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Preface

Photonics is a multidisciplinary discipline with strong roots in fundamental physics and with a
rapidly increasing range of engineering applications in information technology, energy, lighting,
manufacturing and materials processing, metrology and sensing, medicine and biotechnology etc.

The course Photonics (Fotonica) is set up as a basic course for the last year of a bachelor program
(or as an introductory course at the master level). Its ambition is to introduce most of the basic
concepts used in photonics as well as to teach some basic design approaches. Furthermore it
will confront the student with a (limited) amount of factual knowledge about ”real-life” photonic
materials, components and systems. At the end of this course the student will have gained a broad
introductory knowledge in photonics, in such a way that it will serve both those who will further
specialize in photonics and those who will not.

The course is taught (in Dutch) as a compulsory course for the 3rd year Bachelor in Electrical
Engineering as well as for the 3rd year Bachelor in Engineering Physics. In view of the different
background of both groups there is unavoidably some overlap between this course and earlier
courses taken by one of both groups. For this reason a limited number of chapters are taught
separately to the two groups.

The course is also taught as preparatory access course (in English) for the 1st year Erasmus Mundus
Master of Science in Photonics. Originally the course text was written in Dutch and it was used as
such from the academic year 2003-2004 onwards. In view of the start of the international Erasmus
Mundus program in 2006-2007 the text has been translated to English.

The writing of a course text of this volume is obviously an extensive task. We are indebted to a
large group of co-workers in the Photonics Research Group for their help both for the contents
and for the editing and layout. More in particular we thank Wim Bogaerts, Pieter Dumon, Hannes
Lambrecht, Gino Priem, Olivier Rits, Joris Van Campenhout and Lieven Van Holme. We also
thank Danae Delbeke, Pieter Dumon, Bjorn Maes and Karel Van Acoleyen for their contributions
to the translation of the text. Finally we thank numerous students for feedback on the course and
for reporting various errors and shortcomings.

We wish all students in this course an exciting ride into the world of photonics.

Gent, 24 September 2009

Günther Roelkens and Roel Baets
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1.1 Photonics - what’s in a name?

The term photonics is relatively new and originated in the eighties of the 20th century. Its original
use was in the field of information technology. The term could be seen as an analogy to the term
electronics and corresponded to the application of optics and opto-electronics in electronic and
telecommunications systems. However, in due course the term acquired a broader meaning, and
now it refers to that field of science and technology where the fundamental properties of light
and its interaction with matter are studied and applied. The term is thus broader than optics or
opto-electronics.

Examining the dictionaries for the word photonics, we find amongst others:

• Merriam-Webster dictionary: photonics: a branch of physics that deals with the properties and
applications of photons especially as a medium for transmitting information

• American Heritage Dictionary: photonics : the study or application of electromagnetic energy
whose basic unit is the photon, incorporating optics, laser technology, electrical engineering, materials
science, and information storage and processing.

And in The Photonics Dictionary (http://www.photonics.com/dictionary/), an encyclopedia of
all the terms in this field, we obtain: photonics: The technology of generating and harnessing light
and other forms of radiant energy whose quantum unit is the photon. The science includes light emission,
transmission, deflection, amplification and detection by optical components and instruments, lasers and
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other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and so-
phisticated systems. The range of applications of photonics extends from energy generation to detection to
communications and information processing.

This last definition is not limited to information technology anymore, but it also includes optical
instrumentation, energy applications, etc. It is this broader meaning that we apply in this course.

1.2 Photonics - a historical outline

Light has always played a special role in the development of mankind, and there are valid reasons
for this. The light of the sun is the most important energy source for the earth. This light is
essential for most life forms and as it happens we are able to see a part of that light with our own
eyes. Clearly this has always sparked the imagination. However, understanding the character of
light and of all light-related phenomena, is a tremendous journey of ups and downs. It started
in antiquity, accelerated in the 17th century and underwent a revolution in the 20th century with
the discovery of the photon nature of light. The contribution of the 21th century remains yet
unknown.

In the following we present a short outline of the evolution of photonics. The names of impor-
tant discoverers and scientists are mentioned. However, many are left out in order to keep this
overview brief.

1.2.1 Antiquity and the Middle Ages

During Greek antiquity there was ample philosophy about the nature of light. One knew that light
propagated along a straight line, and about the phenomena of reflection and refraction. One had
also toyed with curved pieces of glass, and realized this could ignite a fire. But that was about it.
It was Euclid (300 BC) among others who put some things systematically on paper in his Optica.
He thought light beams originated from the eye and “scanned” an object. Later Aristotle disputed
this hypothesis. In the first century BC Hero proposed that light always followed the shortest path
- indeed not far from the truth.

The Romans did not contribute much to optics and in the dark Middle Ages - a fitting wordplay -
they got stuck completely. Around the 13th century thoughts about using lenses as glasses started
to appear. There was also a first correct explanation for the occurrence of the rainbow. Furthermore
it started to dawn that the speed of light had to be finite. One compared the propagation of light
to the propagation of sound. Therefore one needed a medium, which they called aether. The
Englishman Roger Bacon was pivotal in these developments. However, for a serious breakthrough
we have to wait until. . .

1.2.2 The 17th century

In the beginning of the 17th century the construction of telescopes started. With one of these
first telescopes Galileo Galilei discovered the four moons of Jupiter, among other things. On the
theoretical field the understanding of ray optics - or geometrical optics - started to expand. Wille-
brord Snell (Snellius) uncovered the law of refraction, but died before making it public. However,
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Descartes knew about the finding of Snellius, and published it using his own name. Today the
French sometimes speak of “la loi de Descartes”, but the rest of the world acknowledges Snellius.
Pierre de Fermat developed his famous Principle of Least Time, which states that beams of light
always follow “the shortest path” (in time). There has been a lot of debate about this principle,
also in philosophy (how do beams know which is the shortest path?). With this expansion of ray
optics the construction of optical instruments became more and more sophisticated. Antonie van
Leeuwenhoek developed the first microscope.

In the same era the study of interference and diffraction commenced. Because of the peculiar
colors of a thin film (such as an oil film on water) - often called Newton rings - one could not
escape it any longer: light behaves like a propagating wave. And waves can exhibit constructive
and destructive interference phenomena. Based on this wave principle Christian Huygens started
to work on diffraction theory. He considered every point in the aether where light passes, as
a point source itself, from which a spherical wave emanates. This is uncannily close to the truth.
Moreover Huygens discovered that light has a polarization and he experimented with birefringent
crystals. Around this time the finiteness of the speed of light was proven, via a study of the eclipses
of the moons of Jupiter. Furthermore, Isaac Newton showed that white light could be split in its
color components by a prism. However, Newton had a hard time accepting the wave character
of light and he proposed that light consisted of particles which propagate linearly through the
aether. Because of his authority his corpuscular theory put many scientists on the wrong track
during decades. It took until the first half of the 19th century before the wave character of light
would be generally accepted.

1.2.3 The 18th century

This century is often called the age of enlightenment, but that is about the main achievement for
photonics.

1.2.4 The 19th century

In the beginning of the 19th century the situation suddenly accelerated. Diverse scientists pieced
together the puzzle of interference and diffraction. Thomas Young, Auguste Jean Fresnel, Josef
Fraunhofer, Karl Friedrich Gauss, Lord Rayleigh, George Airy: they all made their contribution,
be it to the physics of the optical phenomena, or to the necessary mathematics. Around this period
Fraunhofer discovered - actually rediscovered - the dark lines in the solar spectrum, and therefore
one had to examine the interaction between light and matter. The world of spectroscopy was born.

In the meantime Fresnel stated his Fresnel laws, which for the first time provided a quantitative
description of the strength of reflection and refraction at an interface between two media. Further-
more Johann Christian Doppler uncovered the Doppler effect by studying the spectrum of binary
stars.

In 1850 J.L. Foucault (also known for the pendulum) devised a method to accurately measure the
speed of light. He also discovered that light propagated slower in a transparent medium such
as water or glass, than in air or vacuum (in contrast with sound waves). It was the end for the
corpuscular theory, even though pastor Sir David Brewster vehemently defended the theory to
the end. Luckily he is better known for the discovery of the Brewster effect. Independent of these
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“opticians” - photonicists? - Michael Faraday, James Clerk Maxwell and others experimented
with electricity and magnetism. The Maxwell equations saw the light of day. It was a big surprise
that these electromagnetic waves traveled with the speed of. . . light, and James Maxwell rapidly
concluded that light waves had to be electromagnetic waves. Heinrich Hertz, just after discover-
ing the photo-electric effect (the effect where electrons escape from a material upon illumination
with short wavelength light), would experimentally show the electromagnetic character of light
in 1888. These concepts were so revolutionary that during a long period people where divided
into “believers” and “non-believers” concerning the electromagnetic nature of light.

Meanwhile Lord Rayleigh (John Strutt was his real name) developed a theory describing the scat-
tering of light from small particles. Finally it became clear why the sky is blue. The occurrence of
total internal reflection was discovered by John Tyndall. In 1879 Thomas Alvin Edison constructed
the first usable electric lamp, the incandescent lamp. Following the telescope and the microscope
the next practical application of photonics, lighting, was kickstarted. On the other hand interfer-
ometry slowly evolved from a curious phenomenon into a useful technique. Armand-Hippolyte-
Louis Fizeau, Albert Michelson, L. Mach and L. Zehnder, Charles Fabry and Alfred Perot : they
all developed different types of interferometers carrying their name. Up until today these devices
are part of the standard toolbox for a specialist in photonics.

At the end of the 19th century several experiments were conducted that paved the way for modern
quantum mechanics. Josef Stefan and Wilhelm Wien studied blackbody radiation, Johann Jakob
Balmer examined the hydrogen spectrum, Pieter Zeeman uncovered the broadening of spectral
lines in a magnetic field. Step by step it became clear that classical mechanics was unable to
explain all the phenomena. The 20th century dawned.

Joseph Plateau

Ghent, and more specifically Ghent University, has its famous optical scientist. Joseph Plateau(1801-
1883) studied physiological optics and with his phenakistiscoop, mostly cited as the direct pre-
cursor to the movie, founded the basis for the movie industry. In 1835, when he becomes a
professor at Ghent University, he already discovered the phenakistiscoop. This device is based
on the slowness of sight, because of which a quick succession of pictures merges into a moving
image. The phenakistiscoop consists of a support, mounted with a round disc with slightly
differing drawings, separated by small slits. If one turns the disc in front of a mirror and looks
at the passing images through the slits, motion appears. In a tragical twist of fate, analogous to
Beethoven becoming deaf and never hearing the ninth symphony, Plateau became blind and
conducted research as a blind person for forty years, partly in optics.

1.2.5 Twentieth century

The first half of the 20th century stands for the development of quantum physics. In 1900 Max
Karl Planck could explain the blackbody radiation spectrum by postulating that the energy of an
oscillator consists of a number of discrete quanta, with energy proportional to the oscillation fre-
quency. Planck’s constant h, the proportionality factor, was discovered. Using this Albert Einstein
elucidated the photoelectric effect in 1905, by proposing that light itself consisted of quanta with
energy hν. In a certain way, Newton’s corpuscular theory was back, but without the misleading
aether concept. The photon was born.
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Figure 1.1: Joseph Plateau and his phenakistiscoop. Source: Museum for the History of Science - Ghent
University (http://allserv.ugent.be/ ivhaeghe/mhsgent/)

A few years later Niels Bohr applied these quantum principles to explain the line spectra of gases.
After this a delegation of physicists built and expanded quantum mechanics: Heisenberg, Born,
de Broglie, Schrödinger, Dirac. . . From then on we had to accept that light has both a wave and a
particle character. One phenomenon is better explained by one characteristic, another experiment
by the other property. To this day the union of both pictures is not always harmonious, and some
still struggle with fundamental problems in reconciling both.

In 1916 Albert Einstein had another remarkable proposal: apart from absorption and spontaneous
emission of photons there needed to be another third interaction, stimulated emission. This pro-
cess amplifies light and forms the basis of one of the greatest inventions of the 20th century:
the laser. The optical laser was described theoretically in 1958 by Nobel Prize laureates Arthur
Shawlow and Charles Townes, extending upon the concept of the microwave laser or maser. Af-
ter this the race was on towards an experimental demonstration. In 1960 Theodore Maiman con-
structed the first working laser, which was a ruby laser. Two years later the semiconductor version
was independently developed by three American groups. The importance of the laser can not pos-
sibly be overestimated. During the last decades of the 20th century, mainly because of the laser,
photonics has developed into a discipline with enormous impact on fundamental physics and on
diverse application areas.

We mention here several other fundamental discoveries made in the 20th century: discharge
lamps, Raman and Brillouin scattering, acousto-optical interaction, holography, nonlinear optics,
solitons, surface plasmons, liquid crystals, photonic crystals, quantum wells and quantum dots,
etc.

Writing about recent history is difficult, because the topics are so diverse and because one cannot
distinguish the most important subjects yet. Instead, in the next section we succinctly describe
some application areas.

1.2.6 21st century

It is even more difficult to predict the future. What will the 21st century bring for photonics? From
scientific research one can make some careful predictions for the next 10 to 20 years.

In analogy with micro-electronics, one can expect a major industrial advance for micro-photonics
in the next 5 to 10 years. Micro-photonics means that photonic functions are integrated in mi-
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crosystems, consisting of chips (processing optical signals, possibly combined with electrical sig-
nals), micro-optical elements, micromechanical parts etc.

In research there is a lot of activity on nanophotonics, where light interacts with nanoscale material
structures, opening a new world of material properties and applications. Although there are still
a lot of theoretical, conceptual and technological hurdles, we can expect concrete applications in
the next 10 to 20 years.

From nonlinear optics one expects a huge impact, as it allows to introduce (digital) data-processing
concepts into photonics.

The world of light sources will continue its rapid evolution of the last decades: more power, bet-
ter efficiency, shorter pulses, different wavelengths, cleaner spectrum, higher modulation band-
widths etc.

Organic materials, including all kinds of liquid crystals, biomolecules and polymers, will play an
important role in photonics.

Quantum optics has a potentially great impact in quantum communications and eventually even
in quantum computing. But this may take 20 years or more.

1.3 Photonics - applications

Around the middle of the 20th century one had a good understanding of all kinds of optical phe-
nomena, but the applications were lacking. There were diverse optical visualisation instruments,
such as the telescope and the microscope, a variety of spectroscopic tools, and lighting sources,
with the lightbulb and the gas discharge lamp. The layman only knew this last device.

Only during the second half of the 20th century, and more specifically during the last quarter, one
started developing applications at a rapid pace. We give a short overview and distinguish five
large application areas (with inevitable overlap): the energy sector, the medical area, measurement
and sensor applications, visualisation, and information technology.

1.3.1 Energy applications

Electromagnetic radiation - and light in particular - transports energy from location A to location
B without the need for material contact. This energy can be used in various ways: after absorption
it is converted to heat, or the photons interact, if they have sufficient energy, with materials to
start a chemical reaction or an electrical current. An important example of the last conversion is
the solar cell. Today photovoltaic energy is mostly relevant for energy production in remote areas
(on earth or in space), but it is probably only a matter of time before there are more widespread
applications. Today’s commercial cells are made of semiconductor, but in the future we can expect
the use of plastics.

Lighting is a second important energy application. In the last decade the area of lamps has evolved
from a classical market into a rapidly evolving high-tech marketplace. Efficiency, lifetime and
compactness are the driving forces behind this innovation. Apart from the classical lightbulbs,
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discharge and fluorescence lamps we more and more see the appearance of LEDs - Light Emitting
Diodes - in various lighting and signalisation devices.

The advent of the laser has had a huge impact on energy applications. Because of the coherence
of laser light it is possible to focus the energy of a beam onto a spot with a diameter on the order
of the wavelength of the light. A laser with 1 KWatt power, focussed onto an area of 1 square
micrometer delivers a power density of 100 GWatt per square centimeter. Thus the applications
are spectacular. With a high power laser one is able to cut, weld or harden diverse materials -
even thick steel plates. Three-dimensional modeling is also possible in a myriad of ways. With
stereolithography one can prototype layer upon layer of a three-dimensional object. With laser
ablation material of a surface can be vaporised in a very precise way, leading to formation of a
shape. Since a couple of years one can directly “sculpt” a three-dimensional form in a transparent
volume. This process requires lasers with pulse lengths on the order of 10 to 100 femtoseconds,
and it employs nonlinear optical phenomena.

The whole world of micro-electronics exists today because of optical lithography. The patterns of
almost all electronic ICs are realised by optically imaging a mask on a semiconductor wafer. The
narrowest linewidth is on the order of the wavelength used. To obtain even finer lines - nowadays
about 100 nm - one uses light sources with wavelengths deeper and deeper in the ultraviolet.
Previously one used lamps, now lasers are more and more common.

1.3.2 Medical applications

The laser has profoundly changed many therapies in medicine, most of all because laser therapy is
often less invasive than other techniques. The penetration depth of the light and its effect on tissue
is strongly dependent on the light wavelength. The pulse length is another important parameter.
The biggest impact of the laser is probably in the area of ophthalmology. With lasers one can repair
damage to the retina or decrease eye pressure, which can injure the optic nerve. Of course one can
correct near- or farsightedness by changing the curvature of the cornea with laser ablation. Lasers
are also often used in general surgery, e.g. to evaporate tissue, to make non-bleeding cuts or to clot
blood. In dermatology lasers are employed to treat diverse skin conditions, for medical as well as
cosmetic reasons. There is also the photodynamic therapy to treat some types of cancers. For this
therapy a photosensitive material is injected in the body, which preferentially locates itself in the
cancer tumors. Upon illumination of the tumor with a laser the cancer cells will die more rapidly
than healthy cells.

Diagnostics in medicine is also performed with light. A popular and recent form of monitoring
is the non-invasive oxygen saturation meter. This device consists of a probe with a light emitting
diode (LED) and a photodetector. It can be attached to a fingertip or an earlobe, so that light
is radiated through tissue. The light emits in two different wavelengths, one in the visible and
one in the infrared region. This light is absorbed with different rates by the hemoglobin. From
this one can deduce the oxygen saturation level in the blood. Another frequently used, though
“unpopular”, diagnostic is endoscopy. Here one uses a flexible tube filled with optical fibres to
look inside of the body, e.g. the stomach. The fiber bundle transports an optical image to a camera
outside of the body. In recent years tomographic imaging of tissues by use of light is gaining
importance. Despite the strong scattering of light during propagation through the body one can
realise imaging. To this end one employs near-infrared wavelengths as tissue, even the skull, is
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sufficiently transparent in this spectral region. In this way it is e.g. possible to map the oxygen
concentration in the brain.

1.3.3 Measurement and sensor applications

Light is incredibly versatile for measuring many properties of materials and systems. First of all
there is the broad field of spectroscopy - the measurement of light spectra. The light absorption
or emission of materials (after some excitation) often shows a characteristic spectrum with very
sharp peaks. This is employed both in fundamental and applied research on a large scale. As a
consequence there is a multitude of spectroscopic instruments.

Besides this, one uses light to measure all kinds of physical quantities, such as temperature, dis-
tance, displacement, elastic strain, gas concentration, material composition etc. Most geometrical
measurements (distance, displacement, deformation) are simply based on a change of the optical
path length. If one works interferometrically it is possible to measure distances with an accuracy
that is a very small fraction of the wavelength, e.g. a few nanometer. Ultra-precise translation
stages are often equipped with a laser-interferometer. Other physical quantities such as temper-
ature are often measured because of their influence on the refractive index, giving rise again to a
change in optical path length.

Glass fibre sensors constitute a special class of optical sensors. Here the sensing is built in a certain
way into the fibre, and the light is transported by this same fibre to the sensor. This method is used
to monitor the safety of large constructions. The bridge over the Gentse Ringvaart near Flanders
Expo e.g. is equipped with fibre sensors embedded into the concrete.

Another important class of sensors are the biomolecular detectors. They sense different kinds of
biomolecules such as antibodies, proteins or DNA. Many techniques here work optically. One
way is to selectively attach a fluorescent molecule to the biomolecule, so that emission shows the
presence of this biomolecule. Another way is to attach the biomolecule to another one, and to
detect the change of refractive index caused by this attachment. These techniques are routinely
used today in labs, but they are often expensive and bulky to use in a normal medicine practice.
Microphotonics could change this in the future by building “labs-on-a-chip”.

1.3.4 Visualisation

Because we have eyes and are used to see three-dimensional objects projected onto two dimen-
sions (and to interpret them three-dimensionally with our brain), visualisation systems are a very
important application of photonics.

The purely optical systems for direct observation with the eye were historically the first systems,
and they remain important today. The field of microscopes, telescopes and projectors encom-
passes many variants. The art is to build a system that transports as much light as possible from
object to image plane, combining a resolution as high as possible with an imaging area as large as
possible. This combination of demands leads to very complex lens systems. For classical systems
the resolution has always been limited by the diffraction limit. For a microscope this means that
one is unable to resolve details smaller than the wavelength. In recent years, however, one has
built systems that break this barrier, the Scanning Near-field Optical Microscopes (SNOM).
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With the emergence of photography it became possible to capture images on film via photochem-
ical methods. Later the vacuum systems such as vidicon or cathode ray tube appeared. Here
photons are converted into electrons in vacuum (photoelectric effect) and subsequently into elec-
tric current. Inversely, current is converted into electrons in vacuum and then into photons via
phosphorescence. By scanning images sequentially in these systems, a two-dimensional picture
(or a sequence of pictures) is converted into a time signal, or the other way around.

Gradually these high-voltage vacuum systems are replaced by electronic low-voltage systems.
Modern cameras work with Silicon chips (CCD-chips), that port the image into a sequential elec-
tronic signal. In recent years CMOS-chips with built-in detectors are used more and more. For
displays the cathode ray tubes are replaced by flat panel displays, mainly based on liquid crystal
technology (LCD). For big screen projection LCD-technology is also used, unless the picture has
to be very bright (e.g. in daylight), in which case one employs huge LED-matrix panels.

In most applications the visible spectrum is used. However, there are special cameras that capture
light in other wavelength regions, such as the infrared radiation. In this way one can detect the
thermal radiation of an object and design night vision systems.

The field of graphics uses many optical techniques to convert electronic information onto film or
paper. In laser- and LED-printers a photosensitive drum is illuminated line after line, attracting
toner, and transferring it to paper. For professional printing techniques such as offset printing the
printing plate is fabricated with laser illumination.

1.3.5 Information technology

Of all photonics’ applications optical communication probably has the deepest impact on society.
The internet works because of the optical fibres that transport the data streams between continents,
countries, regions and cities. The story of optical communication is a combination of the semicon-
ductor laser and the glass fibre itself. This fibre is able to transport incredibly high datarates over
very long distances. Nowadays one laser typically sends 10 Gigabit/s in a fibre, and this will
evolve to 40 Gigabit/s. If one combines the light of various lasers, with different wavelengths,
into a fibre, one can reach datarates of over 1 Terabit/s. In the fibre itself light can propagate about
twenty kilometers before being attenuated by a factor of 2. After 100 km this attenuation is about
a factor of 30, and this is the typical length of a telecom-link. To proceed over longer distances,
it is possible to use fibre based optical amplifiers. In these devices light is amplified directly by
stimulated emission.

In recent years optical communication is increasingly employed for shorter links. As datarates
become higher, or the number of connections within a volume becomes larger, the distance above
which fibre is more interesting than electrical copper wire becomes smaller. More and more local
networks are designed optically, especially for connections above about 100 meters. Fiber-to-the-
home will undoubtedly arrive in the future, although introduction is hampered by large scale
infrastructure investments. For very broadband connections between electronic hubs one often
uses parallel optical links. Slowly work has been done to change the wiring on the level of a
printed board into an optical connection. There is also research to implement the highest level of
wiring within an integrated circuit by means of dense optical waveguides.

