wavelength layer. Once again, the background VCSEL struc-
ture is the same. For the antinode oxide, the thresholds are the lowest
of the devices we studied so far. This means that the reduction in scat-
tering losses outweighs the small loss of confinement. For the node
oxide, the situation is very different. Because it is placed at a field min-
imum, it will hardly have any effect on the optical mode, meaning low
scattering but also very poor optical confinement. The latter effect is
much stronger in this case, so the thresholds of this device are quite
high.

To illustrate this further, we plot the field profiles in the antinode
and the node device on the same scale (fig. 6.10). The poor confinement
and the spreading of the mode is clearly visible in the node case.
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Figure 6.8: VCSEL with a thin oxide aperture at an antinode or a node
position.

ﬁ Threshold material gain

10000

8000 \ \ N —e— Proton
6000 —=— Ajrpost
—— Thick oxide

4000 \.\\( == Node ox.
2000 \ == Antinode ox|

1lcm

s S
0 T T T T 1
0 1 2 3 4 5
radius (um)

Figure 6.9: Threshold material gain for the thin oxide VCSEL.
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Figure 6.10: Field profiles in VCSELs with antinode and node aperture
((the left edge of the figure is the rotational symmetry axis).
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Figure 6.11: Resonance wavelength of the thin antinode oxide VCSEL.

6.3.4.2 Comparing different optical VCSEL models

We chose this topic of thin oxide apertures as a benchmark to compare
different optical VCSEL models [Bienstman2001a]. We coordinated this
activity in the framework of the European COST268 action, but many
non-European research groups also participated.

Over the years, a number of approaches have been proposed to
model VCSELSs, either scalar or vectorial, or approximate or rigorous.
However, comparing these models and therefore validating their under-
lying assumptions has been difficult if not impossible, since the pub-
lished results obtained with these models are all for different VCSEL
structures. It was the aim of the paper [Bienstman2001la] to com-
pare many of today’s important VCSEL models on the same benchmark
problem, thereby quantifying the spread of results among the different
models.

One of the benchmark problems was to calculate the properties of
the thin antinode oxide VCSEL from section 6.3.4 as a function of the
aperture size. From fig. 6.11, we see a decrease in lasing wavelength for
decreasing aperture size. All by all, the difference between the models
is mostly relatively small, no larger than a few percent. For a brief
overview of the working principles of each of these models, we refer
to [Bienstman2001a] and the references therein. Interesting to note
however is that the scalar (approximate) models are represented by full
lines in the figures, the vectorial (exact) models by dashed lines.

The differences between the models becomes larger when we plot
the threshold material gain in fig. 6.12 (note the logarithmic scale).

Obviously, reducing the aperture size leads to a loss in confinement
and higher thresholds. Differences between the models are larger here,
about 10%. Also, there is a clear clustering between scalar and vec-
torial models, with the vectorial models consistently predicting higher
thresholds. This is to be expected, since these models are able to take
diffraction losses into account, which the scalar models cannot, be-
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Figure 6.12: Threshold material gain of the thin antinode oxide VCSEL.
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Figure 6.13: Modal stability of the thin antinode oxide VCSEL.

cause most of them are based on an effective-index approach. It is also
clearly visible that the differences in predicted threshold become larger
as the diameter is reduced.

An even larger difference between the models is apparent when we
also consider the first-order mode (TEg; for the vectorial models, and
LP;; for the scalar models). In fig. 6.13, we plot the modal stability,
as defined by the percentual difference between the threshold gy of the
fundamental mode and that of the first-order mode g;:

modal stability = mg;go (6.4)
0

As expected, going to smaller diameters increases the modal stabil-
ity, because the first-order mode starts to approach cut-off.

In summary, we can say that the differences between the models
gets larger as one moves away from paraxial propagation and into the
regime of badly confined modes, as happens e.g. when decreasing the
device diameter or modelling higher order modes. For a more in-depth
discussion, we refer the reader to [Bienstman2001a].
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Thickness (nm) Material Refr. index
air air 1.00
28 pair top DBR 69.8 GaAs 3.51
81.4 Al g7Ga 13As 3.01
349.0 GaAs 3.51
node oxide 30.0 AlOx/AlAs 1.55/2.93

30.0 A1,27Ga,73As 3.36

Qw 8.0 InGaAs 3.51+..j
30.0 A1,27Ga,73As 3.36
120.0 A1.50Ga.50AS 3.22
etch stop layer 558.4 GaAs 3.51
31.5 pair bottom DBR 83.6 AlAs 2.93
69.8 GaAs 3.51
substrate GaAs 3.51

Table 6.2: Layer structure of the node oxide VCSEL from [Bond1999].

The comparison also allowed to get some feeling for the different
run times of the vectorial models, like e.g. [Klein1998] [Noble1998],
with CAMFR clearly performing better.

6.3.4.3 Influence of carrier diffusion

In the VCSEL structures we modelled so far, the antinode oxide always
outperformed the node oxide in terms of threshold material gain. How-
ever, in some reports in literature, we can find devices where exactly
the opposite behaviour is seen experimentally. One example of this is
a study performed at the University of Southern California at Los An-
geles (USC) [Bond1999]. In this section, we will try to elucidate these
apparent differences between theory and experiment.

The USC device has a very different structure than the COST VCSEL,
so it is not adviseable to extrapolate its behaviour from that of the COST
device, at least not intuitively without rigorous simulations. The USC
layer structure is given in table 6.2, and the main differences with the
COST structure are illustrated in fig. 6.14.