A second important application of photonics for information technology is optical data storage.
With the technology of CD and DVD one can store Gigabytes of data on a cheap and portable
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plastic disc. There are three forms: read only, write once and rewritable. Roughly speaking the
capacity is limited by the diameter of the used laser spot, which is on the order of the light wave-
length. Thus it is logical that the generations of optical data storage move to shorter wavelengths:
from infrared (CD), to red (DVD) to blue (e.g. BlueRay).

1.4 Photonics - education

A few decades ago, the range of light applications was fairly limited. Therefore photonics never
constituted the core of an engineer’s training. Instead it was a side aspect of educations in elec-
tronics, physics and partly material science. However, because of the wide spectrum of photonic
applications, as we described previously, there are more and more course programs with pho-
tonics as its main discipline, and in which electronics, physics and material science move to the
periphery. This mostly happens on the master level, although examples of bachelors in optics or
photonics also exist. These courses have a multidisciplinary approach. Besides optics one needs
knowledge and techniques of material science, technology, mathematics and numerics, measure-
ment and systems, etc.

1.5 Photonics - this course

The goal of this course is to provide insight into the basic principles and concepts of photonics.
Moreover, it gives information about the significant materials, components and systems. The
target audience consists of two groups: those who will not specialize in photonics and those who
will. This course keeps both groups in mind.

There are many ways to arrange an introductory photonics text. For this course we chose to
roughly follow the historical development. In this way the various models and techniques appear
in increasing order of complexity: ray optics, scalar wave theory, electromagnetism and quantum
electrodynamics (or quantum optics). It is important to stress that all models remain relevant
and are used nowadays to design photonic systems. Indeed, it is a rule that one should not use
a more complex model than necessary for the problem at hand. The same rule is applied to the
mathematical descriptions in this course. They are as involved as necessary in order to understand
the basic principles or to make simple designs. Figure 1.2 schematically depicts the four basic
models in optics. It is clear that the simpler (and older) models are considered an approximation
that is usable for a certain subclass of problems.

This course builds upon other courses of the bachelor electrotechnical engineering and applied
physics, such as Physics, Electrical networks, Electromagnetism, Quantum mechanics and Semi-
conductor physics. Because students followed different curricula there will be a redundancy for
some subjects, especially for quantum mechanics.

Any scientific discipline, including photonics, has its major reference works. Here we shortly
describe a selection of important books. The next paragraph provides a complete reference. This
course was inspired by these works.

Fundamentals of Photonics by Saleh and Teich [ST91] is closest to this course, both regarding
scope and depth of description. It is recommended for anyone who needs a basic book about
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Figure 1.2: The four basic models of optics

photonics. This work provides a fairly complete overview and the level is perfect for a third year
bachelor. About two thirds of its topics are presented in the course.

Principles of Optics by Born and Wolf [BW99] is a classic in this area. The first edition appeared
in 1959 and there is already a 7th edition. This work describes classical optics (ray optics, scalar
wave and electromagnetic optics) in a very thorough way (much more complete than in this
course). Many topics however are not mentioned (e.g. lasers or semiconductor opto-electronic
components).

The books Optics by Möller [Möl88] and Modern Optics by Guenther [Gue90] are comparable
in detail to Saleh and Teich. However they are roughly restricted to the same topics as Born and
Wolf. For some topics they provide an interesting alternative approach to Saleh and Teich.

The booklet An introduction to theory and applications of quantum mechanics by Amnon Yariv
[Yar82] explains the difficult world of quantum mechanics with a modest amount of mathematics,
without simplifying too much however.

The book Principles of Lasers by Orazio Svelto [Sve98] restricts itself to lasers and is one of the
most important basic works in the field. The first edition dates from 1976 and there is already a
fourth edition. The book assumes no previous knowledge about lasers but goes into much more
detail than possible in this course.

The Photonics Directory [PDi03] is a book in four parts with a new edition every year. It offers
a window to the “real” world of products, technology and photonics-related companies. Part 3
contains about 200 short tutorials on various concrete products. In this way one obtains a picture
of the state of the art quickly and efficiently. Part 4 is a dictionary of terms and acronyms in
photonics. The Photonics Directory is freely available on the web, except part 3.
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Chapter 2

Quantities and Units of Light
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In this chapter we present a few basic concepts about light units, illumination and color. In the
first part we discuss the various quantities that are used to characterize light. This is a fairly
complicated system, expressed in lesser known units. Moreover, for the photometric quantities one
implicitly takes the properties of the eye into account.

2.1 The Electromagnetic Spectrum

Light is mostly defined as electromagnetic radiation with a frequency close to the part that is
visible to the human eye. Therefore, one separates apart from visible light, infrared light (lower
frequency) and ultraviolet light (higher frequency). Depending on the discipline the frequency
is described by a number of different units. The frequency itself, noted as f or ν (the latter in a
physics context), is evidently the clearest. However, it is used less commonly, probably because
the numbers are rather big: typically 1014Hz or 100THz (TeraHertz). The most used quantity is
wavelength λ, defined as the distance the (monochromatic) light traverses during one period of
the sinusoidal time signal:

λ =
c

nf
, (2.1)

with c the speed of light (c = 299792458m/s) in vacuum and n the refractive index of the material
(n is the square root of the relative permittivity εr). One notices that the wavelength depends on
the refractive index, because the speed of light in the material depends on it. Thus, the wavelength
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quantity λ f of ν E σ

unit µm THz eV 1/cm
value 1 300 1.24 10000
trend w.r.t. λ ∝ λ ∝ 1/λ ∝ 1/λ ∝ 1/λ

Table 2.1: Electromagnetic quantities at a wavelength of 1µm.

changes during propagation from one material to the next (while the frequency remains constant).
Therefore, one often uses the vacuum wavelength, which is the wavelength of the light should it
propagate through vacuum (index n = 1). Most of the time the vacuum wavelength is simply
called wavelength. It is commonly expressed in µm or nm. The unit Å (Angström) is frequently
used, but is to be avoided (1Å = 0.1nm). Another measure of frequency is the photon energy.
Light has both a wave and a particle character. It consists of elementary quanta, called photons.
They have an energy E proportional to the frequency:

E = hf = hν (2.2)

with h Planck’s constant (h = 6.626 × 10−34Js). This can be expressed in Joule, but electron-volt
(eV) is used more frequently (1eV = 1.602×10−19J). Often one needs to switch between (vacuum)
wavelength (in µm) and photon energy (in eV ). From the above equations we obtain the following
relation:

E [eV ] =
1.24
λ [µm]

. (2.3)

Finally, it is common in spectroscopy to use the reciprocal quantity of wavelength, called wavenum-
ber and noted as σ:

σ =
1
λ
. (2.4)

This quantity is often expressed in 1/cm and shows how many wavelengths fit in 1 cm. The term
wavenumber is somewhat confusing because in electromagnetism the wavenumber (k) is defined
by:

k =
2π
λ
. (2.5)

It is useful to memorize the values of the other quantities corresponding to a wavelength of 1µm.
In this way one can quickly find the magnitudes for other wavelengths, without knowing the
fundamental constants. They are presented in table 2.1.

Figure 2.1 depicts the various frequency bands. The visible part is also shown in more detail.
Notice that the human eye is sensitive to a limited part of this spectrum, more specifically from
380nm to 760nm. These are mean values dependent on the observer and the light intensity. In
optics one is mostly interested in the ultraviolet, visible and infrared parts, so spanning from
10nm to 100µm.

Purely sinusoidal radiation does not exist in reality. So every radiation has a certain bandwidth
and one refers to its spectral distribution. Figure 2.2 shows the spectral distribution of different
sources with both continuous and line spectra.
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Figure 2.1: The electromagnetic spectrum.

Figure 2.2: Spectra of different sources. From top to bottom: A monochromatic source (a single spectral
line), a source consisting of various spectral lines, and a source with a continuous spectrum.
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2.2 Units for Optical Radiation

Optical radiation is characterized with two different kinds of units. The energetic units are equiv-
alent to the units used in physics to measure electromagnetic radiation. Examples are Watt (W ),
Joule (J) and the like. If one wants to describe light properties that are dependent on characteris-
tics of the human eye, one uses photometric units. Thus, these units are a measure for the visual
impression we get from the electromagnetic radiation.

2.3 Energetic Quantities

2.3.1 Radiant energy

• Symbol: Qe

• Unit: Joule

This is the amount of energy transferred by electromagnetic waves (propagated during a given
time through a given surface, or inside a given volume at a given instant).

2.3.2 Radiant flux

• Symbol: F e

• Unit : Watt

This is the amount of radiation per time unit (the infinitesimal amount of radiation dQe that prop-
agates through a given surface in an infinitesimal time dt, divided by this time dt):

F e =
dQe

dt
(2.6)

2.3.3 Radiant intensity

• Symbol: Ie

• Unit: Watt/str

For a point source (figure 2.3a) it is the radiant flux in a given direction per unit solid angle (it is
the radiant flux dF e in an infinitesimal solid angle dΩ around a given direction, divided by this
solid angle).

Ie =
dF e

dΩ
. (2.7)

The radiant intensity depends on direction.

2–4



Figure 2.3: Illustration of the energetic quantities of radiation. (a) Radiant intensity Ie of a point source, (b)
radiance Le of a radiating surface, (c) radiant exitance Me of a radiating surface and (d) irradiance Ee of a
radiating surface.

Note: the unit of solid angle is steradian (str). A solid angle is 1str if for a sphere of radius 1 the
part on the surface inside the solid angle has a surface area 1. Thus, the whole space around a
point has a solid angle of 4πstr.

2.3.4 Radiance

• Symbol: Le

• Unit : Watt/str/m2

Radiance is the radiant intensity of a surface around a given point in a given direction, per unit
of effective area of the surface in that direction (figure 2.3b). So, it is the radiant flux of a given
infinitesimal surface dS in an infinitesimal solid angle dΩ around a given direction, divided by the
effective area of dS and divided by the solid angle dΩ:

Le =
dIe

dSeff
(2.8)

Here the effective area is given by dSeff = dScosθ with θ the angle between the normal of the
surface and the chosen direction. Thus, radiance depends on position and direction.

2.3.5 Radiant exitance

• Symbol: M e

• Unit: Watt/m2
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Radiant exitance is the radiant flux per unit area, radiated by a surface (figure 2.3c) :

M e =
dF e

dS
(2.9)

Thus it is dependent on position.

2.3.6 Irradiance

• Symbol Ee

• Unit : Watt/m2

Irradiance is the opposite of radiant exitance. It is the radiant flux per unit area received by a
surface (figure 2.3d):

Ee =
dF e

dS
(2.10)

2.3.7 Spectral density

It is possible to define a spectral density for all these quantities.

Example : spectral density of the radiant flux F e:

F es (λ) =
dF e

dλ
(2.11)

It is the radiant flux in an interval dλ around a wavelength λ, divided by this wavelength interval
(inWatt/nm). In the following we drop the subscript s of spectral density for notational simplicity.

2.4 The human eye

Figure 2.4 depicts a cross section of the human eye. The retina is the photosensitive part of the
eye and consists of two kinds of light sensitive cells : rods and cones. The impression of light is
a chemical reaction in these nerve cells. The cones provide sight at normal illumination (photopic
sight) and are sensitive to color.

There are three kinds of cones:

• sensitive to red : maximum sensitivity at 580nm

• sensitive to green : maximum sensitivity at 540nm

• sensitive to blue : maximum sensitivity at 440nm
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Figure 2.4: Schematic depiction of the human eye.

Figure 2.5: Sensitivity of rods and cones in the human eye.
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At low illumination the cones become insensitive and the rods take over: this is night vision or
scotopic sight. Rods are not sensitive to color, however they are much more sensible to light than
cones. The transition area between photopic and scotopic sight is called mesopic sight. The light
sensitivity of the human eye depends strongly on the wavelength. After extensive testing on
many persons an internationally accepted spectral eye sensitivity curve was established in 1933,
see figure 2.5. For photopic sight the curve V (λ) has a maximum at 555nm (one obtains this curve
by taking a weighted average of the spectral sensitivity curve for the three kinds of cones). Thus,
as an example 2Watt of light with a wavelength of 610nmwill appear as bright as 1Watt at 550nm.
So, the response of the eye to a radiant flux with spectral density F e(λ) will be proportional to:∫

F es (λ)V (λ) dλ (2.12)

For scotopic sight the eye sensitivity curve shifts to the blue.

2.5 Photometric quantities

With the spectral eye sensitivity curve V (λ) it is possible to convert the (objective) energetic quan-
tities into photometric quantities. Thus the latter take the response of the eye into account. The
notation of photometric quantities is analogous to the energetic ones, although without the su-
perscript e. The conversion from the radiant flux F es into the luminous flux F is done with the
equation:

F = K

∫
F es (λ)V (λ) dλ (2.13)

with K = 680lumen/Watt

2.5.1 Luminous flux

• Symbol: F

• Unit : lumen

Using F es (λ) and V (λ) one obtains that a radiant flux of 1Watt at 550nm corresponds to a luminous
flux of 680lumen.

2.5.2 Luminous intensity

• Symbol: I

• Unit: candela = lumen/str

For a point source the luminous intensity is defined as the luminous flux in a given direction per
unit solid angle (see figure 2.3a):

I =
dF

dΩ
(2.14)
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Historically the term candela (and the magnitude of 1 candela) originates from the luminous inten-
sity of a candle. Today the candela is considered as one of the seven basic units of the international
system of units (SI). Other photometric units are deduced from the candela. The international def-
inition of the candela has been often changed in the 20th century. Nowadays the definition is:
“The candela is the luminous intensity, in a given direction, of a source that emits monochromatic
radiation of frequency 540x1012 hertz and that has a radiant intensity in that direction of 1/683
watt per steradian.”

2.5.3 Luminance

• Symbol: L

• Unit: candela/m2 = nit

The luminance or brightness is the luminous intensity radiated by a surface around a given point
in a given direction, per unit effective area of the surface in that direction. (figure 2.3b):

L =
dI

dSeff
(2.15)

2.5.4 Luminous exitance

• Symbol: M

• Unit: lumen/m2

The luminous exitance is the luminous flux radiated by the surface per unit area (figure 2.3c):

M =
dF

dS
(2.16)

2.5.5 Illuminance

• Symbol: E

• Unit1 : lux = lumen/m2

1In anglo-saxon literature one often finds the unit footcandela (fc) instead of lux. This is a unit of illuminance that
corresponds to a uniform illumination of 1lumen on a surface of 1 square foot.

1fc = 1
lumen

ft2
= 1

lumen

(0.304m)2
= 10.76lux

The unit foot-Lambert is also employed. It is used as a measure for the luminance of lambertian emitters (see below). 1
foot-Lambert means that the surface has a luminous exitance of 1lumen per square foot. Furthermore, 1 foot-Lambert
corresponds with a luminance of 3.426 Nit. 1 Lambert expresses that the surface has a luminous exitance of 10.000
lumen per square meter, which corresponds to 3183.1 Nit.
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Figure 2.6: Calculation of the illuminance on a surface dS by a point source.

The illuminance is the opposite of luminous exitance: it is the luminous flux per unit area, received
by the surface (figure 2.3d):

E =
dF

dS
(2.17)

2.5.6 Spectral density

For all these quantities it is again possible to define a spectral density. Example: the spectral
density of the luminous flux:

Fs (λ) =
dF

dλ
(2.18)

or
Fs (λ) = KV (λ)F es (λ) . (2.19)

2.6 Relations between different quantities

We only consider incoherent sources in this section. This means that light from different sources,
or light that reaches the same point via different paths, can simply be added. The total luminous
flux is then equal to the sum of all separate flux contributions. In later chapters it will become
clear that this is not the case for coherent sources, such as lasers.

2.6.1 Calculating the illuminance

Point source

In practice a source is considered pointlike if the distance to the illuminated surface is at least six
times as large as the largest size of the source.

First we determine the illuminance E at P on a surface at a distance D from the source, given the
luminous intensity I(θ, φ) of that source (figure 2.6).
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Figure 2.7: Calculation of the illuminance on the surface dS′ from an extended source.

Solid angle:

dΩ =
dS cos θ
D2

(2.20)

Luminous flux dF on dS :
dF = I (θ, φ)

dS cos θ
D2

(2.21)

Illuminance E on the surface :

E =
dF

dS
=
I cos θ
D2

=
I cos3 θ

h2
(2.22)

For perpendicular incidence ( θ = 0◦) one obtains

E =
I

h2
(square law) (2.23)

Thus, the illuminance on a surface decreases with the square of the distance D to the source (the
latter being sufficiently small).

Extended source

Given the luminance L(θ, φ) of a source, we obtain the illuminance E on a surface dS′ (figure 2.7).

Luminous flux dF in a solid angle dΩ :

dF = L (θ, φ) (dS cos θ) dΩ (2.24)

with

dΩ =
dS′ cos θ′

D2
(2.25)
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Figure 2.8: Illumination of the retina by an extended source.

Illuminance dE on dS′ due to the surface dS on the source:

dE = L
cos θ cos θ′

D2
dS (2.26)

Total illuminance E by the complete source:

E =
∫ ∫
source

L
cos θ cos θ′

D2
dS (2.27)

2.6.2 Relation between the illuminance on the retina and the luminance of a light
source

It is easy to show that the eye is sensitive to the luminance L of a source (figure 2.8).

The effective area of the surface dS on the source is:

dSeff = dS cos θ (2.28)

The luminous flux incident on the eye lens with surface S′ from dS is :

dF = LdS cos θdΩ with dΩ =
S′

d2

=
LdS cos θS′

d2
, (2.29)

with d the distance from source to lens. The image magnification of the eye is given by h/d (with
h the distance lens-retina). The surface magnification is thus :

dS
′′

dSeff
=
h2

d2
, (2.30)

with dS′′ the image of dS on the retina.
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Figure 2.9: Lambert’s law.

The luminous flux dF incident on the lens from dS is also the flux incident on dS′′. We obtain:

dF = L
dS′′S′

h2
(2.31)

The illuminance on dS′′ becomes:

E =
dF

dS′′
= L

S′

h2
= LdΩ′′, (2.32)

with dΩ′′ a constant for the eye. This last expression implies that the illuminance on the retina is
independent of the distance from the source to the eye. At first glance this seems surprising, as a
source appears less bright as the distance increases. However, with increasing distance the image
of the source on the retina becomes smaller. The amount of light incident on the eye decreases too,
with the same rate. Therefore the illuminance (luminous flux on the retina divided by unit area!)
remains constant.

Because the eye is a “measurement device” for luminance, this explains why “brightness” is a
synonym for this quantity.

2.6.3 Lambert’s law

A radiating surface is a lambertian emitter if the luminance of a point on the surface is independent
of the direction. Consider dS on this surface (figure 2.9) then L(θ, φ) = cst.

The luminous intensity dI emitted by the surface dS is:

dI = LdSeff

= LdS cos θ (2.33)

or
dI(θ) = dI0 cos θ, (2.34)

with dI0 the luminous intensity for the normal.
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Recommended illumination (lux)
offices 500− 1000
very precise work 1000− 5000
living space - local 500− 1000
living space - ambient 50− 100

Table 2.2: Recommended illumination for artificial light.

For a source that complies with Lambert’s law one can derive a relation between the luminance
and the luminous exitance by calculating the total luminous flux dF radiated by dS in a half space:

dF =
∫
dIdΩ = dI0

π/2∫
0

cos θ sin θdθ

2π∫
0

dϕ

= πdI0

= πLdS (2.35)

Thus, the luminous exitance is:

M =
dF

dS
= πL (2.36)

Many incoherent sources have a surface that is described well with Lambert’s law. Examples: the
sun, the filament in a tungsten lamp, a light emitting diode. Many diffusely reflecting surfaces
reflect according to Lambert’s law, so quasi independent of the direction of incidence of light on
the reflector. This is why a piece of paper appears as bright from every viewing angle. It also
explains why the sun appears as a uniformly lit disk (the edges remain bright). However, the
(full) moon may seem like a uniform disk but it is not: the illuminance decreases with the cosine
of the incidence angle of the sunlight (with the normal). Thus, the luminance decreases according
to this rate.

2.6.4 Typical values for luminance and illuminance

Illumination is by far the easiest and most used parameter for good lighting. One expresses the
luminous flux (lumen) that reaches the surfaces surrounding the person, per unit area (lumen/m2

of lux). In fact, this is not such a good measure, because the eye is sensitive to the luminance
(candela/m2). However, it is much easier to measure illumination (lux), and therefore the latter is
mostly used.

In daylight the illumination is between 1000 and 100000 lux. From about 10000 lux the eye func-
tions optimally. This means that a minimal effort gives a maximal performance. For technical and
economical reasons the illumination of artificial light is smaller. A few typical values are given in
table 2.2.

Some approximate illumination values are given in table 2.3. As mentioned earlier the luminance
is the most important parameter for the eye. In practice it is important to avoid large luminance
differences in the visual field. Depending upon the nature of the work the contrasts should be
between 1:3 and 1:40. A number of typical luminance values are shown in table 2.4.
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Illumination (lux)
summer sun 100000
winter sun 10000
sunrise 500
full moon 0.25
retina sensitivity 10−9

400 ISO film sensitivity (1 second) 10−2

Table 2.3: Typical illumination values.

Luminance (candela/m2)
sun 1.65 109

moon 2.5 103

filament in an incandescent lamp 7 106

fluorescent lamp 8 103

LED 104 − 106

laser (1 Watt, green) 1015

white paper (80% reflection, 400 lux) 102

grey paper (40% reflection, 400 lux) 50
black paper (4% reflection, 400 lux) 5
luminance needed for photopic sight 1− 10 (visual field average)
luminance needed for scotopic sight 0.01− 0.1 (visual field average)

Table 2.4: Typical luminance values.

The following methods can be used to limit the luminance ratios:

• use of large light sources with low luminance,

• partial screening of sources by armature or architectural features,

• avoidance of mirroring surfaces that bring sources into the visual field.

Collimated light is much more problematic than diffuse light (from all directions). However, the
former is often used, because of economical or aesthetic reasons (shadow contrast).

2.7 Summary

The most important classification of electromagnetic radiation happens by means of the wave-
length, or related to that, frequency or photon energy. The electromagnetic spectrum changes
from radiowaves with low energy, over visible light to gamma radiation with very high photon
energy.

The amount of light or radiation is expressed with energetic or photometric quantities. An overview
of these quantities and their corresponding units is shown in figure 2.10 on page 2–16. Every en-
ergetic quantity has an equivalent photometric quantity. For conversion one uses the spectral
density and the eye sensitivity curve V (λ).
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Figure 2.10: Energetic and photometric quantities.
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We have seen how we can calculate the irradiance and the illuminance on a given surface, for a
point source and an extended source. We have also considered a special kind of radiating surface,
the lambertian emitter, with a constant luminance (or radiance) in all directions.
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Chapter 3

Geometric Optics
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In this chapter we describe light in a macroscopic environment, on a scale much larger than the
wavelength. This enables us to make a number of assumptions, so that we can treat light as rays.
With this method we can describe the refraction of light at an interface between two materials,
and understand optical systems made of lenses and mirrors. At the end of the chapter we discuss
a number of applications.

3.1 Introduction

Any form of electromagnetic energy, including light, can be viewed as beams of energy, or rays,
that are emitted from an energy source. This view is different from the wave or particle character.
In free space the rays have straight paths, whereas they can be reflected and/or bent (refracted) at
a change in the medium. In fact, this corresponds to a simplified depiction of wave theory (a ray
is a kind of local plane wave), and various optical phenomena can be easily explained using this
theory. However, other phenomena (such as diffraction and interference) cannot be described by
ray optics.

Roughly speaking, the ray model is accurate if the dimensions of the structural variations are
much larger than the wavelength, and one is not concerned about the intensity distribution at the
convergence point of different rays. Furthermore, it has no sense to try to determine the diameter
of a beam or ray. Physically, this diameter cannot be infinitely small. Indeed, a ray cannot pass
through a small aperture, as diffraction would occur. Note that the wavelength has no importance
in ray optics (except for the wavelength dependance or dispersion of the refractive index), because
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Figure 3.1: Ray presentation of a radiating surface.

reflection and refraction are not influenced by the wavelength. Another way to view ray optics
is that it is a high frequency approximation. Thus the wavelength is considered infinitely small,
which changes nothing to the laws of reflection or refraction, as previously mentioned. With an
infinitesimal wavelength one can then assume that the rays are thin. Graphically they are depicted
as lines, that show the traversed path through the system (ray tracing). Hence the name geometric
or ray optics. Despite the limitations and approximations, geometric optics remains a very useful
theory for the analysis of many optical systems, especially lens and mirror systems. Indeed, the
design of complex lens systems is conducted by means of ray tracing. Here the objective is to ob-
tain perfect imaging, which means that all rays starting from a point of the object cross each other
at the same point in the image plane, and this for all points on the object (this is called a stigmatic
image). Shortcomings on this are called aberrations. Furthermore, one desires that the image is
an undeformed copy of the object (with optional scaling), and that a planar object is imaged into a
planar image. If an imaging system is perfect (no aberrations, no deformation), this does not mean
that the resolution is also perfect (so that a point in the object plane is imaged onto an infinitely
small point in the image plane). Ray optics alone is not sufficient to determine the resolution, and
one also needs diffraction theory. In reality the resolution can be limited both by aberrations and
diffraction. The factor that is most limiting depends on the situation. A system with few or no
aberrations will mainly be limited by diffraction, and this is called a diffraction limited system.
Diffraction theory is not treated in this chapter. The simplest way to study diffraction is by means
of Gaussian beams. This is the subject of chapter 5.

3.2 General concepts of ray theory

3.2.1 Ray representations of radiating objects

Rays originate from radiating objects. A radiating object can be a point source (that produces light
energy itself), or simply an object that reflects or transmits incident light. The question is how to
deduce a good ray representation for a given radiating object. Clearly, it is easy if the radiance (or
luminance) of each point on the source is known for all directions. Then, one has to discretize the
surface of the source into a finite number of points, and for each point one has to discretize the
solid angle into a finite number of angles (figure 3.1).

In this way one assigns to every point-angle combination a ray with radiant (or luminous) flux
equal to the corresponding radiance (or luminance) multiplied by the discretized surface (dSeff )
and solid angle unit (dΩ). As the discretization becomes finer, the ray representation improves.
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However, using diffraction theory one can prove that it is useless to choose dSdΩ smaller than λ2.
This would not enhance the results. Usually dSdΩ is much larger than λ2 for ray calculations.

Conversely, we have to know how to calculate the irradiance (or illuminance) on an object, based
on a discrete set of incident rays. In practice, one discretizes the surface of the irradiated object and
for every small section the total incident flux is the sum of the fluxes of all incident rays. For a fine
discretization of the irradiated object, the number of rays per surface section will be small, which
leads to large discretization errors. Furthermore, we assume that the total power of a set of rays
is equal to the sum of the individual ray powers. This assumption is correct if the electromagnetic
fields associated with the rays have no phase relation with each other (are incoherent).

3.2.2 Postulates of ray optics

• Light propagates as rays. The rays are emitted by a source and can be perceived if they reach
a detector (e.g. the eye).

• An optical medium is characterized by its refractive index n ≥ 1. The refractive index is the
ratio between the propagation speed of light v in the medium and the propagation speed in
vacuum c. The time needed for light to traverse a certain distance d is equal to d/v or nd/c.
The product nd is called the optical path length.

• In an inhomogeneous medium the refractive index n(r) is a function of the position r =
(x, y, z). Then the optical path length between two points P and P ′ along a certain path
becomes

Optical path length =

P ′∫
P

n (r) ds, (3.1)

with ds the differential length along the path. The time necessary to traverse the path is
proportional to the optical path length.

• Fermat’s principle. To propagate from point P to P ′ rays will follow a path so that the optical
path length is an extremum over neighboring paths. This extremum can be a maximum, a
minimum or an inflection point. In practice, we mostly encounter minima, so that light
follows the trajectory with least optical path length. In another way:

δ

P ′∫
P

n (r) ds = 0. (3.2)

Sometimes the previous is true for different paths, and light propagates simultaneously
along these trajectories.

Fermat’s principle contains information about the path of a ray from P to P ′. However, no fun-
damental law should be inferred from this, as it is explained perfectly by the wave character of
light (thus from Maxwell’s equations). Wave theory shows that the trajectory of least optical path
length corresponds with the path along which the waves interfere constructively.
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Figure 3.2: Propagation of a ray of light.

Figure 3.3: Reflection of light on a mirror

3.2.3 Propagation in a homogeneous medium

In a homogeneous medium the refractive index, and thus the speed of light v, is the same every-
where. Therefore, the shortest optical path length corresponds to the shortest distance. This is known
as Hero’s principle. In a homogeneous medium light propagates along a straight line.

3.2.4 Mirror reflection

Consider a homogeneous medium with a perfectly reflecting surface. This can be made of pol-
ished metal, or dielectric films deposited on a substrate. The mirror surface will reflect light ac-
cording to the law of reflection:

• The reflected ray lies in the same plane as the incident ray and the normal on the mirror
surface.

• The angle θ′′ of the reflected ray with the normal is the same as the angle θ of the incident
ray (figure 3.3).

A few specific cases of mirrors are depicted in figure 3.4. A plane mirror reflects light coming from
P so that the reflected rays converge at point P ′, on the other side of the mirror. P ′ is called the
image of P . As discussed later on, this is a virtual image: the reflected rays never really cross P ′.

In a parabolic mirror all the rays that are parallel to the axis are focused on one point of the axis,
the focus. These mirrors are used in telescopes, or to generate parallel beams.
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Figure 3.4: Examples of reflection. From left to right: Plane mirror, parabolic mirror, elliptical mirror.

An elliptical mirror has two foci P1 and P2. All the light from one point is focused on the other,
and vice versa. The optical path length between P1 and P2 is the same for all trajectories.

3.2.5 Interface between homogeneous media

In principle the ray trajectory through a system with piecewise constant media is simple. Inside
the media the rays follow a straight line. At an interface between media with indices n and n′ the
incident ray is split into a reflected ray and a refracted ray that propagates on the other side (figure
3.5).

Snell’s law

At an interface the angle of the incident ray and the angle of the refracted ray are different. The
ray is refracted according to the refraction law (figure 3.5):

• The refracted ray lies in the same plane as the incident ray and the normal on the interface.

• The angle θ′ of the refracted ray with the normal relates to the angle θ of the incident ray
according to Snell’s law:

n sin θ = n′ sin θ′ (3.3)

The curvature of the surface at the point of incidence has no influence on this law.

In a prism, see figure 3.6, light is refracted twice by a flat interface. The angle θd of the output ray
relative to the input ray is calculated by applying Snell’s law two times:

θd = θ − α+ arcsin

(
sinα

√
n′2

n2
− sin2 θ − cosα sin θ

)
. (3.4)

For a thin prism (α small) and paraxial incidence (θ small) the expression simplifies to:

θd ≈
(
n′

n
− 1
)
α (3.5)
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Figure 3.5: Refraction of light at an interface: Snell’s law.

Figure 3.6: Refraction of light in a prism.
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Figure 3.7: (a) External and (b) internal refraction and total internal reflection.

Reflection and transmission

Upon reaching an interface, part of the light power is refracted, while the rest is reflected. The
reflection and transmission coefficients are given by the Fresnel laws for plane waves. However
to derive these, we need a rigorous electromagnetical approach (see chapter 6). For example for
perpendicular incidence one obtains for the power reflection and transmission:

R =
(
n− n′

n+ n′

)2

(3.6)

T =
4nn′

(n+ n′)2 (3.7)

For an air-glass (or glass-air) interface and perpendicular rays there is a power transmission loss
of about 4% (most glasses have a refractive index n of about 1.5). The loss does not influence the
trajectory of a ray, but of course it can lead to a drastic power reduction.

The reflections itself can cause problems. Therefore one often uses anti-reflection layers. Unfortu-
nately these only work well over a limited wavelength range.

3.2.6 Total Internal Reflection

When light reaches an interface, it is refracted according to Snell’s law. If the rays propagate from
a low index material n into a higher index material n′, one can find a refraction angle θ′ for every
incidence angle θ, see figure 3.7a. This is called external refraction, because the interface refracts
’from the outside to the inside’.

In the opposite case, see figure 3.7b, it is sometimes impossible to find an exit angle θ′ correspond-
ing to an incidence angle θ, according to Snell’s law. Because we go ’from the inside to the outside’
of the material (internal refraction), the exit angle θ′ will always be larger than the incoming angle.
For incidence angle θ = θTIR the exiting ray will propagate at an angle θ′ = 90◦ with the normal.
θTIR is called the critical angle and obeys:

θTIR = arcsin
n′

n
. (3.8)

3–7



If θ > θTIR Snell’s law no longer applies. Then the interface behaves as a perfect mirror, and the
incoming ray is reflected with θ′′ = θ. This phenomenon is called total internal reflection (TIR).
It is often used to replace metallic mirrors, as in a reflection prism (see section 3.6.4). Various
waveguides (see chapter 7) are based on this principle.

3.2.7 Curved surfaces

At a flat surface diverging rays continue to diverge. Thus, in this way rays that originate from a
point cannot be focused on another point. To change the converging or diverging character of a
bundle of rays one has to use curved surfaces. This is employed in lenses. Usually one employs
spherical surfaces, for technological reasons. Materials are easily polished into the spherical shape.
In special situations, especially when strong refraction is desired, one uses aspherical surfaces.

Despite the simplicity of Snell’s law, it is clear that it is not straightforward to obtain analytical
expressions for ray trajectories with aspherical interfaces. For spherical surfaces the situation is
manageable, except when there are multiple interfaces. Then the expressions quickly become
cumbersome, because of successive sines and arcsines. For evaluation of these equations one
needs a computer. Therefore, it is more useful to employ software that directly calculates the ray
paths through an arbitrary lens system. However, such an approach does not deliver general and
simple (albeit approximate) rules, that allow to get intuitive insight into the behavior of a system.
In section 3.3 we describe such an approximate theory: paraxial optics.

3.2.8 Rays in inhomogeneous media - the ray equation

In a medium where the refractive index n(r) depends on the position r = (x, y, z) light does not
necessarily propagate along a straight line. If n(r) is continuous the material is called graded index
(GRIN). Often these materials are manufactured by gradually doping an optical material (e.g.
glass). By carefully choosing the index profile of the GRIN-material it is possible to reach the same
effect as with a piecewise constant component, such as a lens or a prism (see section 3.6.7).

To determine the ray trajectory in such a medium, we start from Fermat’s principle, which states
that light follows a path with minimal optical path length, in relation to neighboring paths:

δ

P ′∫
P

n (r) ds = 0,

with ds the differential along a path between P and P ′ (see figure 3.2 on page 3–4). Describing this
path with the vector r(s), variational calculus shows us that the components x(s), y(s) and z(s)
have to obey the following differential equations [Wei74]:

d

ds

(
n
dx

ds

)
=
∂n

∂x
,

d

ds

(
n
dy

ds

)
=
∂n

∂y
,

d

ds

(
n
dz

ds

)
=
∂n

∂z
, (3.9)

or
d

ds

(
n
dr
ds

)
= ∇n. (3.10)

This is the ray equation.
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Figure 3.8: Propagation of light in a medium with parabolic index profile.

In the paraxial approximation (if all rays have a small angle with the optical z-axis) we obtain, as
z is close to s:

d

dz

(
n
dr
dz

)
= ∇n (3.11)

As an example we calculate the ray trajectories in a system with parabolic index profile, shown in
figure 3.8:

n = n0 −
1
2
n1x

2 (3.12)

Here n is independent of z so:

d2x

dz2
=

1
n

dn

dx
(3.13)

=
−n1x

n
(3.14)

≈ −n1x

n0
, (3.15)

provided |n− n0| is small. The solution for x gives:

x = x0 cos
√
n1

n0
z + x′0

√
n0

n1
sin
√
n1

n0
z (3.16)

with x0 and x′0 resp. the location and the slope of the incident ray at z = 0. Thus, the path
of the ray is a sine, with a period determined exclusively by the index profile and not by the
position or slope of incidence. The presentation here is two-dimensional, as if the structure were
y-independent. However, in a circularly symmetric structure the previous applies in the case of
meridional rays. These are rays that cross the optical (symmetry) axis. The analysis is somewhat
more complex for other rays. Some rays will have a helical (spiral) trajectory around the axis, with
a constant distance to the axis.

In practice the profile is only parabolical close to the axis, and constant at larger distances. This
implies that only the rays that are incident on the graded part with small enough angle w.r.t. the
optical axis are trapped inside the structure. The other rays escape.

The previous has major relevance to two practical situations: to optical fibers with parabolic index
profile (graded index fibres) and to GRIN-lenses (see section 3.6.7). Also, some types of semiconduc-
tor lasers use waveguides with a parabolic index profile (see chapter 7).
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Figure 3.9: Camera Obscura (a) with pin-hole, (b) with lens.

3.2.9 Imaging systems

The purpose of an imaging system is to give a presentation as faithful as possible of a three-
dimensional object. Ideally, the image should contain three-dimensional information about the
object, so that all sides can be seen, as one can with the object itself. This is extremely difficult with
purely optical techniques. Holography is one of the few techniques that allow this, however it has
a lot of limitations.

Most imaging systems are projecting systems. So the 3-dimensional object is projected onto a 2-
dimensional surface, with loss of information about depth in the direction of projection. This is
not a large problem, because the eye itself is a projecting image system, and the brain is especially
trained to reconstruct an imaginary 3-dimensional scene from a 2-dimensional projection. This is
further aided by using two eyes (and thus two slightly different projections), and by interpreting
parallax-changes during movement into information about depth.

A very simple - and in a sense perfect - projecting system is the (original) camera obscura (fig-
ure 3.9a). A box with a small aperture in the front and a photographic film in the back. Only ”one”
ray from every point in the object space can enter the box.

One obtains a sharp image for every object, independent of the position of the image surface. The
drawback of this technique is that only a small fraction of the rays contribute to the image, so the
film has to be very sensitive. Therefore the small aperture is replaced by a large opening with a
lens (figure 3.9b).

The purpose of the lens is to make sure that all rays from an object point are focussed onto one
point of the film surface. Unfortunately this is not possible for all points in the object space, but
only for points at a certain distance from the camera. For other distances the image is not sharp.
Better light efficiency is thus traded for depth of focus.

To conclude this section we introduce the concepts of real and virtual images (figure 3.10). In a
real imaging system the rays that diverge from a point on the object are bent by a lens into rays
that converge onto a real image. Therefore, real light is present at the location of the image, and it
is possible e.g. to use a photographic film to capture the image. In a virtual system the rays from a
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Figure 3.10: (a) Real image. (b) Virtual image.

Figure 3.11: An interface between two homogeneous media in the paraxial approximation.

point on the object remain divergent after passing through the lens. One can imagine elongating
the rays into the object space until they cross. However, no light is focussed onto that point. If
one observes from behind the lens, the object point seems to be at the location of the virtual image
point.

3.3 Paraxial theory of imaging systems

3.3.1 Introduction

The description of the ray paths is enormously simplified if we only consider rays with a small
angle to the optical axis. Furthermore, we also assume that the angle between the rays and the
normal to the surfaces, which the rays cross, is small. These rays are called paraxial rays. We will
show for these rays that a perfect stigmatic image is formed in a system with spherical surfaces.
This imaging is considered the nominal imaging of the lens system. If other rays lead to another
image, then this is a shift from the nominal situation.

For paraxial rays we can approximate sin θ by θ. For Snell’s law we obtain:

nθ = n′θ′. (3.17)

Thus, we make use of the first term in the sine series expansion. Therefore the paraxial theory is
called a first order theory.

Consider the refraction of a paraxial ray on a single interface with radius R, between a medium
with index n and another medium with index n′ (figure 3.11). A ray with direction cosines (a, b, c)
is incident on the surface at coordinates (x, y) (direction cosines are the cosines of the angles be-
tween a direction and the three coordinate axes, therefore a = cos(α), b = cos(β) and c = cos(γ)).
After refraction the ray starts from (x′, y′) with direction cosines (a′, b′, c′) (with corresponding
angles (α′, β′, γ′)).
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Figure 3.12: Calculation of the direction cosine α′.

Figure 3.13: Propagation in a homogeneous medium in the paraxial approximation.

Starting from Snell’s law in paraxial approximation we find (see figure 3.12) that

n′(arcsin
x

R
− (−α′)) = n(α+ arcsin

x

R
). (3.18)

With the paraxial approximation, this leads to

α′n′ = αn+ (n− n′) x
R

(3.19)

α′ =
n

n′
α+

n− n′

n′R
x. (3.20)

Analogously we find that

β′ =
n

n′
β +

n− n′

n′R
y. (3.21)

Furthermore we see that

x′ = x

y′ = y. (3.22)
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Figure 3.14: Propagation of light in the paraxial approximation between two points on both sides of an
interface.

To calculate the trajectories through a lens system, we also need equations for the propagation
within a medium with constant refractive index (e.g. between two interfaces). These are the trans-
lation equations (figure 3.13). Within the paraxial approximation we easily obtain:

α′ = α

β′ = β

x′ = x+Dα

y′ = y +Dβ (3.23)

with D the distance between the interfaces (measured on the z-axis). These equations are also
linear and separated with respect to the (x, z) and (y, z) planes. They can be considered dual to the
refractive equations. The latter contain an angle transformation, while the translation equations
perform a location transformation.

Consider now the imaging of a point P0 via one spherical interface to a point P2 (figure 3.14).
We follow a ray leaving P0 with angle α0 and going through P2. This ray follows a sequence of
translation, refraction and another translation.

With simple algebra we obtain the complete transformation:

x2 =
(

(n− n′)D2

n′R1
+ 1
)
x0 +

(
D1 +

nD2

n′
+

(n− n′)D1D2

n′R1

)
α0

α2 =
(
n− n′

n′R1

)
x0 +

(
n

n′
+

(n− n′)D1

n′R1

)
α0 (3.24)

(3.25)

For the previous equations we did not use the fact that P2 is the image of P0. If this is the case,
then x2 has to be independent of α0, all rays from P0 have to arrive in P2. Therefore:

D1 +
nD2

n′
+

(n− n′)D1D2

n′R1
= 0 (3.26)
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which can be written as:
n′

D2
+

n

D1
=
n′ − n
R1

. (3.27)

For all this we adopt a sign convention as shown in the figure. The radius of curvature of the
refracting interface is positive if the center lies to the right of the interface (for light coming from
the left) Therefore a positive radius means that light is incident on a convex surface. Object (resp.
image) distance is positive if the object (resp. image) lies in the object (resp. image) space. The lat-
eral distances to a point are positive if the point is above the axis, and the angles are positive if the
angle of the ray to the right points upwards with respect to the optical axis. Notice that an image
located in image space is called a real image, while an image in object space is a virtual image.
As already mentioned, the term virtual stems from the fact that the rays do not converge to this
image, but for an observer in image space they seem to originate from this image. Furthermore,
we deduce that the lateral image magnification mx and angular magnification mα are given by:

mx
∆=
x2

x0
= − n

n′
D2

D1

mα
∆=

∆α2

∆α0
= −D1

D2
(3.28)

(3.29)

From the product of these expressions we obtain the important relation:

mx.mα =
n

n′
(3.30)

or
n′x2∆α2 = nx0∆α0. (3.31)

This is the Lagrange or Smith-Helmholtz equation. It applies not only to a single interface, but also to
a sequence of interfaces, and thus to a lens system. We conclude that a larger lateral magnification
is obtained by reducing the angular magnification, and vice versa. For example, to image a light
source on a point as small as possible, one will need a strong angular magnification. This also
means that rays that depart with a large angle from the source are irretrievably lost. If object and
image are both in air, it is thus impossible to image a source that radiates in all directions without
power loss into an image which is smaller than the source itself! Consider now two special rays
leaving the object point P0, namely the chief ray and the marginal ray (figure 3.15). The chief
ray is the ray that goes through the center of the optical system (for now we do not explain how
this center is defined). The marginal ray is a ray through the outer edge of the optical system (for
example the edge of a lens or a diaphragm). If θ0 is the angle between these rays, the Lagrangian
invariant is written as:

n′x2θ2 = nx0θ0. (3.32)

For large (non-paraxial) angles one can prove that the Lagrangian invariant becomes more general:

n′x2 sin θ2 = nx0 sin θ0 (3.33)

This is also called the Abbe sine-relation. This does not apply a priori to a general imaging system.
But if it holds for all rays (thus not only for the marginal rays) this implies that the image is
stigmatic. For the invariant quantity (nxmax sin θ), with θ the angle between the marginal ray and
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Figure 3.15: The chief ray and the marginal ray for imaging in the paraxial approximation.

the chief ray, and xmax the extreme lateral position of the object, there exist a host of names in
the literature. Amongst others one uses Throughput, Luminosity, Acceptance and étendue. Indeed,
these terms indicate that the quantity is a measure for the capacity of an optical system to image
without loss of light.

3.3.2 Matrix formalism

The previously deduced ray equations are linear and contain two variables. Therefore they are
easily put into a matrix form. A matrix performs a transformation (translation or refraction) from
one plane to the other. The technique is elegant because multiple operations are simply presented
by matrix multiplication.

We define the column matrices1:

r =
[
x
α

]
and r′ =

[
x′

α′

]
(3.34)

A spherical interface

The refraction transformation at a spherical interface with radius R and between mediums n and
n′ is written as:

r′ = Rr, (3.35)

with

R =
[

1 0
−P n/n′

]
with P =

n′ − n
n′R

. (3.36)

P is called the refractive power of the interface. This power is expressed in diopters (1diopter =
1 m−1). The determinant of the matrix R is the ratio between the index of the start medium and

1There is an alternative convention for the matrix formalism of ray optics, with the column matrix r defined by

r =

[
x
nα

]
.

nα is called the optical direction cosine. Both conventions have advantages and disadvantages. For this course we use
the most accepted version.
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Figure 3.16: Different kinds of imaging.

the index of the end medium n/n′. The radius of curvature of a plane interface perpendicular to
the optical axis is infinite, thus the matrix of the system becomes:

Rplane =
[

1 0
0 n/n′

]
(3.37)

A translation

Analogously, in the paraxial approximation, a translation over a distance D12 in medium n is
written as

r′ = Tr, (3.38)

with

T =
[

1 D12

0 1

]
(3.39)

The determinant of this matrix is 1, as the start and end index are the same.

Imaging

For a complete lens system one can define a system matrix M that describes the relation between
rays departing from a certain plane and rays arriving at another plane. Thus, this matrix is the
product of a number of R and T matrices. We note that the determinant of all system matrices is
equal to the ratio between start and end index. If the start and end plane coincide with the object
and image plane, respectively (these are called conjugate planes), then the system matrix has the
following form by definition:

M =
[
M11 0
M21 M22

]
(3.40)

Indeed, all rays from x have to arrive at x′ independent of the angle α (figure 3.16a).

Other matrices with a zero element have an interesting function:

• M22 = 0: ”imaging” from position to angle,
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Figure 3.17: A single lens.

• M21 = 0: angle ”imaging”,

• M11 = 0: ”imaging” from angle to position.