The device has a cavity length of 4\, rather than the short 1\ devices
we considered so far. Diffraction losses will therefore play a larger role
in these longer cavities. Additionally, the USC node oxide is placed at
the first field minimum, whereas the COST node aperture is placed at
the second field minimum (fig. 6.8).

Fig. 6.15 shows the simulated thresholds for the USC devices. The
relative threshold difference between the node and the antinode de-
vices is smaller than in fig. 6.9, but still, the antinode device has a
lower threshold, contrary to the experimental evidence. The difference
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Figure 6.14: VCSEL structure from [Bond1999].
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Figure 6.15: Threshold material gain the the USC thin oxide VCSELs.
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Figure 6.16: Influence of lateral carrier diffusion on the overlap of the
gain profile with the optical mode.

in cavity design is therefore not sufficient to explain the observed ex-
perimental trends.

Clearly, another effect is important here, and that effect turns out
to be carrier diffusion. Once carriers get injected through the oxide
aperture inside the quantum wells, they tend to diffuse laterally. This
means that the effective gain region will have a diameter larger than
the oxide aperture diameter (fig. 6.16). We know from fig. 6.10 that the
lower optical confinement in the node oxide will cause the laser mode
to spread. This larger modal cross-section is very well matched to the
larger gain diameter caused by carrier diffusion (fig. 6.16). For the
antinode oxide, the opposite is true. The mode profile is rather narrow,
meaning that a significant fraction of the gain in the QW only sees the
tail regions of the optical mode. Because of the low field intensity in
these tails, pumping is very inefficient there and this fraction of the
gain is effectively wasted.

We can quite easily simulate the effects of carrier diffusion by choos-
ing the gain diameter larger than the oxide aperture diameter. The pre-
cise size of the gain region should follow from other non-optical models
(carrier diffusion models), so we will just treat the gain diameter as a
phenomenological parameter here and simulate the device for a num-
ber of values of the gain diameter. Fig. 6.17 shows the results of such
simulations for devices with a 2 pum radius oxide aperture. We can
clearly see that the node oxide starts to outperform the antinode oxide
from a gain radius of 3 pym, i.e. a diffusion length of about 1 ym. These
values are in the same range as those reported in [Bond1999], which
indicates that lateral carrier diffusion is indeed the relevant effect ex-
plaining the experimental trends.
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Figure 6.17: Threshold material gain for the USC VCSELs with a 2 ym
oxide aperture radius.
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Figure 6.18: VCSEL combining both a proton-implantation and an ox-
ide aperture to increase the modal stability.

6.3.5 Proton-implanted oxide-confined VCSELs

The effects of the gain diameter size relative to the oxide diameter size
are exploited to increase modal stability in VCSELs which combine both
a proton-implant and an oxide aperture [Seurin2000]. The diameter of
the proton-implant aperture is chosen to be smaller than that of the ox-
ide aperture, such that the effective gain diameter is also smaller than
the oxide diameter (fig. 6.18). Such a device layout will significantly in-
crease the threshold of the higher order modes (e.g. the TE,; mode, the
lowest order mode with Bessel order O and TE polarisation) with respect
to the fundamental mode. This is immediately clear from fig. 6.18, be-
cause for the higher order mode, almost all the gain is concentrated in
regions where the optical field is very low. This high modal stability can
lead to high-power devices which lase only in the fundamental mode, a
desirable property for imaging or high-speed modulation.
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Figure 6.19: Threshold material gain for the HE;; and the TE,; mode
as a function of gain diameter.

Fig. 6.19 shows the simulated behaviour of such a device, starting
from the USC VCSEL structure with a 2 ym radius antinode oxide. The
dashed line corresponds to a gain diameter equal to the oxide diame-
ter, so to the right of this line we have situations where carrier diffusion
increases the effective gain diameter. To the left of the line, the gain di-
ameter is smaller than the oxide aperture, e.g. due to the presence
of a proton-implantation with a smaller diameter. Obviously, decreas-
ing the gain area leads to higher thresholds, both for the fundamental
and the higher order mode. However, the relative threshold difference
between these modes also becomes higher, leading to increased modal
stability. Clearly, for practical applications there is a trade-off to be
made between this increased modal stability and the higher threshold
for the fundamental mode.

6.3.6 Tapered-oxide VCSELs

The oxidation rate of an AlGaAs layer is very strongly dependent on
the Al fraction inside this layer. The higher the Al content, the faster
the layer oxidises. For Al contents below 80%, the oxidation process
becomes so slow that it is hardly noticeable. As an illustration of this
dependence, we show the experimental data from fig. 6.20. This fig-
ure comes from another comparison which we coordinated within the
framework of the COST268 action, this time with the aim of investigat-
ing how the oxidation process produces different results on different
oxidation furnaces. For that purpose, two wafers with the same layer
structure where cleaved into several samples and distributed to differ-
ent European labs to perform oxidation experiments on. For a more
detailed report on this comparison, we refer to [Bienstman2001b].

The exponential dependence of oxidation rate on Al content can be
used to create oxide apertures which are tapered rather than abrupt
(fig. 6.21). Instead of growing a single layer which will form the aperture
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Figure 6.22: Threshold material gain for a tapered VCSEL.

after oxidation, many thinner layers are grown, each with a different Al
content. If this structure is placed in the furnace for a fixed amount
of time, the high Al content layers will have been oxidised deeper than
the others. By carefully engineering the Al content profile, tapers with
arbitrary profiles can be fabricated [Hegblom1999].