A single lens

Consider a single lens, as depicted in figure 3.17. The points V and V ′ are called the vertices of the
lens. The two interfaces have a power P and P ′, respectively, given by:

P =
nl − n
nlR

and P ′ =
n′ − nl
n′R′

(3.41)

Thus, the system matrix M, from input to output of the lens, becomes:

M = R′TR

=
[

1 0
−P ′ nl/n

′

] [
1 Dl

0 1

] [
1 0
−P n/nl

]
=

[
1− PDl Dln/nl

P ′PDl − Pnl/n′ − P ′ n/n′ − P ′Dln/nl

]
(3.42)

A thin lens

In first order approximation we have Dl = 0 for a thin lens (figure 3.18). Thus, all refraction seems
to take place in one plane. The system matrix becomes:

Mthin =
[

1 0
−Pthin n/n′

]
with Pthin = P ′ + Pnl/n

′ (3.43)

It has the same form as the matrix of a single interface. If we use the expressions for P ′ and P , we
obtain the refractive power of a thin lens:

Pthin =
nl − n
n′R

− nl − n′

n′R′
(3.44)
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Figure 3.18: A thin lens.

By traversing the lens in the opposite direction, from medium n′ to medium n, we get power P ′thin
of the lens:

P ′thin =
nl − n′

−nR′
− nl − n
−nR

(3.45)

=
n′

n
Pthin (3.46)

so that:
Pthin
n

=
P ′thin
n′

(3.47)

Note the minus sign in front of the curvatures of the interfaces. Because we move in the opposite
direction a positive radius becomes negative, and vice versa. Therefore, the refraction in one
direction does have the same sign as the refraction in the other direction.

A thin lens in air (n′ = n = 1) has power:

Pthin = P ′thin = (nl − 1)
(

1
R
− 1
R′

)
. (3.48)

This is the only quantity characterizing the thin lens (besides the diameter). If Pthin is positive,
one calls it a positive lens. In the other case, it is a negative lens. Note also that if n′ = n, noth-
ing changes to the properties of the lens upon reversal. And this holds even if the lens has an
asymmetrical form.

The focal length is determined by imposing that all rays with incidence angle α = 0 converge to a
point F ′ a length f ′ behind the lens:

α′ = α− Pthinx = −Pthinx
α′ = −x′/f ′

}
⇒ f ′ =

1
Pthin

(3.49)

An analogous result is obtained if we assume that all rays with α′ = 0 originate from the same
point F a length f before the lens.

f =
1

P ′thin
(3.50)
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Figure 3.19: A position to position imaging with a thin lens.

so that
f

n
=
f ′

n′
. (3.51)

Consider now in general the relationship between object and image distance (figure 3.19). We use
a translation to the left and the right of the thin lens:

M′ = T′MthinT, (3.52)

with

T =
[

1 S
0 1

]
and T′ =

[
1 S′

0 1

]
. (3.53)

The new M ′12 element has to be zero, as we study imaging. Thus:

S + S′
n

n′
− PthinSS′ = 0, (3.54)

so that S = S′ = 0 or

n

S
+
n′

S′
= n′Pthin =

n′

f ′

= nP ′thin =
n

f
(3.55)

This last expression is the well-known formula for a thin lens. Notice that for a thin lens for every
location of the object plane it is possible to find a conjugate image plane. A special case occurs if
the object plane coincides with the incidence plane of the lens (S = 0). The image plane is then the
exit plane of the lens (that coincides with the incidence plane) and the magnification is 1.

A complex lens system

Consider again a more complex system as shown in figure 3.20, a thick lens or a lens system. Now
the system matrix from plane V to plane V ′ (e.g. the vertices of the front and back lens resp.) has
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Figure 3.20: A complex system that can be treated as a thin lens with principal planes H and H ′.

the following general form:

M =
[
M11 M12

M21 M22

]
with det M = n/n′. (3.56)

Now we try to determine if it is possible to transform this matrix into the form for a thin lens,
using only translations in front of and behind the system. Thus, we are looking for new reference
planes (at the points H and H ′) with this property. These planes are called the principal planes of
the system.

The new system matrix becomes:
M′ = T′MT (3.57)

with

T =
[

1 D
0 1

]
and T′ =

[
1 D′

0 1

]
, (3.58)

or:

M′ =
[
M11 +M21D

′ M22D
′ +M21DD

′ +M12 +M11D
M21 M22 +M21D

]
(3.59)

Because this matrix needs to have the form

M′ =
[

1 0
M21 n/n′

]
(3.60)

we have three equations with only two unknowns D and D′. From M ′11 and M ′22 we obtain im-
mediately:

D =
(
n/n′ −M22

)
/M21

D′ = (1−M11) /M21. (3.61)

It is easy to prove that M ′12 is 0, using det(M) = n/n′. Sometimes one obtains D and D′ values
so that H and H ′ lie on the inside of the lens. Moreover, it is possible that the incidence principal
plane lies to the right of the exit principal plane.
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Figure 3.21: The imaging by a complex lens system is equivalent to a thin lens with two principal planes.

The M21 element remains invariant under the double translation and is the power of the entire
system: M21 = M ′21 = −Psyst. Finally it is important to remark that the lateral magnification for
imaging from front to back principal plane is one, as M ′11 = 1. Within the paraxial approximation
a general lens system is characterized by the power and the location of the principal planes. The
description based on principal planes is very elegant, as we can apply the simple equations for thin
lenses to complex optical systems (in particular the expressions for f and f ′, and for the distance
between object and image plane). We only need to realize that all lengths in the object and image
space are referenced to the H and H ′ principal plane respectively, while for a real thin lens these
planes coincide with each other and with the lens (figure 3.21). In practice, if one needs to choose
or specify a lens, it is important to pay attention to the reference used for the lengths, especially for
the focal length (relative to a principal plane or to a vertex). In some cases the distance between a
vertex and a principal plane can be relatively large.

3.3.3 Spherical mirrors

A spherical mirror is an alternative to a lens (figure 3.22). For such a reflecting system we can
again deduce a paraxial system matrix (where the previous sign convention has to be expanded
for both propagation directions and for the radius of curvature of the mirror). For reflection at the
mirror surface one obtains (within the paraxial approximation):(

x′

α′

)
=
(

1 0
−P 1

)(
x
α

)
, (3.62)

with
P =

2
R

(3.63)

By reintroducing the focal length f (as P = 1/f ), we obtain:

f =
R

2
. (3.64)

Thus, parallel rays are focussed halfway between the center of the sphere and the mirror. From
the previous it (obviously) appears that the index n has no influence on the ray trajectory upon
reflection on the spherical surface.
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Figure 3.22: The spherical mirror

Notice that this behavior of the spherical mirror only holds within the paraxial ray optics approxi-
mation. In fact, the spherical mirror is a paraxial approximation of the parabolic mirror, discussed
briefly in section 3.2.4.

3.3.4 The graphical formalism

With the definition of principal planes one does not have to depict a lens or lens system exactly
with its refractive surfaces, but only with the principal planes. Everything happening between the
planes is not shown, as if every refraction takes place on the positions of the principal planes. To
construct the image of a point in the object plane we only have to obey the following rules:

• a ray parallel with the axis, incident on the first principal plane, leaves the second principal
plane at the same height and in the direction of the focal point F ′.

• a ray through the principal point H leaves the second principal plane from H ′ with an angle
equal to the incidence angle (apart from a factor n/n′). This ray is a chief ray.

• a ray through the focal point F and incident on the first principal plane, leaves the second
principal plane at the same height and parallel to the axis.

This is illustrated in figure 3.23.

To make these drawings, it is in principle necessary to know the location of the principal points.
Of course, these can be calculated using the methods of the previous section. However, it is useful
to know these locations approximately for a number of common lens types. Figure 3.24 shows
some examples.

For symmetrical lenses (convex or concave) the principal points H and H ′ divide the distance
between the vertices V and V ′ approximately in three equal parts. For plano-convex or plano-
concave lenses one principal point is located on the curved vertex, whereas the other is at about
one third of |V V ′| from the curved vertex. Finally, for meniscus (or convex-concave) lenses one
principal point will always lie outside of the lens.
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Figure 3.23: The graphical formalism. For some rays (the chief ray, rays parallel to the optical axis and rays
through the focal point) the trajectories are easily drawn.

Figure 3.24: Location of principal planes for common lens types. From left to right: a double-concave lens,
a plano-concave lens, a meniscus lens

To conclude this section we define some useful concepts. The f -number, or relative aperture, of
the lens system is defined as:

f − number =
f

D
(3.65)

with f the focal length and D the diameter of the lens (or the diaphragm in front of it: figure 3.25).
An f -number of e.g. 4 is denoted as f/4. Common values in photography are 2, 2.8, 4, 5.6, 8, 11,
16 and 22. Large values indicate small diaphragms.

A quantity related to the f -number is the numerical aperture of the system. The numerical aperture
(NA) is the sine of the angle between the marginal ray through the focal point and the optical axis.
One obtains (for small angles):

NA =
1

2 (f − number)
. (3.66)

Figure 3.25: The lens parameters that determine the f number and the numerical aperture.
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Figure 3.26: Illustration of (a) aperture stop and (b) field stop.

Thus, a large numerical aperture corresponds to a small f -number, and vice versa.

For complex lens systems D is not necessarily the diameter of the first lens or diaphragm. It is
possible that the marginal ray through an object point on the axis is not determined by the first
lens surface or diaphragm, but by a lens or diaphragm somewhere in the middle of the system.
This limiting element is called the aperture stop (see figure 3.26). The image of this element by the
part of the lens system to the left or the right of it is called the entrance or exit pupil, respectively
(if the aperture stop is completely on the left or the right of the system, then it coincides with
the entrance or exit pupil). The entrance pupil determines the cone of rays that leave the object
point on the axis. Analogously, the exit pupil determines the cone of rays that arrive at the image
point on the axis. Note that entrance and exit pupil may be real or virtual images of the aperture
stop. In practice one can determine the aperture stop by imaging all elements of the system to the
left. In this way one obtains a number of real or virtual images. The image that, seen from the
object, forms the smallest cone corresponds to the aperture stop. In the same way one can find the
aperture stop by imaging to the right. This has to lead to the same result. In a first approximation
this calculation can be done paraxially.

For object points away from the axis, not all rays through the entrance pupil will reach their re-
spective image point (figure 3.26b). The number of rays that reach the image point, decreases as
the object point moves away from the axis. In this regard one defines a field stop. It is the lens
or diaphragm of the system that first blocks chief rays from the object plane (the chief ray has
a slightly different definition than in the previous paraxial approximation; it is the ray from an
object point through the middle of the aperture stop). With this field stop corresponds a circular
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area in the object plane (field of view) for which the chief rays just passes through the system. In
the object plane one finds an accompanying circular area that obtains an image with reasonable
intensity. The field stop does not necessarily coincide with the aperture stop. The image of the
field stop in object and image space is called the entrance and exit window, respectively. Together,
the aperture and field stop control the étendue of the optical system.

3.4 Aberrations in imaging systems

3.4.1 Introduction

When rays can no longer be considered paraxial, which is often the case for marginal rays, the
imaging will differ from the paraxial imaging. This results in aberrations. Aberrations are devia-
tions from perfect (stigmatic and distortion-free) imaging. It is easy to understand that spherical
surfaces, either refracting or reflecting, will lead to aberrations. Consider for example the case of
a curved reflector. To transform a beam of rays coming from the focal point into a parallel beam
(thereby imaging the source at infinity) the reflector should have a parabolic shape. It is clear that
a spherical mirror will not do this collimation in a perfect way and hence aberrations will arise.
For paraxial rays only the central part of the mirror is used and hence there is little difference
between a parabolic mirror and a spherical mirror with the same central radius of curvature.

Paraxial theory originates from a first order approximation of the sine function. Classically, the
first study of aberration was thus performed by including a third order term in the sine series
expansion. In this way, one analyzes third-order or Seidel aberrations. Seidel developed a for-
malism to describe the aberrations without explicitly calculating the ray trajectories through the
system. He divided the aberrations in different categories. For monochromatic light there are
aberrations that result in an image that is no longer stigmatic, such as spherical aberrations, astig-
matism and coma. On the other hand, there are those that allow a stigmatic image, but still lead to
deformation, such as field curvature and distortion. For polychromatic light there are also chromatic
aberrations, created by dispersion of the lens material.

The next step is to include higher order terms in the series expansion, i.e. the fifth term, the sev-
enth term etc. Although this can be relevant for systems with stringent demands, it is complicated,
because it is no longer possible to subdivide the aberrations and to calculate them easily. In the
following we largely refrain from the analytical calculations, and instead focus on the general
characteristics of the different types of aberrations. It is significant to note that the importance of
the various aberrations not only depends on the system itself, but also on the use of the system.
This mainly depends on the ratio of the image distance to the object distance (or conjugate ratio), which
is also the lateral magnification. A lens system that performs well (which means is free of aberra-
tions) for a lateral magnification of 1, does not necessarily perform equally well for a very large
(or very small) lateral magnification.

3.4.2 Spherical aberration

Spherical aberration relates to the imaging on the optical axis itself. Rays at a large angle with the
axis will focus on a different location of the axis than paraxial rays (figure 3.27). The deviation is
called the longitudinal spherical aberration (LSA), if measured along the axis, or transversal spherical
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Figure 3.27: Spherical aberration.

aberration (TSA), if measured in the focal plane. They increase with the square and cube, respec-
tively, of the lens aperture. Therefore, lenses with small f -numbers suffer most from spherical
aberration.

There are three possible techniques to counter spherical aberrations, depending on the specifica-
tions and available resources. The first one is to use an ordinary spherical lens with a best shape.
This means that one optimizes the two radii of curvature R1 and R2, at a given refractive power.
In this context one defines a shape factor q:

q =
R2 +R1

R2 −R1
(3.67)

With variation of q (at equal refractive power) one changes continuously from a symmetrical lens
(q = 0), via a plano-convex lens (q = ±1), to a meniscus lens. For systems with a 1:1 magnification
(s = s′ = 2f ) the optimal (but not perfect) shape is the symmetrical biconvex lens. In situations
with infinite magnification (or reduction), as in the focusing of a parallel laser beam or collimation
of light from a point source, the optimal q factor is in the neighborhood of ±1. Here, the convex
side of the plano-convex lens has to be on the side of the parallel beam. This is illustrated in
figure 3.28.

The second technique involves using a combination of different lenses (figure 3.29). In this way
one can get much better results than with a single lens (singlet). We discuss some common doublets.
For applications with infinite magnification one often uses achromatic doublets. They consist
of a positive lens glued to a negative meniscus having another refractive index. The spherical
aberration of the negative lens counteracts the one from the positive lens, so that compensation
takes place. For an achromatic doublet with positive refraction the index of the positive lens is
smaller than the index of the negative lens. Again the parallel beam has to be incident on the most
convex side of the doublet. If the materials are chosen correctly, one can obtain that the chromatic
aberration is minimal, hence the name achromat. For 1:1 applications the symmetrical biconvex
lens can be replaced by two identical plano-convex lenses, with their convex sides towards each
other (figure 3.30). Of course, it is even better to use two achromatic doublets.

Finally, the third technique consists of using a single lens, but with an aspherical surface (fig-
ure 3.31). In principle spherical aberration can be perfectly eliminated in this way. Unfortunately
it is technologically very difficult to produce an aspherical surface with good quality. Indeed,
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Figure 3.28: Shape factor q for various lenses.

Figure 3.29: Correction of spherical aberration with a lens combination for inf :1 imaging. (a) Plano-convex
singlet with aberration. (b) Achromatic doublet with much less aberration.

Figure 3.30: Optimization of spherical aberration for 1:1 imaging (a) with a single spherical lens with opti-
mized shape, (b) with a pair of plano-convex lenses, (c) with a pair of identical achromats.

3–27



Figure 3.31: Correction of spherical aberration with an aspherical lens with optimized shape. (a) Optimal
spherical lens, (b) optimal aspherical lens.

aspherical lenses are poured in a mold and not polished as with spherical lenses. However, for
certain applications the aspherical lens still has the best price-quality value.

3.4.3 Astigmatism

Previously we mentioned that in non-paraxial circumstances the non-meridional rays (or skew rays)
do not necessarily behave as meridional rays. Consider an object point not located on the axis.
The plane through this point and the optical axis is the meridional plane (or tangential plane). The
perpendicular plane that contains both the object point and the image point is the sagittal plane (or
radial plane). Astigmatism means that rays in the sagittal plane focus closer or further than those
in the meridional plane (figure 3.32). In that case one never achieves a sharp focus point. As one
moves the image plane one obtains a horizontal focus line, followed by a fuzzy phase, and next a
vertical focus line.

For lenses that are rotationally invariant due to symmetry, astigmatism only occurs for object
points not located on the optical axis. However if the lens is not perfectly rotationally invariant,
astigmatism will also occur for axial object points. Astigmatism is a common deviation of eye
lenses and has to be corrected by glasses that are not rotationally invariant as well.

3.4.4 Coma

Even if the system is perfectly corrected for spherical aberration and astigmatism, it is still possible
to have a blurred image. This can happen because of coma. It relates to object points that are
distanced from the optical axis, like astigmatism. Rays through the edge of the optical system have
a different lateral magnification than those close to the axis (figure 3.33). Furthermore, meridional
rays obtain a different magnification than sagittal rays. It appears that every concentric ring of the
system gives rise to a circle in the image plane. The center of this ring moves and the diameter
increases as the concentric ring is magnified, leading to a comet-like image. Hence the name coma.
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Figure 3.32: Astigmatism.

Figure 3.33: Coma.
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Figure 3.34: Field curvature.

Figure 3.35: Distortion. (a) No distortion, (b) barrel distortion, (c) pincushion distortion.

3.4.5 Field curvature

A stigmatic system (corrected for spherical aberration, astigmatism and coma) will generally im-
age in a different way than paraxial imaging. The image points are at a different location than
predicted by the paraxial theory. The deviation in the longitudinal direction is called field cur-
vature (figure 3.34). Indeed, one notices that most systems tend to image a plane object onto a
curved surface, which is called the Petzval surface.

3.4.6 Distortion

In addition there is also a deviation in the lateral direction, which means a variation of the lateral
magnification over the image. This leads to distortion in the image (figure 3.35). Most often one
encounters pincushion or barrel distortion. A symmetric system with 1:1 magnification has no
distortion. Furthermore, one can understand that a system with pincushion distortion will display
barrel distortion upon reversal of the rays (and vice versa).

3.4.7 Chromatic aberration

Because the refractive index of materials depends on the wavelength (material dispersion), the
refractive power will also depend on it (figure 3.36). For most materials (and in particular for

3–30



Figure 3.36: Wavelength dependence of the refractive index n.

Figure 3.37: Chromatic aberration. (a) Dependance of the focus point; (b) dependance of the lateral magni-
fication.

glass) the index decreases as wavelength increases. Thus, a lens system in air will show a stronger
refraction at shorter wavelengths.

Chromatic aberration appears in two ways. For object and image points on the axis the focus point
depends on the wavelength (figure 3.37a). Restricting ourselves to visible colors, blue light will
focus closer to the lens than red light. On the other hand, the lateral magnification for points not
on the axis differs for red and blue (figure 3.37b).

As positive and negative lenses have an opposite chromatic aberration, this allows to compensate
for the effect. Indeed, this happens in achromatic doublets, as previously mentioned.

3.4.8 Aberrations in function of aperture and object size

It is clear that aberrations increase if the rays are less paraxial. This implies that they grow as the
lens has a larger diameter D (so that it becomes brighter), and also when the object itself becomes
larger. In this regard one defines the angle θ (field angle) with which the system sees the object.
Table 3.1 indicates the power of D resp. θ of increase for the various aberrations. For example:
lateral spherical aberration scales as D3.
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Aberration Aperture D Angle θ
Lateral spherical 3 0
Longitudinal spherical 2 0
Coma 2 1
Astigmatism 0 2
Field curvature 0 2
Distortion 0 3
Chromatic 0 0

Table 3.1: Power of aperture D and angle θ for various aberrations.

3.4.9 Vignetting

Often one will find diaphragms (or stops) on one or multiple locations in an optical system. They are
very useful, on the one hand to stop scattered light, on the other hand to decrease the aberrations.
In addition, every lens functions as a diaphragm because of its finite size.

However, diaphragms and lenses lead to the effect that some rays (especially from the outer object
points) do not pass through the system. This decreases the light intensity of the corresponding
image points. The phenomenon is called vignetting. Although not a real aberration, it corresponds
to a deviation between object and image, with respect to intensity instead of sharpness. In practice
one will often compromise between image sharpness and vignetting.

The example in figure 3.38 depicts a 1:1 symmetric lens system. It is clear that some rays do not
reach the second lens surface. In this case it is easily remedied by putting an extra lens in the
middle (field lens). This lens is located in an internal image plane, therefore it has no influence on
the paraxial imaging, but drastically improves vignetting.

3.4.10 Depth of field

For a given image plane a system shows a sharp image for only one object plane. If the object
is before or behind this object plane the image in the given image plane is unsharp. The depth
of field determines the distance through which one may move the image plane to view a given
object with acceptable sharpness. From figure 3.39 one notices that, for a given focal length, the
depth of field is worse for a lens with larger aperture. Again there is a difficult compromise (!):
a larger aperture leads to more light in the image, but to a smaller depth of field (and in general
more aberrations). One obtains an infinite depth of field by employing a small hole in a screen:
all objects are imaged sharply because one object point corresponds to only one ray through the
system. Unfortunately the image will be dark.

3.5 Materials

An optical material is characterized first by its refractive index and absorption, both as a function
of wavelength. In addition, a number of other attributes is important, such as hardness, uniform-
ness, thermal expansion coefficient, chemical resistance etc. Glass is by far the most used lens
material. The index of most common kinds of glass lies between 1.4 and 1.9. These indices are
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Figure 3.38: Vignetting illustrated by ray trajectories. (a) Some rays do not pass the system. (b) With an
additional lens they do pass.

Figure 3.39: Depth of field. For a larger aperture (a) one obtains a smaller depth of field than for a smaller
aperture (b).
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Figure 3.40: An achromat.

high enough to obtain a sufficient refractive power with respect to air, while they are low enough
to control reflection losses, even without anti-reflection coating.

3.5.1 Dispersion

The wavelength dependence of the index (dispersion) is often described by various analytical for-
mulas, for example:

n2 = A0 +A1λ
2 +A2λ

−2 +A3λ
−4 +A4λ

−6 +A5λ
8. (3.68)

If the wavelength is not near an absorption band of the material, the index decreases monoton-
ically with increasing wavelength. To simplify matters the dispersion is often described by one
number, the Abbe constant or V -value, defined as:

V =
nY − 1
nB − nR

=
PY

PB − PR
(3.69)

Here Y refers to Yellow, B to Blue and R to Red. In this respect the standard wavelengths are:
Y = 587.6nm (helium line), B = 486.1nm and R = 656.3nm (both hydrogen lines). A smaller V -
value indicates a more dispersive material. Roughly speaking glass is divided into two categories
with respect to dispersion. Low dispersion glass is called crown glass, whereas high dispersion
glass is called flint glass. The division is made at a V -value of about 50. Often crown glass has a
relatively low index (n < 1.55), while flint glass has a high index (n > 1.6). However, this is not a
general rule.

One can easily prove that a combination of two thin lenses against each other can only be achro-
matic if the dispersion of the two kinds of glasses is different (figure 3.40). If one demands that
the refractive powers for wavelengths R and B are the same, one obtains:

PB = PB1 + PB2 = PR = PR1 + PR2 (3.70)

The indices 1 and 2 refer to (thin) lens 1 resp. 2. Furthermore:

(PB1 − PR1) + (PB2 − PR2) = 0. (3.71)
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Figure 3.41: Transmission of glass as a function of wavelength.

This is equivalent to:
PY 1

V1
+
PY 2

V2
= 0. (3.72)

We also know that:
PY 1 + PY 2 = PY , (3.73)

with PY the refractive power of the combination at wavelength Y . Both equations can be satisfied
only if the V -values of both materials differ, and if the refractive powers have a different sign.
Solving the system for PY 1 and PY 2 one gets:

PY 1 = PY
V1

V1 − V2

PY 2 = −PY
V2

V1 − V2
. (3.74)

This means that a positive achromatic doublet has to consist of a positive lens with low dispersion
(usually crown) and a negative lens with high dispersion (usually flint).

It is clear that the achromatic doublet is not yet completely free of chromatic aberration. As it is
corrected only for two distant wavelengths (B and R). Sometimes one corrects for three wave-
lengths (B, Y and R). This is called an apochromatic system. One typically needs a triplet for
this.

3.5.2 Absorption

Good quality glass has a low absorption in the entire visual range (400− 700nm). In the UV-range
the absorption quickly increases however. At 300nm absorption is often unacceptably strong.
Also in the IR-range the absorption grows from about 2 to 3µm. Figure 3.41 shows a typical
transmission characteristic.

To work in the deep UV or IR synthetic quartz (synthetic fused silica) is often used. This is amorphous
SiO2. With this material one typically works until 200nm and 3.5µm respectively (although some
absorption peaks show up in the IR). In addition, quartz has a lower expansion coefficient and it
is thermally more stable and harder. The refractive index is about 1.46 (at Y ) and the V -value is
approximately 65. If quartz is too expensive for a certain application, but one works in thermally
difficult circumstances, sometimes pyrex-glass is used. This also has a low thermal expansion
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Figure 3.42: Reflection at an interface. (a) Without anti-reflection coating. (b) With anti-reflection coating.

coefficient. However, the optical quality (e.g. uniformness of the index) is less than for normal
optical glass. The index typically measures 1.48.

In some cases one uses sapphire, which is crystallineAl2O3. The properties are comparable to those
of quartz, but it is harder, stronger and especially chemically inert (very hard, small expansion).
Moreover, transmission is very good from 200nm to 5µm. The index is about 1.76. For special
applications one will use mono- or polycrystalline semiconductors. Pure silicon e.g. has a good
transmission from about 1µm until 7µm. Germanium has a good transmission for even longer
wavelengths and is used in optics for CO2 high-power lasers, at a wavelength of 10.6µm. Both sil-
icon and germanium have a high refractive index (n > 3). Another semiconductor is zinc selenide,
which is one of the few materials that has a good transmission for visible wavelengths (larger than
600nm) and the far infrared, at the same time. This is very important for some applications. The
refractive index of this material about 2.5.

3.5.3 Reflection at an interface

Although all high-index materials instigate reflection losses, the use of anti-reflection coatings can
be very efficient (figure 3.42). The simplest AR coating between air and an element with index n
consists of a single quarter wavelength layer with index equal to the square root of n. In practice
the available materials are limited. For example, for glass with n = 1.5 a material with n = 1.225
would be needed. Often, the best choice for the coating is magnesium fluoride with an index of
about 1.38. For materials with higher index it is easier to find the right coating material.

3.6 Applications

There are many different imaging systems, such as the eye and glasses, the magnifying glass
and the microscope, binoculars and the telescope, the camera, copiers, optical scanners (read and
write), projectors etc. From a paraxial imaging viewpoint these devices distinguish themselves
only by the magnification and by the real or virtual character of the image. In practice there are
many differentiating factors. Depending on the application one or more of the following specifics
will play a role in the design:

• constant or variable magnification

• field of view
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Figure 3.43: The eye.

• brightness

• monochromatic aberrations

• chromatic aberrations

• size and shape of the system

• geometric performance sensitivity (ease of alignment, thermal expansion. . . )

Here we succinctly describe the operation principles of some common imaging systems.

3.6.1 The eye

The refraction in the eye (see figure 3.43) is caused by the curved cornea interface (from n = 1 to
n = 1.34) on the one hand, and the crystalline lens (from n = 1.37 to n = 1.42) on the other hand.
The refractive power of the combination is about 58 diopters. For young people the adjustable
character of the lens can increase the power with about 10 diopters. This adaptive power decreases
with age. The field of view of the eye is very large, but because of the structure of the retina there is
a high resolution only for a small area around the optical axis. The image on the retina is upside-
down (the brain affects another reversal). The eye can accommodate an extraordinary range of
intensity levels. This is possible partly because of the iris, but mainly because of the presence of
two types of receptors on the retina.

For a nearsighted person the refractive power of the eye is too large. The eye cannot focus on dis-
tant objects. By employing glasses with negative power the global refractive power is decreased.
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Figure 3.44: Nearsightedness, farsightedness and the necessary correcting lenses.

The glasses provide a virtual image that is closer to the eye than the object itself. For a farsighted
person the opposite happens. Now glasses with a positive lens are used, which create a virtual
image further away (figure 3.44).

The eye is relaxed the most if it looks at distant objects. Therefore, instruments for visual obser-
vation are designed so that a real or virtual image is created at an appreciable distance from the
eye.

The resolution of our eyes is limited by three factors. First of all there are the aberrations of the
optical system which limit the resolution. As will be discussed in the chapter on Gaussian beam
optics, the diffraction limit (due to the finite size of the lens) imposes an additional restriction in
resolution. A third factor influencing the resolution is the fact that the retina consists of discrete
”pixels” (comparable to a digital camera). Away from the center of the retina, this imposes the
largest resolution limit, since the density of the pixels is much lower there. In the center of the
retina all three effects are of comparable magnitude.

3.6.2 Magnifying glass and eyepiece

The magnifying glass and the eyepiece (or ocular) are positive lenses or systems that are used
when the object lies between the focal point in the object space and the system. This creates a
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Figure 3.45: The eyepiece. (a) Imaging without eyepiece. (b) Imaging with eyepiece.

virtual image (generally at large distance before the system) without upside-down reversal. The
term eyepiece is used for a magnifying glass held closely to the eye (with appropriate dimensions
thereto). This is particularly the case for many optical instruments (microscope, telescope, binocu-
lars, etc.), where the eyepiece serves to create a magnified virtual image of the real image obtained
by the objective. In principle a magnifying glass or eyepiece can realize any magnification (de-
fined as the ratio between image and object size) by correctly choosing the object distance. The
magnification M is given by:

M = −s
′

s
=
|s′|
s

=
∣∣s′∣∣ ( 1

f
+

1
|s′|

)
= 1 +

|s′|
f

(3.75)

This definition is often not very useful, as it indicates nothing about the visually perceived magni-
fication by the eye. The following is a better definition: the magnification is the ratio between the
size - as perceived by the eye - of the virtual image using the eyepiece and the object size without
the eyepiece, taking the maximum size for both values. Figure 3.45 depicts both situations.

The size of an object perceived by the eye is determined by the angle α of the object with the axis,
seen from the eye. Without lens this becomes:

α =
x

D
(3.76)

The closer the object is to the eye, the larger it seems. However, there is a minimum distance Dm,
beyond which the image becomes unsharp:

αmax =
x

Dm
(3.77)

Employing a lens, the angle for the virtual image becomes α′ :

α′ =
x′

|s′|+Dl
=

x |s
′|
s

|s′|+Dl
=

x |s′|
|s′|+Dl

(
1
f

+
1
|s′|

)
(3.78)
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Figure 3.46: The Ramsden eyepiece.

The angle becomes larger as Dl decreases. Therefore we put Dl equal to 0. In practice we often
look with the eye very close to the eyepiece, as in a microscope. For the magnification M we
obtain:

M = Dm

(
1
f

+
1
|s′|

)
(3.79)

We can still choose the image distance |s′|. Consider the two extreme situations. The largest
distance is infinity, whereas the smallest is Dm. The magnifications for the two cases are:

M =
Dm

f
for

∣∣s′∣∣ =∞ (3.80)

M =
Dm

f
+ 1 for

∣∣s′∣∣ = Dm (3.81)

(3.82)

Thus, if the focal length f is small compared to the minimal distance Dm, the two expressions do
not differ very much. The quantity M = Dm/f is considered the nominal magnification of the
eyepiece. Here Dm is standardized at 25cm (approximately the smallest distance still pleasant to
the eye). Thus, an eyepiece with magnification 10× has a focal length of 25mm.

An eyepiece consisting of one lens will introduce an unacceptable amount of chromatic aberration
in a microscope or telescope. Therefore one will often use two lenses. One possibility is to use an
achromatic doublet, however this proves rather expensive. It is much simpler to use two identical
lenses at focal length from each other (Ramsden eyepiece - figure 3.46). One can indeed prove that
two lenses of the same glass behave achromatically if their distance is equal to half the sum of
the respective focal lengths. In such a configuration the object plane is at the first lens (if we put
the virtual image at infinity). A drawback is that dust on the first lens surface is imaged sharply.
Therefore, we generally deviate slightly from the optimal achromatic design.

3.6.3 Objectives

An objective produces a real inverted image of the object. This image is created at a film plane or
is viewed by an eyepiece (figure 3.47).

In a microscope the object is magnified by the objective. The magnification of the objective is given
by:

M = −s
′

s
= −s′

(
1
f
− 1
s′

)
= 1− s′

f
(3.83)
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Figure 3.47: Objective + eyepiece.

Generally a large magnification is desired, which implies that s′ � f . Thus, the object is approxi-
mately in the focal plane of the objective. The distance s′ is standardized for microscopes at 16cm.
We get:

M ≈ −s
′

f
= − 16

f [cm]
. (3.84)

Thus, a microscope objective with a magnification 100× has a focal length of 1.6mm. The magni-
fication and the numerical aperture are always indicated on the microscope objective. The global
magnification of the microscope is the product of the objective and eyepiece magnifications, so

Mtot = − 25
foc [cm]

16
fob [cm]

. (3.85)

Thus, this is the size of the image seen by the eye in comparison to the size of the object itself, if it
would be located at 25cm from the eye.

In a telescope the object (at very large distance) is shrunk, while the angles are enlarged. Now the
image is approximately in the focal plane and the magnification of the objective is given by:

M = −s
′

s
= −1

s

(
1
f
− 1
s

)−1

≈ −f
s
. (3.86)

The simplest type of telescope (figure 3.48) consists of watching this image with an eyepiece, so
that the virtual image is again at a large distance.

If we assume that the virtual image is in the same plane as the object itself, the total angle magni-
fication simply becomes:

Mtot = −fob
foc

(3.87)

This is also the angle magnification of the system. Such a telescope - called an astronomical tele-
scope - has a global refractive power of zero: a ray arriving at the image has an angle that only
depends on the starting angle. This type has an inverted image. To obtain a normal image a
Galilean telescope should be used (figure 3.49), where a negative eyepiece converts the converg-
ing rays from the objective into a parallel beam before forming a real image.
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Figure 3.48: A simple telescope.

Figure 3.49: A Galilean telescope.

In a normal photographic camera the objective is used in approximately the same way as for the
telescope: the object distance is large compared to the image distance. The film plane is thus equal
to or slightly past the focal plane of the objective.

The focal length (in mm) and the f-number of a photographic objective are always indicated on the
lens. A typical focal length is 50 mm. It determines the typical physical dimensions of a camera.
If the image of an object has to be enlarged, there are two options: decrease the object distance or
increase the focal length by employing another lens. For a strong tele-objective the length in case
of a single lens would be impractically large. Therefore one uses a lens combination with a larger
focal length, but which is relatively short because both principal planes are located on the object
side of the lens, as illustrated in figure 3.50.

3.6.4 Camera

The most important part of the camera is the objective that creates a real inverted image on the film,
as previously described (figure 3.51). Also important is the ability to visually observe the scene
that is photographed. In the reflex camera this is done via a 45 degree mirror (which is removed
at the moment the picture is taken) that reflects the image upwards. This creates a real image at
a certain location, that one could see with an eyepiece. In practice one puts a diffuse or ground
glass at the position of the real image, that scatters the incident rays. This image is then observed
virtually, again by using an eyepiece. The use of the diffuser has a number of advantages. First
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Figure 3.50: Increasing the object distance of an objective by using a lens combination. (a) Single lens with
short image distance. (b) Combination with limited thickness but much larger image distance.

of all it allows for easy focusing. The location of the diffuser corresponds with the location of the
film plane. Upon bad focusing there is a fuzzy image on the diffusing glass. Without diffuser the
eye would be able to see the image sharply, because of its accommodation capacity.

Furthermore, a ground glass screen allows for easy incorporation of auxiliary focusing aids (e.g.
microprisms). Finally, without diffuser one would obtain a very dark image in the corners of the
screen, because these corner rays have a large angle with the optical axis and are not captured by
the simple eyepiece. However, even with diffuser there is still a relevant dimming towards the
corners. To decrease this one sometimes places a Fresnel lens in front of the diffusing glass, which
makes that oblique rays travel parallel again with the optical axis.

In some older cameras one had to look vertically to the ground glass screen. The image was
upright but left-right flipped. To look horizontally one would need another 45 degree mirror.
However, this would make the image both left-right and upside-down inverted. The solution of
these problems was brought with the pentaprism, in which every ray reflects on three faces of this
multifacetted prism (figure 3.52). This creates a correct image.

3.6.5 Binoculars

Binoculars are based on the simple principle of the astronomical telescope. This means the image
is inverted again (in both directions), which can be solved in several ways. One can insert an
extra lens that creates reversal, however this lengthens the instrument and increases chances of
aberrations. Another solution is to use two mirrors, that flip the image in two steps (left-right and
upside-down). Unfortunately, the direction of observation would not coincide with the direction
of the object, which is again unpractical.
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Figure 3.51: The reflex camera.

Figure 3.52: (a) A reflex camera with normal triangular prism (2D) and (b) a pentaprism.
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Figure 3.53: Binoculars.

Figure 3.54: The slide projector.

The good solution is to use two prisms, where every ray reflects in each prism on two faces, see
figure 3.53. In this way the image is reversed but the observation direction is the same as the object
direction. Moreover, this approach folds the ray trajectories, so that the binoculars become more
compact.

3.6.6 Projection systems

In projectors (slide projector, overhead projector) an image from the transparent object has to be
created. Furthermore the light of the source has to go through the object so that the image is as
strongly lit and uniform as possible. To achieve this in a slide projector a condenser lens is put
in front of the slide (figure 3.54). This lens captures as many rays as possible from the source,
and refracts them in the direction of the projecting lens. Actually, the source is imaged by the
condenser into the plane of the projector lens. Thus, the latter has to have at least the size of this
image. The condenser needs to be at least as large as the slide and evidently needs as large a
numerical aperture as possible. In practice an aspherical lens is often used.

The overhead projector, depicted in figure 3.55, does the same in principle. However, because of
the size of the transparent object the use of a condenser lens is quasi impossible. Instead a Fresnel
lens (see below) is mostly used, which is not at all perfect with respect to imaging, but still deflects
a large part of the power in the right direction.
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Figure 3.55: The overhead projector.

Figure 3.56: GRIN-lenses.

3.6.7 GRIN lenses

In fibers with parabolic index profile the ray trajectories are sinusoidal with period independent
of the location and angle of incidence (see page 3–9 and chapter 7). This property is used for a
special kind of lens: the GRIN (GRaded INdex) or SELFOC lens (figure 3.56). It consists of a thick
graded index fiber with length equal to a fraction (e.g. 1/4 or 1/2) of the sine period. In this way
the system creates a 1:1 image, or it transforms a point source into a parallel beam (or vice versa).
A main advantage of the GRIN lens is the ease of component connection.

3.6.8 Fiber bundles

In geometrically challenging circumstances (flexible system, limited space) it can be useful to em-
ploy an ordered fiber bundle, where each object (and image) point corresponds to a distinct optical
fiber. (More details about guiding in optical fibers can be found in chapter 7.) The number of pixels
is thus limited by the number of fibers. Fiber bundles are often used as 1:1 imaging systems in
medicine (e.g. endoscope). An alternative application is to transform a source with a certain shape
into a source with another shape.
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Figure 3.57: Transformation from a classical lens to a Fresnel lens.

Figure 3.58: The corner reflector.

3.6.9 Fresnel lenses

Lens operation originates from the refraction of rays at surfaces. For this refraction only the angle
between the ray and the surface is important. This means that the lenses in figure 3.57 have
about the same functionality, provided we do not concern ourselves with rays incident on the
discontinuous transitions.

Such a lens is called a Fresnel lens and often looks like a plane plate with a surface profile. It is
used in cases where the equivalent normal lens would be too thick, often for lenses with large
diameter. The Fresnel lens is commonly used to focus the light of a lamp in a certain direction
(car lights, traffic lights, etc.). As previously mentioned, it is also employed in the camera and the
overhead projector. These applications are not exigent with respect to aberrations (with respect to
the function of the Fresnel lens), so that scattering at the transitions does not pose a problem.

3.6.10 Corner reflector

A corner reflector or corner-cube prism consists of three perpendicular mirrors. Incident light
will be reflected in the same direction because of the three reflections. Reflectors in traffic (on
bikes, road markings, etc.) contain a large number of corner reflectors next to each other. Instead
of mirrors, the light is reflected here by total internal reflection (figure 3.58)). Corner reflectors
lose their function partly for coherent light, as the phase relations change because of the different
reflections. A plane wave is not reflected into a plane wave.
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Chapter 4

Scalar Wave Optics
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In the second half of the 17th century the Dutch physicist Christiaan Huygens postulated that
light was a wave phenomenon. Thus, light propagates as waves and each wave has an associated
specific wavelength, just as a wave propagating along a rope.

In this chapter we describe the behavior of light by employing a scalar function, the wave func-
tion, which satisfies the wave equation. This wave theory encompasses the entire ray theory, and
allows to present aspects of light unexplainable by the ray concept.

Theoretically speaking ray optics is the limit of wave theory in which the wavelength becomes
infinitely small, or the frequency infinitely large. In practice, ray theory is rather accurate if the
light propagates through objects that have much larger dimensions than the wavelength of the
light.

As later described in chapter 6, light is actually an electromagnetic wave with a transverse vecto-
rial character. However, the scalar description is mathematically much simpler than the electro-
magnetic theory. Nonetheless, the scalar approach allows us to present certain aspects of light in
an easy way. Thus, here we neglect the vectorial nature of light, and we assume that the wave
function represents any component of the electric or magnetic field. However, we use certain pos-
tulates to define physically observable quantities. In chapter 6 we will check the postulates by
using the electromagnetic theory.
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4.1 The postulates of wave optics

4.1.1 The wave equation

1. Light waves propagate in free space with the speed of light

c ≈ 3.0× 108m/s = 30cm/ns (4.1)

2. Homogeneous, isotropic, transparent media (such as glass) are characterized by a single
constant, the refractive index n(≥ 1). In a medium with refractive index n light propagates
at a speed of v = c/n.

3. A light wave is described by a real scalar function u(r, t), the wave function, which satisfies
the wave equation

∇2u− 1
v2

∂2u

∂t2
= 0 (4.2)

with∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , the Laplacian operator.

4. Each function satisfying the wave equation describes a possible light wave.

5. The wave equation is linear, thus the superposition principle holds. If u1(r, t) and u2(r, t)
are solutions, then u1(r, t) + u1(r, t) is also a solution.

6. The wave function is continuous on the boundary between two different media. This as-
sumption is actually the biggest approximation of scalar wave theory. The exact description
of the behavior at an interface can only happen with inclusion of the vectorial nature of the
light waves, and is described in chapter 6.

7. The scalar wave equation is approximately applicable for media with location dependent
index (e.g. GRIN material), provided that the index variation is small over distances on the
order of the wavelength of the light. In effect, these media are locally-homogeneous. Their
index is described by a location dependent index n(r), and thus with a location dependent
speed of light v(r).

4.1.2 Intensity and power

Light intensity (Watt cm−2)

One can measure the intensity of light, in contrast to the wave function itself. The expression for
intensity1 connects the postulated wave function to a physically observable quantity

I(r, t) = 2 < u2(r, t) > (4.3)

The brackets < . > stand for the calculation of the average over a time interval much larger than
the period of an optical cycle. Because I is a physical quantity and u is not, the choice of the factor
2 is arbitrary. However, because of this choice equation (4.13) will look nice.

1Note that intensity has a different meaning here as compared to the luminous intensity defined in chapter 2
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Figure 4.1: (a) monochromatic wave at a fixed location. (b) Monochromatic wave at a fixed time.

Optical power of a light beam propagating through an arbitrary surface A normal to the prop-
agation direction (Watt)

P (t) =
∫
A

I(r, t)dA (4.4)

4.2 Monochromatic waves

A monochromatic wave can be described by a wave function with harmonic time dependence

u(r, t) = a(r) cos [2πνt+ ϕ(r)] (4.5)

with

• a(r) = amplitude

• φ(r) = phase

• ν = frequency (in Hz)

• ω = 2πν = angular frequency (in rad/s)

Although amplitude and phase can be location dependent, the wave function varies harmonically
with the same frequency ν at all locations.

4.2.1 Complex representation and Helmholtz equation

As will become clear, it is usually easier to describe the wave function u(r, t) with a complex
function, also called the analytic signal

U(r, t) = a(r)ejϕ(r)ej2πνt (4.6)

so that

u(r, t) = Re {U(r, t)}

=
1
2

[U(r, t) + U∗(r, t)] (4.7)

4–3



Figure 4.2: (a) Phasor diagram. (b) Rotating phasor.

This also means that the complex function U(r, t) obeys the wave equation (4.2) as well, thus

∇2U − 1
v2

∂2U

∂t2
= 0 (4.8)

The complex amplitude

Equation (4.6) can be written as
U(r, t) = U(r)e+j2πνt (4.9)

The time independent factor U(r) = a(r)ejφ(r) is called the complex amplitude. U(r) describes the
time invariant envelope of the propagating wave, and this is a complex variable with

• |U(r)| = the amplitude of the wave

• arg [U(r)] = φ(r) = the phase of the wave

Geometrically the complex amplitude can be represented in a phasor diagram, as shown in fig-
ure 4.2(a). The complex wave function is then depicted as a phasor turning around with circulation
frequency ν (see figure 4.2(b)).

The Helmholtz equation

Because of the linear character of the wave equation we often eliminate the time factor e+j2πνt and
thus the time dependance. If we substitute the function U(r, t) from equation (4.9) in the wave
equation (4.2), we obtain the Helmholtz equation

(∇2 + k2)U(r) = 0 (4.10)

with
k =

2πν
v

=
ω

v
(4.11)

the propagation constant.

Wave front

A wave front is a surface of equal phase, so that φ(r) = cst. The value of this constant is often
taken as an integer times 2π, thus φ(r) = 2πq with q integer. The normal to the wave front in
the point r is parallel with the gradient ∇φ(r) in that point. It is the direction in which the phase
changes most rapidly.
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Intensity

To calculate the intensity of a monochromatic wave, we substitute the function (4.5) in equa-
tion (4.3)

2u2(r, t) = 2a2(r) cos2 (2πνt+ ϕ(r))
= |U(r)|2 {1 + cos (2 [2πνt+ ϕ(r)])} (4.12)

If we take the average over a time interval equal to an integer times the optical period, 1/ν, the
cosine term vanishes.

I(r) = |U(r)|2 (4.13)

The intensity of a monochromatic wave is equal to the modulus squared of its complex amplitude.
Furthermore, the intensity of a monochromatic wave does not vary in time.

4.2.2 Elementary waves

The Helmholtz equation has a number of relatively simple solutions, which will be described here.

The plane wave

A plane wave has a complex amplitude

U(r) = Ae−jk·r = Ae[−j(kxx+kyy+kzz)] (4.14)

A is a complex constant, called the complex envelope, and k = (kx, ky, kz) is the wave vector. In
order for the plane wave to satisfy the wave equation (4.2), it is necessary that kx2 +ky

2 +kz
2 = k2,

so that the magnitude of the wave vector k is equal to the propagation constant k.