Compared to an abrupt oxide with equal thickness, a tapered oxide
will provide lower confinement, but because the index change is much
more gradual, scattering losses will be lower.

We illustrate this by replacing the abrupt thin oxides in the USC
VCSEL with linearly tapered oxides. The inner taper radius is kept
fixed at 2 ym, the outer radius is increased from 2 pm (no taper - abrupt
oxide) to 3 pm. For the gain radius 3 pym is assumed. The simulation
results are shown in fig. 6.22. For the node oxide, which already had
a low confinement to start with, the even lower confinement caused by
the tapering is so detrimental that the threshold goes up. Things are
different for the antinode oxide, where the lower scattering outweighs
the increased diffraction losses. Thresholds for the tapered antinode
oxide are even lower than those of the abrupt oxide.

Clearly, this is only the tip of the iceberg, because careful control
of the growth techniques and the oxidation process can provide much
more sophisticated taper profiles than linear ones, like parabolic or
asymmetric profiles. It is even hoped that the 'perfect’ taper structure
can be designed, which will act as a perfect lens that will focus the
beam on a narrow spot inside the active region, without any scattering
or diffraction losses [Noble2000]. Such devices could potentially have
extremely low threshold currents. This is a promising area for further
research. However, engineering the perfect VCSEL cavity will not be
trivial because at this level of sophistication, the precise carrier diffu-
sion profiles will have to be taken into account, in addition to other
effects like thermally induced refractive index changes.
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6.4 Conclusion

We have seen that designing a confinement structure in VCSELs in-
volves a delicate balance between diffraction and scattering losses, be-
tween the conflicting demands of high confinement inside the confining
structure and small refractive index steps to reduce scattering for light
entering the confining structure. Moreover, these issues cannot be con-
sidered in isolation from the rest of the VCSEL design: other aspects
like cavity length or carrier diffusion have to be taken into account. All
of this makes it hard to predict the optical performance of a particular
design intuitively, which is precisely why we need optical simulation
tools that are both rigorously accurate and computationally efficient.
We have shown that CAMFR is very well suited to fulfill such a role,
even more so when it will be coupled in the future to e.g. thermal and
carrier models, to give a full picture of all the physical phenomena at
work in these devices.



Chapter 7

Resonant-Cavity LEDs

“Models are to be used, not believed.”
H. Theil, “Principles of Econometrics”

In the previous chapter we studied laser modes, which are field pro-
files that can be sustained indefinitely without the presence of exter-
nal sources. In this chapter, we will investigate what happens when
there is a source present inside the cavity. First, we will show how to
use eigenmode expansion to calculate the response of a cavity to an
arbitrary source. Then, we will turn our attention to a specific kind
of source, the dipole current source. We will use this source to study
spontaneous emission in microcavities, which is an important aspect in
resonant-cavity light-emitting diodes. After discussing these RCLEDs,
we will also propose a novel type of RCLED that allows more directive
radiation patterns.

7.1 Source inside a cavity

Consider a cavity which we divide at an arbitrary position in a top
and a bottom part, just like we did in the previous chapter. In the
plane separating these two parts, we place a source that radiates with a
specific field pattern. The exact nature of this field pattern is arbitrary,
we only need to know its expansion coefficients A, in terms of the
eigenmodes of the layer containing the source. In general, the source
will radiate both upwards and downwards, so it is fully characterised
by the two expansion vectors A, o and Ay, o.

We assume that these two vectors describe the source field as it
would be in a z-invariant layer, i.e. in the absense of any reflecting
structures in the z-direction. The presence of the cavity will cause re-
flections, and this interference will give rise to different total field pro-
files A,, and A,4,, which we will now calculate. Let us concentrate for

137
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d=0

Figure 7.1: Cavity containing a source.

the moment on the upward field A, . This field distribution will keep
on bouncing back and forth between the top and bottom mirror, such
that the equilibrium upward field distribution just above the source
will be

Aup,O + Rbot ’ Rtop ’ Aup,O + Rbot . Rtop : Rbot . Rtop . Aup,[) + ... (7 1)

We can write this as

%]
Z Rbot Rtop 'Aup,O (72)
i=0

This sum converges to!

(I - Rbot ' Rtop)il : Aup,O (73)

We must not forget that also the downward radiated field contributes
to the total upward field. After reflecting at the bottom mirror, it goes
through the same sequence of reflections as in eq. 7.1. Therefore, the
total upward equilibrium field can be written as

Aup = (I — Ryt - :thop)_1 : (Aup,[) + Rt - Ado,O) (74)

Similarly, the total downward field just below the source is

IThis can be seen easily by subtracting I+ Q+Q2+.. = X and Q+ Q2+ Q% +... = Q-X
and solving the resulting expression for X.
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Ado = (I - Rtop : ]-:{fbot)_1 : (Ado,O + Rtop : Aup,O) (75)

Using these field distributions as excitations for respectively the top
and bottom half of the cavity, we can calculate the field at an arbitrary
position, as per section 2.5. This completely characterises the response
of the cavity to the source.