• The wave fronts are defined as surfaces of constant phase. From (4.14) we get arg(U(r)) =
arg(A)− k.r so that the wave fronts are determined by

k · r = kxx+ kyy + kzz = 2πq + arg{A} (4.15)

with q an integer. Thus, the wave fronts are parallel planes perpendicular to the wave vector
k. The wavelength λ is the distance between two consecutive wave fronts (q = 0, 1, 2, 3 . . .),
and is given by

λ =
v

ν
(4.16)

• If we assume that k is in the positive z-direction, then U(r) = Ae−jkz and the corresponding
wave function is given by (4.7)

u(r, t) = |A| cos [2πνt− kz + arg {A}]

= |A| cos
[
2πν

(
t− z

v

)
+ arg {A}

]
(4.17)

We observe that the wave function is periodic in time with period 1
ν and periodic in space

with period 2π
k = λ. Note that Ae−jkz (with positive k) represents a wave propagating in

4–5



Figure 4.3: Wave fronts and amplitude of a plane wave.

the positive z-direction, as a consequence of the (arbitrary) choice of the plus-sign in the
exponent of equation (4.9). If the other convention is used (as in some books), then Ae+jkz is
a forward wave.

• The phase of the complex wave function
[
arg(U(r, t)) = 2πν

(
t− z

v

)
+ arg(A)

]
varies in time

and space as a function of
(
t− z

c

)
. Thus, v is called the phase velocity of the wave, because

the wave fronts (surfaces of constant phase) propagate with speed v in the direction of the
k-vector.

• If the wave propagates in a medium with refractive index n, the phase velocity becomes
v = c

n , so that λ = v
ν = c

nν = λ0
n . Thus, if a monochromatic wave propagates in a medium

with index n the frequency remains the same, but the phase velocity, wavelength and
propagation constant change according to

v =
c

n

λ =
λ0

n

k = nk0 (4.18)

• A plane wave implies a constant intensity I(r) = |A|2 everywhere in space. Therefore a
plane wave is clearly non-physical, as it is everywhere and always present and thus carries
an infinite amount of power. Nonetheless the concept of a plane wave is very useful, and it
is often employed to describe light propagation in various structures.

The evanescent plane wave

Until now the wave vector k was considered real, but it can also be complex k = kR + jkI. Still,
k2
x + k2

y + k2
z = |k|2 = k2 = nk2

0 has to remain valid, where n becomes complex. Applied to
equation (4.14) one obtains

U(r) = Ae−jk·r

= AekI·re−jkR·r (4.19)
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Figure 4.4: Wave fronts and amplitude of an evanescent plane wave for (a) kR‖ kI and (b) kR ⊥ kI.

This equation represents a plane wave that propagates in the direction kR, and exponentially
increases or decreases in the direction kI. We discuss two extreme cases:

1. kR ‖ kI

Assume both kR and kI parallel with the z-axis, then we get (4.14)

U(r) = AekIze−jkRz (4.20)

As the wave propagates deeper into the medium its amplitude decreases or increases expo-
nentially. This corresponds to the propagation of a plane wave in an absorbing or amplifying
medium.

2. kR ⊥ kI

Assume kR parallel to the z-axis and kI parallel to the x-axis, thus perpendicular to kR, then
(4.14) becomes

U(r) = AekIxe−jkRz (4.21)

The wave propagates in the z-direction, while its amplitude decreases exponentially in the
x-direction. This situation appears when total internal reflection occurs at an interface, and
this will be extensively discussed in chapters 6 and 7. We mention here that if the angle of
the wave vector of the incident light with the interface is smaller than a certain value, all
energy will be reflected and no light is transmitted through the interface. This total internal
reflection does generate a wave on the other side of the interface, that propagates parallel to
the interface and decreases exponentially perpendicular to it.

The spherical wave

The complex amplitude of the spherical wave is

U(r) =
A

r
e−jkr (4.22)

with r the distance to the origin and k = 2πν
v = ω

v the wave number.
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Figure 4.5: Wave fronts and amplitude of a spherical wave.

• If, for simplicity, we assume arg(A) = 0. We can now determine the wave fronts from
equation (4.22): kr = 2πq or r = qλ, with q an integer. Thus the wave fronts are concentric
spheres separated by a radial distance λ = 2π/k, that propagate radially with phase velocity
v.

• The − sign in the exponential of equation (4.22) implies that the wave fronts start at the
origin (a point source) and grow as they propagate away from the origin. Changing the
sign into + describes a spherical wave propagating towards the origin. (This applies with
the convention e+j2πνt. With the use of e−j2πνt one has to switch the signs in the previous
explanation.)

• A spherical wave originating from the point r0 has the complex amplitude

U(r) =
(

A

|r− r0|

)
e(−jk|r−r0|) (4.23)

The wave fronts are concentric spheres centered on r0.

• The intensity of a spherical wave is inversely proportional with the square of the distance to
the point source

I(r) =
|A|2

r2
(4.24)

The Fresnel approximation of the spherical wave: the parabolic wave

We consider again a spherical wave and assume an optical system where the z-axis is the main
light propagation axis, so that we are interested in the behavior of the spherical wave along this
axis. We examine the wave at a point r = (x, y, z) far from the source (large z), but close to the

propagation axis (small x and y), so that (x2 + y2)
1
2 � z. Thus we have θ2 =

(
x2 + y2

)
/z2 � 1
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Figure 4.6: Evolution of a spherical wave near the propagation axis.

and we can use a Taylor expansion

r =
(
x2 + y2 + z2

) 1
2 = z

(
1 + θ2

) 1
2

= z

(
1 +

θ2

2
− θ4

8
+ ...

)
≈ z

(
1 +

θ2

2

)
= z +

x2 + y2

2z
(4.25)

After substituting r = z+
(
x2 + y2

)
/2z in the phase and r = z in the amplitude of equation (4.22),

we obtain
U(r) ≈ A

z
e(−jkz)e−jk

x2+y2

2z (4.26)

We used a more precise approximation of r for the phase, as it is more sensitive to small perturba-
tions. The previous expression is called the Fresnel approximation of the spherical wave.
This approximation consists of two parts. The first part describes a normal spherical wave prop-
agating along z. The second part of expression (4.26) is a pure phase factor and determines the
wave fronts as the spherical wave propagates along z. The phase factor induces that the wave
fronts are bent into paraboloids, as one needs that z +

(
x2 + y2

)
/2z = constant.

If z becomes very large we can assume
(
x2 + y2

)
/2z ≈ 0. Thus the curvature of the wave fronts

disappears and we have plane waves. Therefore, the light of a star (a point source emitting spher-
ical waves) has plane wave fronts.

4.2.3 Paraxial waves

Just as we have considered paraxial rays in ray optics, we can use paraxial waves in wave optics.
Starting from a plane wave propagating in the z-direction as a carrier wave, we obtain a paraxial
wave if we modulate the complex envelope A in such a way that it is a slowly varying function of
location A(r)

U(r) = A(r)e−jkz (4.27)

The change of A(r) with position has to be slow compared to the wavelength λ = 2π/k, for the
wave to maintain a plane wave character.

Figure 4.7 illustrates the wave function

u(r, t) = |A(r)| cos [2πνt− kz + arg [A(r)]] (4.28)

of a paraxial wave. Along the z-axis it is a sine function with amplitude |A(0, 0, z)| and phase
arg [A(0, 0, z)] that vary slowly in function of z. As the phase [arg [A(x, y, z)]] varies slowly with

4–9



Figure 4.7: (a) The amplitude of a paraxial wave in function of the axial distance z, (b) wave fronts and
wave front normals of a paraxial wave.

z over a distance λ, the plane wave fronts kz = 2πq of the carrier are curved slightly, so that the
normals are paraxial rays.

The paraxial Helmholtz equation

The assumption that A(r) varies slowly with z implies that the change of A, ∆A, over a length
∆z = λ is much smaller than A itself, so ∆A = (∂A/∂z)∆z = (∂A/∂z)λ � A. As A/λ = kA/2π
we deduce that

∂A

∂z
� kA (4.29)

Analogously, the derivative of ∂A/∂z varies slowly over a length λ, so that ∂2A/∂z2 � k∂A/∂z,
and

∂2A

∂z2 � k∂A/∂z

� k2A (4.30)

To obtain the Helmholtz equation for paraxial waves we first substitute (4.27) into the Helmholtz
equation (4.10), where we split the transversal and longitudinal components of the Laplacian

∇2
TU(r) +

∂2U(r)
∂z2

+ k2U(r) = 0 (4.31)

with∇2
T = (∂2/∂x2) + (∂2/∂y2). Working with the second term in the equation above we get

∂2U(r)
∂z2

= e−jkz
[
−2jk

∂A(r)
∂z

+
∂2A(r)
∂z2

− k2A(r)
]

(4.32)

After substitution in equation (4.31) and use of (4.29) and (4.30) we obtain an equation for the
slowly varying envelope of a paraxial wave, called the paraxial Helmholtz equation

∇T 2A(r)− 2jk
∂A(r)
∂z

= 0 (4.33)

This equation is much easier to solve (both analytically and numerically) compared with the
Helmholtz equation. Starting withA(x, y, 0) one can findA(x, y, z) by integration of equation (4.33).
In the next chapter we discuss some solutions, namely the Gaussian and the Hermite-Gaussian
beams.
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Figure 4.8: (a) The rays are perpendicular to the wave fronts. (b) The effect of a lens on the rays and wave
fronts.

4.3 Deduction of ray theory from wave theory

The ray theory is the limit of wave theory as the wavelength λ0 → 0, as mentioned in the introduc-
tion to this chapter. To illustrate this, we consider a monochromatic wave with wavelength λ0 in
free space. The wave propagates in a medium with position dependent but slowly varying refrac-
tive index n(r), so that the medium is considered locally homogeneous. The complex amplitude
of the wave is given by

U(r) = a(r)e[−jk0S(r)] (4.34)

with a(r) the amplitude, −k0S(r) the phase and k0 = 2π/λ0 the wave number. We assume that
a(r) varies slowly with r, so we consider a(r) constant over a length λ0.

The wave fronts are surfaces determined by S(r) = cst, and the normal to the wave fronts points
in the direction of the gradient ∇S. In the vicinity of a point r0 we consider the wave as a plane
wave with amplitude a(r0), wave vector k with size k = n(r0)k0 and direction parallel to the gra-
dient vector ∇S in r0. Another neighborhood implies a different local plane wave with different
amplitude and wave vector.

We associate the local wave vectors (normals to the wave fronts) in scalar wave optics with the
rays in ray optics. This analogy shows that ray optics can be used to approximately determine the
effect of optical components on the normals of the wave fronts, as illustrated in figure 4.8.

The eikonal equation

After substitution of (4.34) in the Helmholtz equation we obtain

k0
2
[
n2 − |∇S|2

]
a+∇2a− jk0

[
2∇S · ∇a+ a∇2S

]
= 0 (4.35)

with a = a(r) and S = S(r). Both the real and imaginary part have to be equal to zero. The real
part leads to

|∇S|2 = n2 +
(
λ0

2π

)2

∇2a/a (4.36)

4–11



Figure 4.9: Propagation of a ray in space.

The assumption that a is slowly varying over a length λ0 means that

λ0
2∇2a/a� 1 (4.37)

so the second term on the left side of equation (4.36) can be neglected in the limit λ0 → 0

|∇S|2 ≈ n2 (4.38)

This is the so-called eikonal equation and the scalar function S(r) is called the eikonal.

If we put the imaginary part of (4.35) equal to zero, we get a relation between a and S that allows
us to determine the wave function.

The ray equation

The eikonal equation determines the surfaces with constant phase S(x, y, z) = constant. A ray
of light can be considered as a local plane wave that propagates perpendicular to the surfaces of
constant phase. Thus, the rays are orthogonal lines to the wave fronts S(x, y, z) = constant. If s is
the length along the ray and r(s) is the vector function describing the propagation of the ray (see
figure 4.9), then the vector u(s), defined as

u =
dr
ds
, (4.39)

is the unit vector along the ray. The vector v = ∇S is also perpendicular to the phase fronts, and
thus it is parallel with u. Because the size of v is given by n, the refractive index, one obtains
u = v/n or

v = n
dr
ds

(4.40)

Taking the gradient of the eikonal equation, one gets

2∇S.∇∇S = 2n∇n (4.41)

or after substitution of equation (4.39) and (4.40) into (4.41)

n
dr
ds
.∇ndr

ds
= n∇n (4.42)
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Figure 4.10: (a) refraction and reflection at an interface, (b) the agreement of phase fronts at the boundary
implies λ1/sinθ1 = λ2/sinθ2 with λ1 = λ0/n1 and λ1 = λ0/n1, which leads to Snell’s law, (c) continuity of
the tangential component of the wavevector.

Because
d

ds
=
dx

ds

∂

∂x
+
dy

ds

∂

∂y
+
dz

ds

∂

∂z
=
dr
ds
.∇ (4.43)

we immediately obtain
d

ds

(
n
dr
ds

)
= ∇n (4.44)

This is the ray equation that we discussed in chapter 3. Thus, this shows that ray optics and
Fermat’s principle can be deduced from wave optics, and that all principles of ray optics are ap-
plicable to normals to the wave fronts of wave optics!

4.4 Reflection and refraction

4.4.1 Reflection and refraction at a planar dielectric boundary

We consider a plane wave with wave vector k, incident on a plane interface between two homoge-
neous media with indices n1 and n2, located in the plane z = 0. Refraction and reflection leads to
waves with wave vectors k′ and k′′ (figure 4.10). The combination of these three waves satisfies
the Helmholtz equation so that k = k′′ = n1k0 and k′ = n2k0. Continuity of the wave function
implies that the phase of the three waves at the boundary has to be equal, so

k · r = k′ · r = k′′ · r, r = (x, y, 0)
kxx+ kyy = k′xx+ k′yy = k′′xx+ k′′yy (4.45)

This is true for all x and y values, so

kx = k′x = k′′x

ky = k′y = k′′y (4.46)
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We can say that the tangential component of the wavevector is continuous at the interface. The
vectors k, k′ and k′′ are given by

k = (n1k0sin(θ), 0, n1k0cos(θ)),
k′′ = (n1k0sin(θ′′), 0,−n1k0cos(θ′′)),
k′ = (n2k0sin(θ′), 0, n2k0cos(θ′)), (4.47)

with θ, θ′ and θ′′ the angles of incident, refracted and reflected wave, respectively. This leads
to θ = θ′′ and n1sinθ = n2sinθ

′. Thus, the laws of reflection and refraction (Snell’s laws) for
ray optics are also applicable to wave vectors. Note that it is impossible to calculate correctly
the amplitudes of reflected and refracted waves with scalar wave theory. Therefore one needs to
include the vectorial character of light waves, which is discussed in a later chapter.

4.4.2 Paraxial transmission through a thin plate and a thin lens

We consider a thin plate with variable thickness d(x, y) and index n(x, y). A plane wave is in-
cident along the z-axis (see figure 4.11(a)). If we describe the plane wave with Ae−jkz , then the
transmitted wave just after the plate is well approximated by

A′′e−jkn(x,y)d(x,y), (4.48)

where A′′ is smaller than A, because of reflections (multiple reflections are neglected here). Thus,
in a plane z = d0 closely behind the plate the wave function is

A′′e[−jk(n(x,y)d(x,y)+(d0−d(x,y)))] = A′′e−jkd0e[−jk(n(x,y)−1)d(x,y)] (4.49)

This means that the deformation of the wave front because of the plate scales with the variation
of optical path length of the plate relative to the path length in vacuum.

As an example we apply this to a thin plano-convex lens with spherical surface and radius of
curvature R, as depicted in figure 4.11(b). The lens has a thickness

d(x, y) = d0 −
[
R−

√
R2 − (x2 + y2)

]
. (4.50)

For small x and y (paraxial treatment!) this function is approximated by a paraboloid. After
transmission of a plane wave through the lens the wave front is not exactly spherical, but it can
also be approximated by a paraboloid. According to the Fresnel approximation this approximates
a spherically converging wave. It is easy to prove that this wave converges to a point - the focal
point - at the same location as the focal point predicted by geometric optics.

4.5 Interference

If two or more waves are present at the same place simultaneously, the superposition principle
dictates that the total wave function is equal to the sum of the individual wave functions. When
all the waves are monochromatic with the same frequency, we can eliminate the time factor and
use the Helmholtz equation for the complex amplitude. Because of the linearity of this equation
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Figure 4.11: (a) Transparent plate with variable thickness. (b) Thin plano-convex lens.

the superposition principle is also applicable to the complex amplitude. From the relation be-
tween intensity and complex amplitude we deduce that the intensity of two or more waves is not
necessarily equal to the sum of the individual intensities. The difference between both is ascribed
to interference between the superposed waves. This interference is new and it cannot be explained
with ray theory, because it is described by the phase relations of the contributing waves.

4.5.1 Interference between two waves

We consider the superposition of two monochromatic waves with the same frequency ν and com-
plex amplitudes U1(r) and U2(r), respectively. This superposition results in a monochromatic
wave with the same frequency, but with complex amplitude

U(r) = U1(r) + U2(r). (4.51)

By using equation (4.3) we get the intensity of the individual waves I1 = |U1|2 and I2 = |U2|2, but
the intensity of the total wave is

I = |U |2 = |U1|2 + |U2|2 + U∗1U2 + U1U
∗
2 (4.52)

where we have dropped the r-dependence for simplicity. We substitute

U1 =
√
I1e

jφ1

(4.53)
U2 =

√
I2e

jφ2

in (4.52), where φ1 and φ2 are the phases of the two waves, and we obtain

I = I1 + I2 + 2
√
I1I2cos(φ) (4.54)

with
φ = φ2 − φ1. (4.55)

Equation (4.54) is the interference equation. It is also easily deduced from a phasor diagram as in
figure 4.12. This figure clearly shows that the size of the phasor U not only depends on the sizes
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Figure 4.12: Phasor diagram for superposition of two waves with intensities I1 and I2, and phase φ =
φ2 − φ1

Figure 4.13: Interference between two waves with (a) I1 = I2 = I0, (b) I1 6= I2.

of the individual phasors, but also on the phase between these phasors. The interference term
can be both positive and negative and this is called constructive and destructive interference,
respectively.

Assume that I1 = I2 = I0, then (4.54) becomes

I = 2I0(1 + cos(φ)) = 4I0cos
2

(
φ

2

)
(4.56)

so that I = 4I0 if φ = 0, and I = 0 if φ = π. If φ = π/2 or φ = 3π/2 the interference term
disappears, and the total intensity is the sum of the individual intensities I = 2I0. This strong
dependence on phase of the intensity allows one to determine phase differences by measuring the
intensity.

Remark 1
Interference is caused by the simultaneous action of different waves. In no way does it mean that
the waves interact and influence each other. The individual waves remain unchanged, but the
total intensity is no longer simply the sum of individual intensities.

Remark 2
With interference the total power varies between 0 and 4 times the power of individual waves,
dependent on the phase difference. It is important to realize that interference does not violate the
law of conservation of power. It merely means a spatial redistribution of the optical power. Two
waves can have the same phase in a certain position, but because of the position dependence of
the phase, and thus of the phase difference φ, the total intensity at some place will be larger than
I1 + I2 and at other places will be smaller than I1 + I2.

Remark 3
To observe interference one needs a fixed phase relation between the different waves. Normal
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lamps emit light that is not monochromatic at all, but with chaotically varying phase. This leads
to fluctuations in both φ1 and φ2, so that the difference φ varies quickly and randomly in time. By
averaging (see equation (4.3)) the cosine term in equation (4.54) will disappear so that the inter-
ference term is absent. This light is called incoherent. Coherence of light is treated in chapter 13.
In this chapter we limit ourselves to fully coherent light, and we assume the phases of individual
waves to be constant at every position.

Interferometers

Assume two identical plane waves, each with intensity I0, propagating in the z-direction. One
wave is retarded over a distance d, respective to the other wave, so

U1 =
√
I0e
−jkz

(4.57)
U2 =

√
I0e

[−jk(z−d)]

Then, the interference of the two waves is determined by substituting I1 = I2 = I0 and φ = kd =
2πd/λ into the interference equation (4.54)

I = 2I0

[
1 + cos

(
2π
d

λ

)]
(4.58)

The dependence of the intensity I on the delay d is illustrated in figure 4.14. If the delay is an
integer times the wavelength λ, we get constructive interference and the total intensity is I = 4I0.
On the other hand, if d is an odd integer times the half wavelength λ/2, then we get destructive
interference and the total intensity is I = 0.

An interferometer uses the above principle. It is an optical instrument that splits a wave into
two waves, delays them over an unequal distance, and combines them together to measure the
intensity of their superposition. Because of the strong sensitivity of the intensity to the phase
difference

φ = 2πd/λ = 2πnd/λ0 = 2πnνd/c (4.59)

with d the difference in propagation distance between the two waves, one can use an interfer-
ometer to measure small variations of distance d, index n or wavelength λ0 (or frequency ν). If
d/λ = 104, then an index variation of δn = 10−4 realizes a phase difference δφ = 2π. Analogously,
the phase changes over 2π, if d increases with a wavelength δd = λ. An increase of the frequency
δν = c/d has the same effect.

Three important examples of interferometers are the Mach-Zehnder interferometer, the Michel-
son interferometer and the Sagnac interferometer. They are shown in figure 4.14. In a Sagnac
interferometer the optical path of the two waves is identical but opposite, so that a rotation of the
interferometer results in a phase change proportional to the angular velocity of the rotation. This
system is used as a gyroscope.

Interference of two oblique plane waves

Consider the interference between two plane waves with equal intensities, where both waves
propagate at an angle θ with the z-axis, see figure 4.15. U1 = I

1/2
0 e−j(kcos(θ)z+ksin(θ)x) and U2 =
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Figure 4.14: (a) Dependence of the intensity I on the delay d (b) Mach-Zehnder interferometer (c) Michelson
interferometer (d) Sagnac interferometer.

I
1/2
0 e−j(kcos(θ)z−ksin(θ)x). In the plane z = 0 the waves have a phase difference φ = 2kxsin(θ), so

with equation (4.54)
I = 2I0[1 + cos(2ksin(θ)x)]. (4.60)

Interference creates a pattern that varies sinusoidally with xwith a period 2π/2ksin(θ) = λ/2sin(θ),
see figure 4.15. This effect can be used to create a sine pattern with high resolution to fabricate a
diffraction grating. Another application is to determine the angle of an incident wave by super-
posing it with a reference wave and measuring the interference distribution. This is the basic
principle of holography. One should note that in the special case of θ = π/2 we find the stand-
ing wave pattern caused by the interference of a forward and backward wave. The period of this
standing wave pattern is λ/2 and this is the smallest period an interference pattern can have for a
given wavelength.

4.5.2 Interference between multiple waves

WhenM monochromatic waves with complex amplitudes U1, U2, . . . , UM and the same frequency
are superposed, this results in a monochromatic wave with the same frequency and amplitude
U = U1 + U2 + . . . + UM . The intensities of the individual waves I1, I2, . . . , IM are insufficient
to determine the total intensity I = |U |2. The relative phases have a major impact on the total
intensity, as the next examples show.
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Figure 4.15: Interference between two inclined plane waves.

Interference of M waves with equal amplitudes and phase difference

We assume M waves with complex amplitudes

Um =
√
I0e

[j(m−1)φ], m = 1, 2, . . . ,M. (4.61)

The waves have equal intensity I0 and constant phase difference φ between consecutive waves,
as illustrated in figure 4.16(a). To derive an expression for the total intensity it is convenient to
introduce h = ejφ, so U = I0

1/2hm−1. The complex amplitude of the total wave becomes

U =
√
I0

(
1 + h+ h2 + . . .+ hM−1

)
=

√
I0

1− hM

1− h

=
√
I0

1− ejMφ

1− ejφ
(4.62)

and the intensity is

I = |U |2 = I0

∣∣∣∣∣e−jMφ/2 − ejMφ/2

e−jφ/2 − ejφ/2

∣∣∣∣∣
2

(4.63)

so that

I = I0
sin2 (Mφ/2)
sin2 (φ/2.)

(4.64)

It is clear from figure 4.16(b) that the intensity I strongly depends on the phase difference φ.

• If φ = 2πq, with q an integer, all phasors are aligned and the intensity reaches a peak I =
M2I0. The average intensity (averaged over a uniform φ distribution) is Ī = (1/2π)

∫ 2π
0 Idφ = MI0,

which is the intensity without interference. Thus the peak intensity is M times larger than
the average intensity, and the larger the number of waves M the more pronounced the effect
is (compare figure 4.16(b) with 4.13).
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Figure 4.16: (a) the sum of M phasors with equal amplitude and equal phase difference (b) intensity I in
function of phase difference φ.

• For a phase difference slightly off 2πq, we get a steep decline in intensity I .

• If the phase difference is 2π/M , the intensity becomes zero.

This example of interference between M waves is common in practice. Probably the most well-
known case is the illumination of a screen through M slits by a plane wave. The diffracted field
depicts the behavior described above, in function of the angle.

Interference of an infinite number of waves with progressively declining amplitude and equal
phase difference

U1 =
√
I0, U2 = hU1, U3 = hU2 = h2U1, . . . (4.65)

with h = |h| ejφ, |h| < 1 and I0 the intensity of the initial wave. The phasor diagram is shown in
figure 4.17. The superposition of all these waves has complex amplitude

U = U1 + U2 + U3 + . . .

=
√
I0(1 + h+ h2 + . . .)

=
√
I0

1− h

=
√
I0

1− |h| ejφ
. (4.66)

The intensity I = |U |2 = I0/
∣∣1− |h| ejφ∣∣2 = I0/[(1− |h| cos(φ))2 + |h|2 sin2(φ)] so

I =
I0

(1− |h|)2 + 4 |h| sin2(φ/2)
. (4.67)

The previous equation is often written as

I =
Imax

1 +
(

2F
π

)2
sin2

(
φ
2

) (4.68)

with
Imax =

I0

(1− |h|)2
(4.69)
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Figure 4.17: (a) the sum of M phasors with progressively declining amplitude and equal phase difference
(b) intensity I in function of phase difference φ

and

F =
π |h|

1
2

1− |h|
(4.70)

a parameter called finesse.

As illustrated in figure 4.17 the intensity is a periodic function of φ with period 2π. It reaches the
maximum Imax for φ = 2πq, with q an integer. For this φ all phasors are aligned. When the finesse
F is large (so |h| is close to one), the function I is sharply peaked. As the finesse F decreases the
peaks become less sharp and they disappear when |h| = 0.

As an example consider a value of φ close to the peak φ = 0. For |φ| � 1 one obtains sinφ/2 ≈ φ/2
and equation (4.68) is approximated by

I ≈ Imax
1 + (F/π)2φ2

. (4.71)

The intensity I decreases to half of its peak value when φ = π/F, so the Full Width at Half Maximum
(FWHM) of the peak is equal to

δφ =
2π
F
. (4.72)

If F� 1, then δφ� 2φ and the assumption φ� 1 is correct. Thus, the finesse F is the ratio between
the period 2π of the peaks and the FWHM of the interference pattern. So, F is a measure for the
sharpness of the interference function, or for the sensitivity of the intensity to phase deviations
from the peak values 2πq.

This example is especially relevant in practice. In particular for the Fabry-Perot interferometer,
that consists of two parallel semi-transparent mirrors. The total transmission is realized by an
infinite number of contributions from the multiple reflections between the mirrors.
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Chapter 5

Gaussian Beam Optics
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In wave optics the wave functions in free space satisfy the Helmholtz equation∇2φ+k2φ = 0. The
plane waves and the spherical waves are examples of solutions that ‘oppose’ each other. The plane
wave has one direction but extends over the entire space. Whereas the spherical wave originates
from one point but propagates in all directions. In this chapter we examine solutions that lie
between these two extremes. They are finite both in space and direction.

The wave character of light prohibits that a beam with finite cross section propagates in free space
without spreading. A perfectly collimated beam would have many practical applications. How-
ever, there are solutions of the Helmholtz equation that approximate this behavior. In this chapter
we will study Gaussian beams. At the origin they exhibit the character of a plane wave, but at
a distance they behave as a spherical wave. A laser beam is often a good approximation of a
Gaussian beam.

5.1 Diffraction of a Gaussian light beam

Consider a monochromatic beam with a finite cross section propagating along the z-direction, as
depicted in figure 5.1. Here the beam is represented as a number of arrows, of which the length
indicates the local amplitude. Because of the wave character of light this beam will fan out. We
are going to analyze this phenomenon in this section.

We assume the beam has a paraxial behavior around the z-axis, so we can employ the paraxial
Helmholtz equation. The field U(r) is written as

U(r) = A(r)e−jkz (5.1)
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Figure 5.1: Gaussian beam profile.

with

∇2
TA(r)− 2jk

∂A(r)
∂z

= 0. (5.2)

We are looking for a solution of this equation so that the amplitude function U has a Gaussian
amplitude profile and a plane phase front at z = 0:

U (x, y, 0) = A (x, y, 0) = e
−
x2 + y2

w2
0 = e

−
ρ2

w2
0 , ρ2 = x2 + y2 (5.3)

w0 is half of the 1/e width of the Gaussian profile (thus the 1/e2 width of the intensity). In a three-
dimensional situation with a circular Gaussian beam 86% of the power propagates in a circle with
radius w0. For the solution at z 6= 0 we will notice that the function:

A(r) = e
−j

p(z)+k ρ2

2q(z)


(5.4)

satisfies the paraxial Helmholtz equation. This function keeps a Gaussian amplitude profile dur-
ing propagation. This is an important characteristic: a Gaussian beam is one of the few profiles
that maintains its function profile during propagation — except for a widening. Here p(z) can be
considered as a complex phase shift along the z-axis, while 1/q(z) corresponds to the phase curva-
ture (with respect to the real part of 1/q) and the amplitude profile (with respect to the imaginary
part) in the transversal plane. Substitution of (5.4) in (5.2) obtains:

2k
(
dp

dz
+
j

q

)
+
(
kρ

q

)2(
1− dq

dz

)
= 0. (5.5)

This has to hold for all x and z, so:
dq

dz
= 1 (5.6)

dp

dz
=
−j
q

(5.7)

At z = 0 the equations (5.4) and (5.3) have to be equal. This leads to the boundary conditions:

q(0) = j
kw2

0

2
(5.8)
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p(0) = 0 (5.9)

Integration of (5.6) gives:

q(z) = z +
jkw2

0

2
. (5.10)

We split 1/q(z) into its real and imaginary part:

1
q(z)

=
1

R(z)
− 2j
kw(z)2

(5.11)

Within the paraxial approximation R(z) represents the radius of curvature of the phase front (a
quadratic front is approximated by a spherical front close to the z-axis), while w(z) indicates the
half width of the Gaussian beam at each location z. Equalizing the real and imaginary parts in the
previous two expressions for q(z) leads to:

R(z) = z

(
1 +

b20
z2

)
(5.12)

w(z) = w0

√
1 +

z2

b20
(5.13)

with

b0 =
kw2

0

2
. (5.14)

After integration we get for p(z):

jp(z) = −ln
[
w0

w(z)

]
− j arctan z

b0
(5.15)

so the entire function U(r) finally becomes:

U(r) =
w0

w(z)
e
−

ρ2

w(z)2
e
−j

kρ2

2R(z) e
j arctan

z

b0 e−jkz (5.16)

Let us analyze the behavior of the radius of curvature R(z) and the half width w(z) in function
of z. At z = 0 the radius of curvature is infinite (corresponding to our boundary condition),
thus we have a kind of plane wave with finite width. For very large z we have R = z, so this
approximates a spherically expanding wave from the origin. In between R(z) reaches a minimum
(see figure 5.2):

R(z)min = 2b0 for z = b0. (5.17)

This means the center of the sphere is located at z = −b0. Notice also that for all z the radius of
curvature is larger than or equal to z. Thus, the center is always to the left of the origin at:

zcentrum = z −R(z) = −b
2
0

z
(5.18)

Concerning the half width w(z) we note that it always increases from the minimum w0 at the
origin. This minimum is called the ‘waist’ of the Gaussian beam.
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Figure 5.2: The Gaussian beam, radius of curvature and width.

Figure 5.2 shows the evolution of the radius of curvature and the width (one can consider this
figure as being the contour line of the 2D amplitude profile). The hyperboles have an asymptote
with an angle given by:

θ = ±arctanw0

b0
≈ ±w0

b0
= ± 2

kw0
= ± λ

πw0
(5.19)

This is probably the most elementary result concerning the diffraction of waves in free space. The
angle along which the wave spreads is inversely proportional to the width of this wave, scaled
with the wavelength. In a first approximation, we now see that the Gaussian beam consists of
two parts (figure 5.2). First, it will propagate over a distance b0 with a quasi constant diameter
(more precisely: the width increases with a factor

√
2). Subsequently, it will fan out spherically

with angle θ. The distance b0 is called the Rayleigh range (after Lord Raleigh), and the angle θ is the
beam divergence angle.

There is an alternative — and extremely elegant — way to derive the Gaussian beam expressions.
In chapter 4 we saw that the function

A(r) =
1
z
e
−jk

ρ2

2z (5.20)

represents the parabolic approximation of a spherical wave propagating from the origin. If we
substitute z by q(z) = z − z1,

A(r) =
1
q(z)

e
−jk

ρ2

2q(z) (5.21)

then this approximates a spherical wave departing from the point z = z1. However, if we assume
z1 to be imaginary, z1 = −jb0, then the solution 5.21 is also a correct solution of the paraxial
Helmholtz equation. This expression has a totally different character compared to the one with
real z1. Surprisingly, it corresponds to the Gaussian beam with b0 the Rayleigh range and

√
λb0/π

the width at z = 0.
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Figure 5.3: Gaussian beam incident on a lens.

Figure 5.4: Waist of a focused laser beam.

5.2 Gaussian beams in lens systems

We can use the Gaussian beam theory to analyze the behavior of lens systems for coherent fields.
It turns out we can use the paraxial matrix theory again (see chapter 3). If a Gaussian beam passes
through a thin spherical lens, one expects that only the phase curvature changes slightly, while
the beam remains Gaussian (figure 5.3). More generally one can prove that a Gaussian beam with
q-value q1 perpendicularly incident on a lens system with system matrix:

M =
[
A B
C D

]
(5.22)

obtains a q-value at the exit side of the lens given by:

q2 =
Aq1 +B

Cq1 +D
. (5.23)

We can use the previous to determine the spot size if we focus a Gaussian beam with an (ideal,
aberration free) lens (figure 5.4). win is the half width of the incident Gaussian beam. After prop-
agating through the lens the beam converges with (half) angle:

θ =
win
f
. (5.24)

From (5.19) we know that this angle is correlated with the half width wf in the focal plane accord-
ing to:

θ =
λ

πwf
, (5.25)

so that
wf =

λf

πwin
. (5.26)
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Thus it is possible to obtain a small spot only if the focal distance is small (strong refraction). When
the Gaussian beam has a width almost equal to the size of the lens, one can write alternatively:

θ = NA =
λ

πwf
, (5.27)

2wf =
2
π

λ

NA
. (5.28)

Here NA (= sinθ) is approximated paraxially as θ. We notice that in the best case (large NA and
ideal lens) a focused beam is never smaller than (approximately) the wavelength.

The previous leads to an expression for the depth of field (Rayleigh range) in the focal plane. It is
given by:

2bf = kw2
f . (5.29)

Thus, unfortunately a small spot correlates with a small depth of field. If a lens has aberrations,
the focusing properties will be worse than described here. The behavior given by formula (5.28) –
ideal incident beam and ideal lens – is called diffraction limited.

Data storage on a CD

An application of coherent laser light is the data-reading from a CD or CD-ROM (figure 5.5),
where the bit density is close to the diffraction limit. The information is stored as a series
of small pits about 150nm deep. Assuming one CD holds 750Megabytes, and has a surface
area of π(5.82 − 2.52) = 86 cm2 (diameter 11.6cm and an unused center hole of 5cm), we can
easily calculate the bit density. Because of error correction the stored data is about 2 times the
given data (17 physical bits to code 8 information bits). On a higher level there is another error
correcting code with a factor 1.5 bit increase (36 bits for 24 data bits). Therefore a CD fits

750MB× 36
24
× 17

8
= 1.9 1010bits. (5.30)

This makes the physical bit density

bit density =
1.9 1010bits

86 cm2
= 2.2

bits

µm2
. (5.31)

In practice a bit on a track has a length of 0.28µm, and the tracks are spaced by 1.6µm, which
indeed means 2.2 bits per µm2.

The theoretical maximal bit density is determined by the diffraction limit. The wavelength of
the laser diode is about 780nm. According to diffraction theory we are able to store 1 bit only
per λ2 surface area. Thus, the theoretical bit density is 1

λ2 (≈ 2.1 bit
µm2 ). We notice that the bit

density slightly exceeds the theoretical limit. This is possible because coding ensures that the
minimal size of a pit on a CD is at least 3 bits.

Watching the stars

In this section we saw that a Gaussian beam can be focused to a spot with a waist width that
is determined by the ratio of the wavelength λ of the beam and the numerical aperture of
the lens system. Instead of focusing a Gaussian beam, one can also consider the case where
a point source is imaged by a lens system. In this case, a spherical wave originates from the
point source. Due to the finite transversal dimensions of the lens system only a fraction of the
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Figure 5.5: Focus spot of a CD-reader.

spherical wavefront is converted into a converging wavefront. Due to the finite dimensions of
this converging wavefront, this can be in first order also be approximated by a gaussian beam,
showing that a point source cannot be perfectly imaged onto a point, but instead onto a spot
with lateral dimensions determined by the ratio of the wavelength and numerical aperture.
Due to the fact that this spot has finite transverse dimensions, two point sources that are too
close to each other in the object plane, will be indistinguishable in the image plane. Thereby the
resolution of the imaging system is limited. In the case where the source has a broad spectrum,
the longest wavelengths of the spectrum (and the numerical aperture of the lens system) will
determine how well two point sources can be resolved.

A telescope (figure 5.6) is a fine example of gaussian beams in a lens system. In its simplest
form, a telescope consists of two lenses: an objective and an eyepiece, with an intermediate
real image between both (in the focal plane of both the objective and of the eyepiece).A star
acts like a point source at infinity and will focus in that image plane with a spot size which
can be approximated by the Gaussian formulas and hence is given by (5.28). Therefore two
neighbouring stars can only be resolved if their image spots do not overlap too much. If we
take as a criterion that the 1/e circles of the two spots should not overlap we find as a criterion
for the minimum distance dmin between the spot centres:

dmin = 2wf = 2
λ

πNA
= 0.64

λ

NA
(5.32)

This minimum distance can be readily translated into a minimum angular separation of the
two stars, leading to:

∆α ≈ 0.64
λ/NA

f1
≈ 1.28

λ

D
(5.33)

Hence we can see that the angular resolution of the telescope is determined by the diameter
of the objective lens, and only by this diameter (if we assume that the lenses are free of aber-
rations). This explains why space telescopes are made as big as possible. A second reason for
this is of course that a larger telescope objective collects a larger amount of light, and therefore
one can see weaker stars.

5.3 Hermite-Gaussian beams

The Gaussian beam is not the only solution to equation (5.2) that keeps its form during propa-
gation. It can be proven that there are higher order solutions with this property. They have the
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Figure 5.6: Principle of a simple telescope.

form:

Ψlm(x, y, z) =
w0

w(z)
Hl

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)
e
− ρ2

w2(z) e−jkze
j(l+m+1)arctan z

b0 e
−j kρ2

2R(z) (5.34)

with Hl(s) and Hm(s) the Hermite polynomials:

H0(s) = 1
H1(s) = 2s

H2(s) = 4s2 − 2

H3(s) = 8s3 − 12s
· · ·

Hl+1(s) = 2sHl(s)− 2lHl−1(s)

These solutions are called Hermite-Gaussian beams. The 0th order mode (l = 0,m = 0) is the
Gaussian beam. The optical intensity of the (l,m) Hermite-Gaussian beams is

Il,m(x, y, z) =
[
w0

w(z)

]2

Hl

(√
2x

w(z)

)2

Hm

(√
2y

w(z)

)2

e
−2(x2+y2)

w2(z) (5.35)

Figure 5.7 shows some of these modes. These show that the diameter of the beams increases for
higher order solutions.

5.4 M 2 factor

Until now, we studied particular solutions of the paraxial Helmholtz equation, solutions that kept
their form during propagation. There are of course an infinite number of beam solutions: one can
use any function as a starting field.

For all these beams one will obtain that a beam with a finite size fans out because of diffraction.
The Gaussian beam has the special property that for a given waist, it spreads out with the minimal
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Figure 5.7: The intensity distribution in the transversal plane of some Hermite-Gaussian beams.

angle, given by equation 5.19. All other solutions (for the given waist) will diffract with a larger
angle.

In this regard the M2-factor is defined. This number expresses the speed of spreading of a certain
beam, compared with a Gaussian beam with the same width. Thus the definition is:

M2 = πθ
w0

λ
, (5.36)

with θ the (half) divergence angle of the beam. For a Gaussian beam M2 equals one, and that is
the smallest possible value. M2 is often used as a quality norm for laser beams.
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Chapter 6

Electromagnetic Optics
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6.1 Introduction

Light is an electromagnetic wave phenomenon that is described by the same theoretical principles
used for all electromagnetic radiation. Light or optical radiation (or optical frequencies) are all
frequencies between infrared, visible and ultraviolet light, so all wavelengths (roughly) between
10nm and 1mm. Propagation of electromagnetic radiation is expressed by two coupled symmet-
rical partial differential equations, coupling the electric field vector with the magnetic field vector.
These equations were originally formulated by James Clark Maxwell in 1864. Maxwell’s theory
was not only a breakthrough in physics because it was the first example of unification (magnetism
and electricity, at first sight separate phenomena, appeared to be fundamentally linked), but also
because it led Einstein directly to his theory of relativity. From Maxwell’s laws it follows that the
speed of light is always 299792458 m/s. However, according to classical physics velocities can be
added, so a light ray emitted by a fast object would have a speed larger than 299792458 m/s. This
paradox made Einstein think, resulting in his famous theory of relativity.

The scalar wave optics theory discussed in chapter 4 is an approximation of Maxwell’s equations,
because light is described by one single scalar wave equation. This single scalar equation is suf-
ficient for the paraxial approximation with certain conditions (explained later). By performing
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another approximation, the short wavelength limit, we already arrived at geometrical optics, see
chapter 3.

In this chapter we present a short overview of the important aspects of electromagnetic theory for
optics. We start from Maxwell’s equations and discuss some elementary waves. Then we describe
properties of dielectric media. These two sections form the postulates of electromagnetic optics: a
set of rules for the next sections. Furthermore we discuss polarization, absorption and dispersion,
and the laws of reflection and refraction. To conclude a few layered structures are examined.

6.2 Maxwell’s electromagnetic wave equations

The electric and magnetic field vectors E(r, t) (unit: V/m) and H(r, t) (unit: A/m) in a medium
without free charges or currents, satisfy the following coupled partial differential equations which
are function of space r and time t: Maxwell’s equations.

∇×H =
∂D
∂t

∇×E = −∂B
∂t

∇ ·D = 0
∇ ·B = 0 (6.1)

The vector fields D(r, t) (unit: C/m2) and B(r, t) (unit: Wb/m2) are the electric flux density (also
called electric displacement vector or electrical induction) and the magnetic flux density (also
called magnetic induction), respectively. The relation between D and E depends on the electrical
properties of the medium. Analogously, the relation between B and H depends on the magnetic
properties. They form the constitutive relations:

D = ε0E + P

B = µ0H + µ0M (6.2)

The constants µo = 4π10−7H/m and ε0 = 1
c2µ0

F/m are the permeability and the permittivity of the
vacuum, respectively. P (unit: C/m2) is the polarization density, and M (unit: A/m) is the mag-
netization density. In a dielectric medium the polarization density P is equal to the macroscopic
sum of the electric dipole moments induced by the electric field. An analogous definition can be
given for M. Further on we will see that the fields P and M are related to E and H, respectively,
by relations dependent on the electrical and magnetic properties of the material.

In free space (= non-electrical and non-magnetic) we have: P = M = 0, so D = ε0E and B = µ0H.
Notice that in this case the Maxwell equations are reduced and decoupled to the scalar wave
equation for all three vector components, because the permittivity or refractive index is constant.

6.2.1 Poynting vector and energy density

The current of electromagnetic energy (unit: W/m2) is given by the vector:

P = E×H (6.3)
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known as the Poynting vector. The power follows the direction of this vector, that is perpendicular
to both E and H. The optical intensity1 I , which is the power per surface area perpendicular to P,
is equal to the magnitude of the Poynting vector, averaged over a certain time, see section 4.1.2.

The energy density (unit: J/m3) associated with an electromagnetic wave is given by

U = (E ·D + H ·B)/2 (6.4)

The first and second term represent the energy carried by the electric field and the magnetic field
respectively.

6.3 Dielectric media

It is convenient to view the medium equation (eq. 6.2) between E and P as a system where the
medium responds to an applied electric field E (input) and creates a polarization density P as
output or response. We give a few definitions relating to dielectric media. A dielectric is:

• Linear: If P(r, t) is linearly related to E(r, t). Then the superposition principle applies.

• Homogeneous: If the relation between P(r, t) and E(r, t) is independent of position r.

• Isotropic: If the relation between P(r, t) and E(r, t) is independent of the direction of E(r, t),
so the medium looks the same from all directions. Then, the vectors E(r, t) and P(r, t) have
to be parallel.

• Non-dispersive: If the material response is instantaneous, so that P(r, t) at a time t is deter-
mined by E(r, t) at the same time t, and not by values of E(r, t) at previous times. It is clear
that this is an idealization, because an instantaneous response is physically impossible.

• Spatially non-dispersive: If the relation between P(r, t) and E(r, t) is local; if P(r, t) at
location r is only influenced by E(r, t) at the same position r. In this chapter we assume that
all media are spatially non-dispersive.

6.3.1 Homogeneous, linear, non-dispersive and isotropic media

In this chapter we will use non-magnetic materials (M = 0) without free electrical charges or
currents. In addition, if the medium is linear, non-dispersive, homogeneous and isotropic we get:

P = ε0χE. (6.5)

Here the scalar constant χ is the electric susceptibility. It follows that P and E are parallel at each
position and time, just like D and E:

D = εE (6.6)
1The use of the term ‘Intensity’ is a mess in optics. The term is used on the one hand for optical power density

(W/m2), but also for electric field energy density (J/m3). To make matters worse the term is widely used in radiometry
and photometry to denote radiant intensity (W/str) or luminous intensity (Candela). In all cases it has ‘something’ to
do with power or energy.
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with
ε = ε0(1 + χ) (6.7)

The scalar constant ε is the electrical permittivity of the medium. With the previous conditions the
Maxwell equations reduce to:

∇×H = ε
∂E
∂t

∇×E = −µ0
∂H
∂t

∇ ·E = 0
∇ ·H = 0 (6.8)

Note that the equations are reduced and decoupled to the scalar wave equation for each of the
three components of E and H:

∇2u− 1
v2

∂2u

∂t2
= 0 with v2 =

1
εµ0

(6.9)

The components of the electric and magnetic field propagate in the medium with velocity v, ac-
cording to:

v =
c

n
(6.10)

n =
√

ε

ε0
=
√

(1 + χ) (6.11)

with c the speed of light in free space. The constant n is equal to the ratio of the speed of light in
free space to the speed in the medium. It is called the refractive index of the material.

Boundary conditions at an interface The boundary conditions at an interface between two lin-
ear, isotropic, homogeneous and non-magnetic media with dielectric constants ε1 and ε2, are im-
portant. We get:

n× (E1 −E2) = 0 (6.12)
n× (H1 −H2) = 0 (6.13)

n · (ε1E1 − ε2E2) = 0 (6.14)
n · (B1 −B2) = 0 (6.15)

The tangential components of the electric and magnetic field, and the normal component of the
magnetic field, are continuous. The normal component of the electric field makes a discontinuous
jump.