Note that the presence of the source introduces discontinuities in
the field profile. E.g., the upward field A,, just above the source is
different from the upward field just below the source, which is equal to
Rbot . Ado-

It is interesting to point out that eq. 7.4 and 7.5 become singular
when the product of Ry,; and Ry, equals the unity matrix. This is
not surprising, because this is exactly the lasing resonance condition
from the previous chapter. The fact that these factors become infinite,
means that even for zero A,,o and A4 o the total fields A,, and Ay,
can be finite. In other words, a laser mode can exist without being
sustained by external sources.

7.2 Eigenmode expansion of a dipole current
source

In this section, we will calculate the field expansion coefficients A, o
and A4 of an arbitrary current distribution as a source. This will
be easily applied to a point dipole current source. We can then use the
techniques outlined in the previous section to calculate the response to
such a source, which gives us nothing other than the Green’s function
of the cavity.

Consider a z-invariant layer containing a current distribution J =
J(z,y)0 (2) at z = 0. We want to calculate the expansion of the fields ex-
cited by this source in terms of the eigenmodes of the z-invariant layer.
For that, we make use of the Lorentz reciprocity theorem (eq. 2.15)
[Derudder2001a]:

//S(El><H2—E2><H1).dS:///V(Jl.EZ_Jz.El)dV 7.6)

For the quantities with subscript 1, we choose the fields excited by
the current distribution J; = J, and we expand them in terms of the
eigenmodes:

[ SAFEF, 2>0
B = { S ATE;, 2<0 7.7

[ S AMHP, 2>0
H, = { SATH; , 2<0 (7.8)
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Figure 7.2: Volume for the evaluation of the Lorentz reciprocity theo-
rem.

The +(—) superscript denotes eigenmodes propagating in the posi-
tive (negative) z-direction. Note that we take into account the presence
of a discontinuity caused by the source.

For the quantities with subscript 2, we choose a sourceless situation
(J2 = 0), with the m-th eigenmode as field profile. This is possible,
precisely because eigenmodes can exist without the need for external
sources.

E, = E! (7.9)
H, = H (7.10)

For the evalution of the integrals, we take the volume V bounded
by the surface S = S; + 451 + S2 + 052 as indicated in fig. 7.2. Because
of the presence of ¢ (z) in J, the volume integral on the RHS of eq. 7.6
reduces to a surface integral over S, at z = 0.

For the LHS we already know that the contribution from 45; + 65,
will vanish in most cases due to the nature of the boundary conditions
(see section 3.5.1). We can then write

—// (E1XH2—E2XH1)'d81+
S1

// (E1XH2—E2XH1)'dSQZ// JE2d50 (711]
S2 So

Note from fig. 7.2 that all the dS vectors are oriented along +z.
We know that eigenmodes of z-invariant layers are orthogonal. We
also assume that their amplitudes are suitable chosen such that

// EJr X HJr -dS = dim (7.12)
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Only the tangential field components contribute to this vectorial
product. Thanks to this orthonormality, the summations that make
up E; and H; in eq. 7.11 will reduce to the terms with index m:

—A- // (E,.. xH} , —El  xH ) -dSi+
S1
AF / / (B, x HY, ~Ef, x HE,) - dS, = / / J.EtdS, (7.13)
SQ SO

From eq. 2.24 follows the relation between the field profiles of the
backward eigenmode and those of the forward one: E,,, = E}, , and
H:n,t = _H;,t-

All of this allows us to simplify eq. 7.11 as

—2A7;:// J-ELdSO (7.14)
So

Similarly, if we use for E» and H, the backward eigenmode instead
of the forward one, we arrive at

—2A;:// J-E. dS, (7.15)
So

These two expressions completely describe the expansion of an ar-
bitrary current source in terms of eigenmodes.

For the special case of a dipole point current source at r = ry, J is
simply Jod (r — rp), and we get

—24% = Jo-E; (ro) (7.17)

This means that the excitation strength of a particular eigenmode
is proportional to its field amplitude at the source. E.g., if the source
is placed at a null of an eigenmode’s electrical field, this mode will not
be excited. The same holds for a dipole oriented perpendicular to the
electric field. All this is also very acceptable from a physical point of
view.

A few concluding remarks to end this section. The discussion so
far was completely independent of the coordinate system used. Once
again this is very beneficial, because the implementation in CAMFR can
proceed using abstract waveguides. Secondly, the description of the
field radiated by a dipole is also more general than some incarnations
of the plane-wave method found in literature (see e.g. [Lukosz1977],
[De Nevel997a] and [Benisty1998]), which are only valid inside a uni-
form lossless medium. Using the approach presented here, we can
easiliy accomodate laterally varying media and lossy materials.
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7.3 Modification of spontaneous emission

A dipole current source is a good model for the radiation emitted by the
recombination of an electron and a hole [Loehr1998][Demeulenaere1997].
It is therefore useful if we want to model the spontaneous emission pro-
cess in semiconductor light emitters. This spontaneous emission is not
an intrisic property of the active layer, but it can be modified by the op-
tical environment in which the source is placed. In the parlance of this
chapter, placing a dipole with intrinsic radiation profile (A, o, Ag,0) in-
side a cavity will modify its radiation pattern to (A,,, Ag,). This is not
necessarily a power-conserving operation. In some cases, the dipole
will radiate less power than when placed in vacuum, in other cases
more. This is known as inhibited or enhanced spontaneous emission.

Inhibited spontaneous emission occurs e.g. when the dipole is placed
inside a cavity that does not support any modes the dipole can couple
to. In this case, the light effectively 'has nowhere to go’, so sponta-
neous emission cannot occur and the dipole stays in the excited state
indefinitely. On the other hand, if the cavity has a mode that is res-
onant with the dipole radiation, the emitted power will be resonantly
enhanced. These resonant modes are very efficient to carry energy
away from the dipole, so it will decay faster than in free space and we
have enhanced spontaneous emission.

In this context, we can define a dipole decay rate v, which we relate
to the emitted dipole power P as follows:

v P
’Yvac PU(ZC

The subscript vac refers to the situation in vacuum, the quanti-
ties without subscript to a dipole placed in a cavity. Obviously, if the
dipole radiates more power, it is because it can couple well to the cavity
modes, which gives rise to a shorter life-time and hence an increased
decay rate.

A well-known example to illustrate these effects is to study the spon-
taneous emission of a dipole placed halfway between two perfectly con-
ducting metal mirrors. This point dipole is oriented parallel to the metal
plates and the medium between the mirrors is air (fig. 7.3). Because
of the rotational symmetry, the angular orientation of this horizontal
dipole is irrelevant. This is a 3D problem, in the sense that radiation
is allowed to travel outside of the plane of the figure. The modification
of spontaneous emission rate can easily be calculated from eq. 7.18.
We know from the previous sections how to calculate the field profiles
inside the cavity, and the total power emitted by the dipole follows then
quite simply from integrating the flux of the Poynting vector through
the surfaces S; and Ss.

For the simple geometry of fig. 7.3, it is possible to come up with a
closed-form solution for the dipole decay rate [Abram1998]. However,

(7.18)
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Figure 7.3: Dipole radiating between two metal plates.

PML PML

Figure 7.4: Geometry of fig. 7.3 transformed to a circular closed geom-
etry.

to validate the techniques outlined in this chapter, we also calculated
the decay rate numerically with CAMFR, using a cylinderical geometry
to model the 3D problem. We close off the domain in the p-direction
with hard walls clad with PML (fig. 7.4).

In theory, we should consider circular modes with any Bessel order
for the calculations. However, for this particular geometry, it turns out
that the dipole only excites modes with Bessel order 1. Fig. 7.5 shows
the calculated spontaneous emission rate of the dipole as a function
of the distance L between the mirrors. The results are normalised to
the dipole emission rate in vacuum. The numerical and the analytic
results coincide almost perfectly, apart from some oscillations at the
discontinuities.

Several observations can be made from fig. 7.5. For L < A/2, the
dipole does not radiate at all, because all the modes in the cavity are
below cut-off. At L = )\/2, we have maximum spontaneous emission,
a factor 3 enhancement over the vacuum rate. As the cavity length
increases, the effects of enhancement and inhibition become less pro-
nounced, and the rate approaches the vacuum rate.

It is also interesting to take a look at the convergence behaviour of
these calculations as a function of the number of modes N retained
in the eigenmode expansion. Fig. 7.6 show such results, for a cavity
length L/A = 0.75 and for different radii of the ’pill box’ from fig. 7.4
(r =15, 25 and 35 pym). The imaginary radius providing PML absorp-
tion is -0.1j. After some initial transitory behaviour, all curves con-
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Figure 7.5: Spontaneous emission rate for a dipole between two mir-
rors.
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Figure 7.6: Convergence properties of the emission rate.
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verge to a plateau very close to the correct value of 1.444, as calculated
analytically. However, when increasing the number of modes even fur-
ther, the curves drop off and approach the wrong value of 1. It also
turns out that when we increase the absorption in the PML, the width
of these plateaus of correctness decreases, until they finally disappear
altogether for very high absorption levels.

The explanation for this behaviour is most likely that the set of PML
modes is mathematically not complete, as we already suggested in sec-
tion 3.4.4. When considering high absorption in the PML (or moder-
ate absorption and high order modes), the PML modes converge to the
leaky modes, which are known not to form a complete set. For practi-
cal purposes however, this rarely turns out to be a problem. When in
doubt, a convergence analysis like the one in fig. 7.6 can be performed
and the presence of 'plateaus of correctness’ indicates convergence of
the physical quantities calculated.

7.4 The RCLED

Placing a current source inside a cavity does not only alter the sponta-
neous emission rate, it also affects the radiation profile. The latter ef-
fect is much more important for practical applications, because it helps
to increase the outcoupling efficiency of light-emitting diodes (LEDs).

Traditional LEDs consist of a layer of high index material placed in
air. Not all waves emitted by a source inside the material will be able
to reach the surrounding air region. Only the radiation that travels
perpendicular to the semiconductor-air interface will be coupled out.
Waves that travel too obliquely will undergo total internal reflection at
the interface and will be sent back into the semiconductor. For GaAs
with a refractive index of 3.5, calculations show that only 2% of the light
emitted in the active region will be able to reach the outside world.

Resonant-cavity LEDs (RCLEDs) overcome this problem by plac-
ing the active layer inside a cavity. The cavity is engineered such
that radiation perpendicular to the interface is resonantly enhanced
by constructive interference (fig. 7.7). Similarly, oblique radiation is
suppressed due to destructive interference. Because of this internal
spatial redistribution of the radiation profile, a larger fraction of the
light will be travelling perpendicular to the interface, leading to a lower
loss from total internal reflection and to higher outcoupling efficien-
cies. This concept was first introduced in [Schubert1994], and later
perfected by [De Nevel997b] and [Wierer1999], leading to devices with
extraction efficiencies of over 20%.

To illustrate the physical principles behind the RCLED, a represen-
tation in k-space is very instructive [Brorsonl1990]. In this qualita-
tive diagram, the spontaneous emission profile is represented by the
surface of a sphere. What is meant here is the intrinsic spontanous
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Figure 7.7: Resonant-cavity LED.

emission profile, i.e. in the absence of any cavity. This emission is as-
sumed to be isotropic, i.e. equally strong in each direction (hence the
sphere). In the the case of a monochromatic (single wavelength) emit-
ter, the thickness of this sphere surface is delta-like. For more realistic
sources, the emission takes place in a wavelength range around the
central wavelength, so the sphere surface has a certain thickness.

When the emitter is placed inside a cavity, radiation in certain emis-
sion angles will be resonantly enhanced due to constructive interfer-
ence. The condition for this constructive interference is a round-trip
phase change of an integer multiple of 27:

Grop (0) + Ppor (8) — 2Lk cosé = 127 , | integer (7.19)

Here, ¢:,, and ¢y, are the phases of the reflection coefficients of the
top and the bottom mirror. The cavity has a length of L and the angle of
propagation inside the cavity is given by #. The length of the wavevector
in the material is k. From eq. 7.19 it is trivial to derive the k-vectors
that satisfy the resonance condition:

_ rop (0) + Ppor (0) — 127
B 2L cos@

kres (0) , [ integer (7.20)

Eq. 7.20 can easily be represented in the angular k-diagram as a
certain surface?. Because this resonant enhancement has a non-zero
bandwidth, we draw this surface with a certain thickness.

All of this eventually leads to a representation like the one in fig. 7.8.
The interpretation of this figure is as follows. Points in k-space where
there is a significant overlap between the spontaneous emission sphere
ksp and the cavity resonance surface k., correspond to radiation emit-
ted by the active layer that is enhanced by the cavity. Similarly, points

20r more precisely a set of surfaces for each value of I.
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Figure 7.8: k-space diagram for a resonant cavity LED.

undertuned (L < L.) overtuned (L > L.)

Figure 7.9: k-diagram for an undertuned and an overtuned cavity.

with no overlap correspond to inhibited spontaneous emission. From
such a representation, it is immediately clear that the cavity changes
the emission profile of the active layer from an isotropic one to a profile
where radiation is emitted predominantly along 6 = 0, i.e. perpendicu-
lar to the mirrors.

The k—space diagram is also very useful to understand what hap-
pens when we change the cavity length L (fig. 7.9). Decreasing the cav-
ity length L will cause the resonance surface to shift upwards (eq. 7.20).
For these so-called undertuned cavities, the total overlap between the
sphere and the surface is a lot smaller and is concentrated in a nar-
rower angular range. These kinds of cavities will therefore have nar-
rower radiation profiles and lower extraction efficiencies. For overtuned
devices with too long cavity lengths, the opposite is true. The resonance
surface shifts downwards, so that the intersection between the sphere
and the surface is no longer at § = 0, but off-axis. In this case, the ra-
diation profile will be much wider. For very high overtuning, it will even
have sidelobes. Additionally, the total overlap between the sphere and
the surface will be larger, so the extraction efficiency increases with
respect to the resonant case.

To illustrate these points, we performed some CAMFR simulations
on a very simple planar RCLED device structure (table 7.1), that we
simulated using a cylindrical geometry as per fig. 7.4. It is a bottom-
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Thickness (nm) | Material | Refractive index

air air 1.0

top mirror 120 Au 0.2-6.5j
45.5 GaAs 3.5

active layer 5 Qw 3.5-0.1j
d GaAs 3.5
bottom mirror 158 AlOx 1.55
substrate GaAs 3.5
exit medium air 1.0

Table 7.1: Layer structure of RCLED with oxidised bottom DBR mirror.
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Figure 7.10: Extraction efficiency 7., of the RCLED from table 7.1.

emitting structure with an operating wavelength of 980 nm. The top
mirror is made of metal and is also used as a contact to inject the
current. For simplicity, we assume that the QW only emits a single
wavelength. We assume a dipole oriented parallel to the layer structure.
The bottom mirror is a single-layer DBR consisting of oxidised material.
Only one layer is used, because multilayer DBRs would quickly yield
very high reflectivities because of the high index contrast. In RCLEDs,
it is better to keep the mirror reflectivity moderate. Otherwise, the
bandwidth of resonant enhancement would become very narrow, and
only a small fraction of the emitted light would be resonantly enhanced.
Because the vast majority of the light would not benefit from the micro-
cavity effect, the extraction efficiency of such a device would be quite
low.

Fig. 7.10 shows the calculated extraction efficiency 7., of the device
from table 7.1, as a function of the spacer thickness d. This quantity 7.,
can be calculated by dividing the downward power flux in the bottom
air exit medium and the total power flux leaving the active layer:

Paz’r down
ex — . (721)
K PQW,up + PQW,down

For the simulations, the lower substrate-air interface is assumed to
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Figure 7.11: Far field profiles in RCLEDs.

reflect incoherently, i.e. the reflections there do not contribute to the
microcavity effect. This is a very valid assumption, because the sub-
strate thickness of a few hundred pym is a lot longer than the coherence
length of the light emitted by a typical QW.

From fig. 7.10, it can be seen that the maximum extraction effi-
ciency occurs at around 148 nm spacer thickness. The resonance con-
dition is at 140 nm, so clearly longer cavities can increase the extrac-
tion efficiency.

The far-field radiation profiles for these devices are shown in fig. 7.11,
both for an undertuned and an overtuned device. For short cavities, the
radiation profile is narrower, as we already indicated in the discussion
of fig. 7.9.

Not all the power in this far field profile will be useful for practical
applications. E.g., if we want to couple the emitted light into a plastic
optical fibre without any lenses, only the power propagating within a
certain acceptance cone (the straight lines in fig. 7.11) will be able to
enter the fibre. In this context, we define the sine of half the top angle
of this cone as its numerical aperture (NA). For typical plastic optical
fibres, this NA is about 0.5. Fig. 7.12 shows the fraction of the optical
power in air that lies within a NA of 0.5:

NNA = P(?,Fz:qdown,NA (722)
air,down

As expected from the field profiles, ny 4 will be a lot smaller for over-
tuned cavities.

Both undertuned and overtuned cavities are valid design options.
Overtuned cavities are used when one wants to maximise the total out-
put power, at the expense of a lower directivity of the beam profile
[De Nevel997b]. Undertuned cavities are ideally suited for applications
where a narrow beam profile is required [Bockstaele1999]. The price to
pay for this directivity is a lower output power.
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Figure 7.12: Fraction of the outcoupled power within NA=0.5.
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Figure 7.13: The RCLED vs. the RC?LED.

7.5 The RC’LED

In this section, we propose a novel RCLED design that also allows to
increase the directivity of the beam profile, and that has additional
benefits as compared to undertuning the cavity. This so-called RC?LED
design was published in [Bienstman2000] and was the subject of a
patent application.

The idea behind this approach is to use a different structure for
the bottom outcoupling mirror (fig. 7.13). This bottom mirror consists
of two parts. A first part is a traditional DBR mirror, just like in the
RCLED. A second part placed below the first one is a symmetric cav-
ity that has the same resonance wavelength as the cavity containing
the active layer. It is also made of the same material as the cavity,
namely AlOx and GaAs. It is easy to show that this second cavity
is completely transparent for the resonance wavelength under normal
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Figure 7.14: TE reflectance for a DBR (dashed line) and a DBR+RC
(solid line), as seen from the GaAs cavity.

incidence. Therefore, the normal incidence reflectivity of the bottom
mirror is only determined by its first part. This decoupling is impor-
tant, because it allows us to choose the bottom reflectivity low enough.
As already mentioned in the previous section, this is vital if we want to
design efficient devices.

It is well-known that the reflection of a resonant cavity is always very
high, except when the incident light corresponds to a cavity resonance.
Thus, the combination of a traditional DBR with a symmetric resonant
cavity (RC) yields a structure where the off-axis reflectivity is always
very high, while the normal incidence reflectivity is set by the DBR.
This is illustrated in fig. 7.14, comparing the reflectivity at 980 nm
for the DBR and the DBR + RC. From this figure, it is already appar-
ent that the RC2LED will have a narrow radiation profile, because the
transmission of the bottom mirror is only significant in a much smaller
cone as compared to the RCLED.

This could lead to the impression that the outcoupling efficiency of
the RC2LED will also be a lot lower, because only a narrow cone of
the emitted radiation will be able to reach the outside world, while the
rest is effectively thrown away. However, this effect is compensated
to a large degree by the peculiar phase properties of the outcoupling
mirror, as shown in fig. 7.15. Provided the DBRs in the RC have an
odd number of layers and provided the refractive index contrast is high
enough, the combination of a DBR and a RC has a significant negative
angular penetration depth, i.e. a negative phase slope. This means
that instead of a single resonance at normal incidence, the RC?LED will
have an additional off-axis resonance. This leads to a higher overlap
between the spontaneous emission sphere and the resonance surface
in the k-diagram (fig. 7.16).

We illustrate this behaviour with some simulation results on the
same structure from table 7.1, but with an extra RC as indicated in
fig. 7.13. The field profiles of the RC?LED are illustrated in fig. 7.17,
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Figure 7.15: Phase of TE reflection for a DBR (dashed line) and a
DBR+RC (solid line).
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Figure 7.16: k-space diagram of an RC?LED.
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Figure 7.17: Far field profiles of the RCLED (dashed line) and the
RC?LED (full line).
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Figure 7.18: Extraction efficiency 7., of the RCLED (dashed line) and
the RC2LED (full line).

both for an undertuned and an overtuned device. For normal inci-
dence, the RC is transparent and the emission of the RC2LED is the
same as that of the RCLED. However, the RC2LED has additional side-
lobes corresponding to the extra resonance in the k-diagram. As the
cavity length increases, the angle corresponding to these sidelobes in-
creases, consistent with a resonance surface shifting down in the k-
diagram.

Although the extraction efficiency of the RC?LED is slighty lower
than in the case of the RCLED (fig. 7.18), the power coupled to a limited
NA is significantly higher (fig. 7.19).

When increasing the cavity length, ny4 suddently drops, which can
be explained by the sidelobes shifting outside of the acceptance cone of
the fibre in fig. 7.17.

Ultimately, the relevant figure of merit for these devices is the prod-
uct of 1., and ny4, the fraction of the light emitted by the active layer
that makes it to the fibre. From fig. 7.20, we can see that the RC2LED
offers a two-fold improvement over a classical RCLED design, which
can be quite an important asset when creating optical links, where the
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Figure 7.19: Fraction ny4 in NA=0.5 of the RCLED (dashed line) and
the RC2LED (full line).
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Figure 7.20: Extraction efficiency 7., - nya to NA=0.5 of the RCLED
(dashed line) and the RC?LED (full line).

power budget is always a critical issue.
Currently, efforts are underway to fabricate this device and test
these theoretical predictions.



Chapter 8

Future perspectives

“It’s tough to make predictions, especially about the fu-
ture.”
Yogi Berra

8.1 Conclusions

During this work, we extended the eigenmode expansion method to use
advanced boundary conditions, like perfectly matched layers or trans-
parent boundary conditions. This allows the method to correctly model
structures with radiation losses, whereas before, this radiation would
reflect off the hard boundary walls and would disturb the results. Not
only does this increase the accuracy of the results, it also improves the
speed of the method because the boundaries can now be placed much
closer to the structure under study. Due to this reduction in compu-
tational volume, a smaller number of modes N is required to achieve
convergence, which brings about important speed-ups because the cal-
culation time scales as N3.

We implemented these numerical techniques in a flexible, easy to
use CAD framework called CAMFR, short for CAvity Modelling FRame-
work. Through the use of object-oriented design techniques, the imple-
mentation of the models can proceed without explicit knowledge of the
details of the underlying spatial geometry, which makes it very easy to
extend CAMFR with new geometries.

Currently, two geometries are implemented in CAMFR:

e a 2D cartesian geometry, with an arbitrary number of index steps
in the z-direction and in the lateral direction.

e a 3D cylindrical symmetric geometry, with an arbitrary number of
index steps in the z-direction and per layer a single index step in
the radial direction.
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For these geometries (and also for future geometries), the following
functionality is available:

¢ fully vectorial field profiles inside a structure, including the reflec-
tion and transmission coefficients for arbitrary incident fields.

e band diagrams of an infinite periodic repetition of a basic struc-
ture.

e lasing modes of an arbitrary cavity, including resonance wave-
length, threshold material gain and field profiles.

e response of an arbitrary cavity to an arbitrary current source.

The calculation times of CAMFR compare extremely favourably to other
methods, especially to those based on spatial discretisation, like e.g.
FDTD. This is largely due to the fact that eigenmode expansion is able
to treat regions of constant refractive index analytically. CAMFR calcu-
lation times are typically on the order of seconds or minutes, instead of
hours or days using other methods.

We have shown that CAMFR can be used to model a large variety of
optical structures and devices. We applied it to study band diagrams in
photonic crystals and to calculate the properties of waveguides, bends
and splitters in these photonic crystals. We performed a detailed de-
sign study on different optical confining mechanisms in vertical-cavity
surface-emitting lasers and elucidated some of the trade-offs to make
in these matters. Finally, we investigated the process of spontaneous
emission in microcavities and proposed a novel type of resonant-cavity
light-emitting diode that has an increased extraction efficiency to opti-
cal fibre.

8.2 Future work

There are several topics that could be the subject of further work and
extensions to CAMFR.

The most obvious one is without doubt the extension to other ge-
ometries. One particularly attractive geometry, but also a very chal-
lenging one, is the extension to 3D cartesian structures. While this
extension is conceptually simple, it is numerically far from straight-
forward, among others because of the larger number of modes that
will be required to model 3D structures. New techniques will therefore
be required in order to keep the computational load within reasonable
bounds. A possible route consists in exploiting the sparsity of the ma-
trices involved. Initial investigations with 2D structures show that even
there, many elements in the matrices are close to zero, so incorporat-
ing sparse matrix solvers in CAMFR will provide additional speed-ups.
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We hope that CAMFR could eventually become a valuable option for
full-vectorial 3D simulations, which are currently very challenging to
perform and demand considerable investments in computer hardware.
It is our belief that eigenmode expansion could offer significant advan-
tages over FDTD, especially for structures with index profiles consisting
of large piecewise constant sections.

Slightly less ambitious, but nevertheless very interesting from a
practical point of view, would be the extension to cylindrical waveguides
with an arbitrary number of radial index steps. For VCSELs, this would
allow CAMFR to model more realistic gain profiles inside the QW, by do-
ing a staircase approximation. This is important if we want to couple
our optical model to other thermal or electrical models. Secondly, this
geometry could be used to study resonators with cylindrical leek-like
Bragg reflectors [Labilloy1998], which represent a possible route to full
3D optical confinement inside a cavity. The modelling of spontaneous
emission in these kinds of cavities would also be a very interesting ap-
plication. Even with current CAMFR capabilities it should already be
possible to model spontaneous emission inside oxide-apertured micro-
cavities, but this topic remained largely untouched so far due to time
constraints. However, in literature this is considered to be an interest-
ing and challenging problem [Deppel999]. Also, we could try and de-
velop a more sophisticated model of spontaneous emission in VCSELs
near threshold, by going from a single dipole emitter to an ensemble
of dipoles, with a spatial distribution described by a carrier diffusion
model.

There are also some plans to investigate the use of eigenmode ex-
pansion to describe more time-domain like phenomena, e.g. by apply-
ing a harmonic balance technique to model non-linear effects.

All of this could increase the flexibility and the possible application
domains of CAMFR even further, leading to a very useful set of tools to
improve the design of current optical components and to give a numer-
ical proof-of-principle for entirely new and unforeseen devices.
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