6.3.2 Inhomogeneous, linear, non-dispersive and isotropic media

In a non-homogeneous medium the electrical susceptibility, the dielectric constant and thus re-
fractive index are a function of the position r. An example of a non-homogeneous medium is a
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graded index medium. One can prove (by using ∇× on the Maxwell equations) that the scalar
wave equation of eq. (6.9) obtains an extra term:

∇2E− 1
c2 (r)

∂2E
∂t2

+∇
(

1
ε (r)
∇ε (r) .E

)
= 0 (6.16)

Notice that the location dependent refractive index results in a location dependent speed of the
wave in the medium.

For locally homogeneous media, so ε(r) varies slowly in space, the third term on the left side can
be neglected.

6.3.3 Dispersive media

In dispersive media E will create P by inducing oscillations of bound electrons in atoms of the
medium, so they can collectively and with a certain retardation build up a polarization density.

Because we assume a linear medium, an arbitrary electric field will induce a polarization density
P (t)composed of the superposition of all E(t′) with t′ < t, or:

P (t) = ε0

+∞∫
−∞

χ
(
t− t′

)
E
(
t′
)
dt′ (6.17)

which is a convolution integral, with ε0χ(t) the polarization density response to an impulse of
electric field.

6.4 Elementary electromagnetic waves

6.4.1 Monochromatic electromagnetic waves

A monochromatic plane wave is a wave where all components of the electric and magnetic field
are harmonic functions in time with the same frequency. To simplify notations these components
are presented with their complex amplitudes, as in section 4.2

E(r, t) = Re
{
E(r)ejωt

}
(6.18)

H(r, t) = Re
{
H(r)ejωt

}
(6.19)

Here E(r) and H(r) are the complex amplitudes of the electric and magnetic field. In the same
way the complex amplitudes of P(r, t), D(r, t) and B(r, t) are denoted as: P(r), D(r) and B(r).
Maxwell’s equations (for linear, non-dispersive, homogeneous and isotropic media) for monochro-
matic waves are derived by substitution of the complex amplitudes in (6.8). If we also perform the
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substitution: ∂/∂t = jω we obtain:

∇×H = jωεE (6.20)
∇×E = −jωµ0H (6.21)
∇ ·E = 0 (6.22)
∇ ·H = 0 (6.23)
P (r) = ε0χ(r, ω)E(r) (6.24)

ε(r, ω) = ε0(1 + χ(r, ω)) (6.25)

n(r, ω) =
√

(
ε(r, ω)
ε0

) (6.26)

(6.27)

Complex Poynting vector

We already know that the electromagnetic power flux is equal to the time averaged Poynting
vector. With complex amplitudes we get:

P = Re
{
Eejωt

}
× Re

{
Hejωt

}
=

1
2

(Eejωt + E∗e−jωt)× 1
2

(Hejωt + H∗e−jωt)

=
1
4

(E×H∗ + E∗ ×H + E×He2jωt + E∗ ×H∗e−2jωt) (6.28)

By averaging over time the exponential terms will disappear and we obtain:

〈P〉 =
1
4

(E×H∗ + E∗ ×H) =
1
2

(S + S∗) = Re {S} (6.29)

with

S =
1
2

(E×H∗) (6.30)

The vector S is called the complex Poynting vector. The optical intensity is equal to the magnitude
of the vector Re {S}.

6.4.2 Transversal electromagnetic plane wave (TEM)

We consider a monochromatic plane wave in a medium (without sources) that is linear, non-
dispersive, homogeneous and isotropic. For the electric and magnetic components with wave
vector k we have the complex amplitudes:

E(r) = E0 e
−jk.r (6.31)

H(r) = H0 e
−jk.r (6.32)

Here E0 and H0 are constant vectors. Each of these components satisfies the Helmholtz equation,
where k is equal to k = nk0, with n the refractive index of the medium. By substituting the
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Figure 6.1: TEM plane wave. The vectors E, H and k are perpendicular. The wavefronts are normal to k.

previous amplitudes in the first two Maxwell equations (6.20) and (6.21) in the frequency domain,
we get:

k×H0 = −ωεE0 (6.33)
k×E0 = ωµ0H0 (6.34)

This means E is perpendicular to both k and H. In addition H is perpendicular to k and E,
see figure 6.1. Such a wave is called a transversal electromagnetic (TEM) wave. For the above
equations to be consistent one needs:

ωε/k = k/ωµ0 (6.35)

or
k = ω

√
εµ0 = ω/v = nω/c = nk0. (6.36)

This is the condition for the wave to satisfy the Helmholtz equation. The ratio of the amplitudes
gives:

E0

H0
= Z =

Z0

n
=
ωµ0

k
with Z0 =

√
µ0

ε0
≈ 377Ω, (6.37)

with Z the impedance of the medium and Z0 the impedance of free space.

6.4.3 Spherical wave

An example of an electromagnetic spherical wave is the field radiated by an electrical dipole. Such
a spherical wave can be constructed by use of an auxiliary field A:

A(r) = A0U(r)ex (6.38)

with U(r) a scalar spherical wave with origin r = 0:

U(r) =
1
r
e−jkr (6.39)

where ex is the unit vector along the x-direction and also represents the direction of the dipole. We
know that U(r) satisfies the Helmholtz equation (see chapter 4), so A(r) is also a solution of the
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Helmholtz equation, and it is called the electromagnetic vector potential. It can be proven that:

H =
1
µ0
∇×A (6.40)

E =
1
jωε
∇×H (6.41)

All these fields are proportional to U(r).

6.5 Polarization of electromagnetic waves

The concept ‘polarization’ relates to the fact that the orientation of the electric field vector E(r, t)
of an electromagnetic wave changes in time if we look at the vector at a certain location in space.
The state of polarization is completely known if we know how the orientation of the electric field
vector changes in time.

The polarization of light has important consequences for the interaction of light with matter:

• The amount of reflected light at an interface depends on the polarization of the incident
wave.

• The amount of absorption for some materials is polarization dependent.

• The refractive index of anisotropic materials depends on polarization. Waves with different
polarization propagate with different speeds, thus they experience different phase changes
so the polarization ellipse (see further) will transform.

Consider a monochromatic plane wave with frequency ν propagating in the z-direction with
speed c. The electric field is in the xy-plane and is described in general by:

E(z, t) = Re
{

Aej2πν(t− z
c

)
}

(6.42)

with the complex vector
A = Axex +Ayey (6.43)

with complex components Ax and Ay. To find the polarization of the wave we have to follow the
end points of the vector E(z, t) at every position z and at every time t.

6.5.1 Elliptical polarization

Starting from the real representation of a monochromatic wave at a certain location in space we
can see that the most general movement of the electric field vector in time is an ellipse. We call
this an elliptical polarization state.

We write Ax and Ay with their magnitude and phase Ax = axe
jφx , Ay = aye

jφy . We substitute this
into eq. 6.42 and obtain:

E(z, t) = Exex + Eyey (6.44)
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Figure 6.2: Elliptically polarized light. (a) Rotation of the end point of the electrical field vector in the
xy-plane at a fixed location in space. (b) Trajectory in space at a fixed time t.

with

Ex = ax cos
[
2πν

(
t− z

c

)
+ φx

]
Ey = ay cos

[
2πν

(
t− z

c

)
+ φy

]
(6.45)

The components Ex and Ey are periodic functions of (t − z/c) and oscillate with frequency ν.
These equations are the parameter equations of an ellipse. Indeed, by eliminating t we get:

E2
x

a2
x

+
E2
y

a2
y

− 2 cosφ
ExEy
axay

= sin2 φ (6.46)

Here φ = φy − φx is the phase difference. At a fixed location z in space the end point of the
electric field vector will rotate periodically in the xy-plane describing an elliptical trajectory, see
figure 6.2a. At a fixed time t the location of the end point will follow a helical trajectory in space,
see figure 6.2b. However when we travel along with the field at the speed of light ( t − z

c =
constant), we will always see the same field orientation.

The complete state of polarization is known if we know the plane of the ellipse, the direction and
magnitude of the main axes, the direction of revolution and the starting phase (thus the orientation
of the electric field at time t = 0).

6.5.2 Linear polarization

If for elliptical polarization one of the components is dropped, e.g. ax = 0, then the light is linearly
polarized in the direction of the other component (e.g. y-direction). Light is also linearly polarized
if the phase difference φ = 0 or π, because then we obtain from eq. 6.46: Ey = ±(ay/ax)Ex. This is
the equation of a line with slope ±ay/ax. These cases at a fixed position z and at a fixed time t are
shown in figure 6.3.
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Figure 6.3: Linearly polarized light. (a) Time evolution at a fixed point in space. (b) Space evolution at a
fixed time t.

6.5.3 Circular polarization

If φ = ±π/2 and ax = ay = a0, then we obtain from eq. 6.46: E2
x + E2

y = a2
0, which represents a

circle. The elliptical cylinder of figure 6.2 will now be a circular cylinder and the wave is circularly
polarized. If φ = +π/2, the field at a fixed position z rotates clockwise, viewed from the direction
the wave is propagating to. This is called right-hand circular polarization. The case φ = −π/2
corresponds to a left-hand circularly polarized wave.

Unfortunately right- and left-handed polarization is not univocally defined in literature. In op-
tics and physics the definition is used that right-handed corresponds to a clockwise movement
when one looks into the bundle, while in the world of radiowaves and microwaves the reversed
definition is used.

6.5.4 Superposition of polarizations

It is clear that the E-vector of an elliptical wave can be considered as the superposition of 2 linearly
polarized waves. Because of linearity of Maxwell’s equations, this means that the analysis of an
optical system w.r.t. all possible polarizations can be limited to the behavior for 2 orthogonal linear
polarizations.

6.5.5 Interference of electromagnetic waves

As was explained in the chapter on scalar waves, the superposition of two (or more) waves leads
to interference effects in the intensity of those waves. At optical frequencies this means that an
optical detector can ‘see’ fluctuations in the detected intensity: in certain locations in space there
may be destructive interference and no signal is picked up by the detector, whereas in others there
is constructive interference and therefore a strong signal is picked up. For most optical detectors
(and also for the human eye) the relevant intensity is the energy density of the electric field, as
given by (E ·E)/2. If two fields E1 and E2 are present, the total energy density is given by

(E ·E)/2 = (E1 + E2) · (E1 + E2)/2 = |E1|2/2 + |E2|2/2 + E1 ·E2 (6.47)
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Figure 6.4: The problem of an electromagnetic wave (a) incident on an interface can be separated into a
TE-problem (b) and a TM-problem (c). Both are decoupled.

From this expression it is clear that interference fringes will only be detectable if the constituting
fields are not orthogonal. More in particular orthogonal polarizations will never interfere!

6.6 Reflection and refraction

In this section we examine reflection and refraction of a monochromatic plane wave with arbitrary
polarization, incident on a plane interface between two dielectrics. We assume that these media
are linear, homogeneous, isotropic, non-dispersive and non-magnetic. Figure 6.4 and 6.5 present
an overview of the problem: we have two media with indices n and n′, an incident wave, a re-
flected wave and a refracted wave. Already in chapter 4 we showed that the wave fronts of the
incident and the reflected wave agree at the interface only if θ = θ′′. Snell’s law was also obtained:
nsinθ = n′sinθ′.

Now we want to get the reflection and transmission coefficient for the reflected and refracted
wave. Therefore we demand that the fields satisfy the boundary conditions at the interface. Pre-
viously we observed that the tangential components of E and H, and the normal components of
D and B, have to be continuous at the boundary. Furthermore, we noted that the ratio of the am-
plitude of the magnetic field to the perpendicular electric field is equal to E/H = Z0/n, with Z0

the free space impedance (Z0 =
√
µ0/ε0), and with n the refractive index of the medium in which

the wave is propagating.

When solving Maxwell’s equations at the interface, the problem reduces to a two-dimensional
one, because the fields at an interface are y-invariant, see figure 6.4. One can prove (substitution of
two-dimensional fields in Maxwell’s equations) that the general solution of the equations for two-
dimensional phenomena are separated into two partial problems: we get two decoupled sets of
differential equations. One gives the solution for the components: Ey(x, z), Hx(x, z) and Hz(x, z).
These are called TE or transversal electric solutions (sometimes also called s-polarization), because
the single component of the electric field is transversal (=perpendicular) to the plane of incidence
(being the plane containing the direction of incidence, and which is normal to the interface). The
other differential equation set determines: Hy(x, z), Ex(x, z) and Ez(x, z), which are analogously
called TM or transversal magnetic solutions (or sometimes p-polarization).
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From the previous data it is possible to calculate the reflection and transmission coefficients for
both TE and TM polarizations (do this yourself!). The results are:

rTE =
E′′TE
ETE

=
n cos θ − n′ cos θ′

n cos θ + n′ cos θ′
(6.48)

tTE =
E′TE
ETE

= 1 + rTE =
2n cos θ

n cos θ + n′ cos θ′
(6.49)

rTM =
E′′TM
ETM

=
n′ cos θ − n cos θ′

n′ cos θ + n cos θ′
(6.50)

tTM =
E′TM
ETM

=
n

n′
(1 + rTM ) =

2n cos θ
n′ cos θ + n cos θ′

(6.51)

These coefficients are known as the Fresnel coefficients for TE and TM polarization. Note that
according to Snell’s law:

cos θ′ =
√

1− sin2 θ′ =

√
1−

( n
n′

)2
sin2 θ (6.52)

Thus, it is possible that the reflection and transmission coefficient are complex, because the ex-
pression under the root in the previous equation can be negative. The magnitudes of |rTE | and
|rTM |, as well as the phase shifts φTE = arg(rTE) and φTM = arg(rTM ) are shown in figure 6.5
in function of the incidence angle θ. For each polarization we distinguish external (n′ > n) and
internal (n > n′) reflections.

For perpendicular incidence, there is no difference between the TE and TM case. Equation (6.48)
differs however from equation (6.50) in this case (sign difference). This is caused by the different
definition of the direction of the unit vectors for the E-field, in the TE and TM case. Figure 6.5
depicts the definition of the unit vectors for the E and H-field for the incident, reflected and
refracted wave.

It is interesting to note the connection between the reflection r and transmission t (from the
medium with index n and angle θ), and the reflection r′ and transmission t′ upon incidence from
the other side (in medium n′ and with angle θ′). By inspecting the Fresnel coefficients one obtains
for both TE and TM polarization:

r = −r′, (6.53)

tt′ − rr′ = tt′ + r2 = 1, (6.54)

so
tt′ = 1− r2 = 1− r′2. (6.55)

6.6.1 TE polarization

External reflection (n′ > n). The reflection coefficient rTE is always real and negative, which
corresponds to a phase shift φTE = π. The magnitude |rTE | for perpendicular incidence (θ = 0) is
equal to n′−n

n+n′ . For θ = 90◦, |rTE | = 1.

Internal reflection (n′ < n). For small θ the reflection coefficient rTE is real and positive. The
magnitude |rTE | for perpendicular incidence (θ = 0) is n−n′

n+n′ . At a certain angle θ we get that
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Figure 6.5: Magnitude and phase of the reflection coefficient in function of incidence angle for (a) exter-
nal reflection (n′/n = 1.5) and TE polarization, (b) external reflection (n′/n = 1.5) and TM polarization,
(c) internal reflection (n/n′ = 1.5) and TE polarization and (d) internal reflection (n/n′ = 1.5) and TM
polarization.

|rTE | = 1. This angle is called the critical angle:

θCRIT = sin−1

(
n′

n

)
. (6.56)

For θ > θCRIT one has |rTE | = 1, which corresponds to total internal reflection (TIR) at the in-
terface. Under conditions of TIR the electromagnetic field in the external medium is not zero but
decays exponentially away from the interface. We call this decaying field tail an evanescent field.
At the critical angle the tail extends infinitely into the external medium whereas at θ = 90◦ the tail
becomes very short.

Exercise: Derive an expression for the decay constant of the tail in the TIR regime as a function
of angle of incidence.

6.6.2 TM polarization

External reflection (n′ > n). The reflection coefficient rTM is real. The magnitude |rTM | for per-
pendicular incidence (θ = 0) is equal to n′−n

n+n′ and decreases for increasing θ, until |rTM | = 0. This
angle is called the Brewster angle, θB :

θB = tan−1

(
n′

n

)
. (6.57)
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Figure 6.6: Reflectance for TE and TM polarization at an interface between air and GaAs (n′ = 3.6).

For θ > θB rTM will change sign and its magnitude increases gradually until it reaches 1 at θ =
90◦. The fact that a TM-wave is not reflected at the Brewster angle is used for the fabrication of
polarizers (devices that block a certain polarization and transmit another).

Internal reflection Analogous discussion.

6.6.3 Power reflection and transmission

The reflection and transmission coefficients r and t are ratios of complex field amplitudes. The
power reflection (or reflectance) R and power transmission (or transmittance) T is defined as the
ratio of optical flux densities (along a direction perpendicular to the surface) of reflected and trans-
mitted wave, relative to the incident wave. Because the incident and reflected wave propagate in
the same medium, and their angles with the interface are the same, we obtain:

R = |r|2. (6.58)

Power conservation dictates: T = 1−R. Note that T = n′ cos θ′

n cos θ |t|
2, which is not equal to |t|2, as the

power propagates along a different angle.

An important case is that of perpendicular incidence on an interface. The reflectance, resp. trans-
mittance, is the same for TE and TM, both for internal and external reflection, and is equal to:

R =
(
n− n′

n+ n′

)2

T =
4nn′

(n+ n′)2

Example: the reflectance and transmittance at the interface between glass (n′ = 1.5) and air is
4% for perpendicular incidence. Figure 6.6 shows the reflectance for TE and TM between air and
GaAs (n′ = 3.6) in function of the incidence angle θ.
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6.7 Absorption and dispersion

6.7.1 Absorption

Up until now we assumed that the dielectric media were completely transparent, there was no
absorption of light by the material. For example, glass is very transparent in the visible part of the
spectrum, but it strongly absorbs infrared and ultraviolet light. Dielectrics that absorb light are
often described by a complex susceptibility:

χ = χR + jχI (6.59)

Correspondingly, there is a complex permittivity ε = ε0(1 + χ) and a complex wave number
k = k0

√
1 + χ.

Now assume a plane wave propagating in the z-direction in a certain medium, then its complex
amplitude is equal to: Ae−jkz . This is analogous to the description of the evanescent plane wave
in section 4.2.2. Because k is complex both the phase and the amplitude of the wave will vary
along z. We write k with its real and imaginary part:

k = k0

√
1 + χR + jχI = k0(nR + jnI) = β − j

2
α (6.60)

Thus e−jkz = e−
1
2
αze−jβz , the intensity of the plane wave is attenuated (exponentially) by the co-

efficient α: attenuation coefficient, absorption coefficient or extinction coefficient. α is expressed
in 1/m. We can say that the power of the light decreases exponentially with propagation distance:
P (z) = P0e

−αz

Note about dB’s

The ratio between optical power after a certain propagation (Po) and initial optical power (Pi)
is mostly expressed in dB:

10 log
Po
Pi

(6.61)

In a medium with absorption this results in

10 log
Po
Pi

= 10 log e−αz = (10 log e)(−αz). (6.62)

The attenuation coefficient expressed in dB/m is

α(dB/m) = (10 log e)α(1/m) = 4.34α(1/m) (6.63)

The following table presents some important conversions between dB’s and power ratios.

0dB = 1
+1dB ≈ +25% −1dB ≈ −20%
+3dB ≈ +100% of 2× −3dB ≈ −50% or ÷ 2
+6dB ≈ 4× −6dB ≈ ÷4

+10dB ≈ 10× −10dB ≈ ÷10
+20dB ≈ 100× −20dB ≈ ÷100
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In the chapter about lasers we will see that α can be negative, which means that the medium
amplifies the propagating light, instead of absorption!

The parameter β corresponds to the rate by which the phase changes with z and it is called the
propagation constant. The plane wave propagates with phase velocity vp = c/n = ω/(k0n).

6.7.2 Dispersion

Dispersive media are characterized by a frequency dependent (and wavelength dependent) sus-
ceptibility χ(ν), refractive index n(ν) and speed of light v(ν) = c/n(ν). Optical components such
as prisms and lenses fabricated from dispersive media will refract waves of different wavelengths
into different angles, which leads to chromatic abberation (see section 3.5.1).

Because the speed of light depends on the frequency in a dispersive medium, each frequency
component constituting the wave will experience a different time retardation upon propagation
through the dispersive material. Because of this a short pulse in time will spread out in time. This
effect becomes important upon propagation through kilometers of optical fibers.

The quantity dn
dλ is called the material dispersion. We noted previously that a monochromatic wave

propagating with propagation constant β has a phase velocity equal to vp = ω/β. However, a
perturbation of the wave, for example by amplitude modulation, travels with another velocity
that is called the group velocity: vg = dω

dβ . Correspondingly one defines the group index as N =
c/vg = neff − λdndλ . For most optical materials the refractive index decreases as the wavelength
increases. Then the group index is larger than the effective index, so the group velocity will be
smaller than the phase velocity. To better understand the concept of group velocity it is instructive
to consider two optical signals with slightly different frequencies, and thus with slightly different
phase velocities (because of material dispersion). The total field shows a beating pattern for the
intensity. This pattern will propagate with a different speed than the two phase velocities.

6.8 Layered structures

6.8.1 Three-layer structure

If a wave is incident on a layered medium - a structure with a number of parallel layers and
interfaces - there are interference effects that are a consequence of the multiple reflections in these
structures. The global reflection and transmission of the structure is dependent on the incidence
angle, the wavelength and the polarization of the incident wave.

The general case of a plane wave incident on a layered medium with N interfaces is treated ele-
gantly by the transfer matrix method. However, this method is beyond the scope of this course.
Here we discuss the simpler case of the three-layer structure (this means one layer in between
two semi-infinite media), as depicted in figure 6.7(a). Such a structure with two parallel semi-
transparent mirrors is a cavity where resonances can exist. It is called a Fabry-Perot etalon. The
discussion is limited to lossless structures, thus with a real refractive index.

As in the case of a single interface, we consider one monochromatic plane wave incident on the
layer structure from a given direction. We assume linear polarization - s-type or p-type - for
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Figure 6.7: (a) Reflection and transmission at a plate. (b) The s-wave and the p-wave.

the E-field, as shown in figure 6.7(b). Any incident field may be considered as a superposition
of such monochromatic linearly polarized plane waves. The following analysis is valid for both
s- and p-polarization. The difference between both situations is contained in the reflection and
transmission coefficients for the interfaces.

One can calculate the global reflection and transmission in two different ways. The first method
closely resembles the physical process, whereas the second method is mathematically more el-
egant. In the first approach the ‘consecutive’ reflections at both interfaces are determined, and
the global reflection and transmission are written as infinite sum series of these contributions. In
the second approach one realizes that every layer contains one forward and one backward plane
wave. By matching the boundary conditions at the interfaces one obtains a linear system that is
easily solvable. Both methods are presented here, and they deliver the same result, of course. For
layered media with more than three layers it is possible to work with both methods, in principle.
However, the first ‘sequential’ method quickly becomes cumbersome, while the second method
remains elegant. For this approach, the system to be solved scales linearly with the number of
layers.

For the first method we consider figure 6.8(a): the plane wave impinges on the first interface, a part
reflects and a part transfers to the second medium. The transmitted part hits the second interface,
with again a partial reflection and transmission. The reflected part goes to the first interface, part
of it goes to medium 1, the other part reflects back etc. etc. All contributions to this sequential
story are indicated as arrows on the figure. However, it has to be clear that each arrow represents
a plane wave that is present in the entire vertical layer. We write the linearly polarized E-field of
the incident field as:

EF,1(x, z) = Ae−j(kz,1z+kx,1x), (6.64)
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Figure 6.8: Two methods: (a) Sum series of contributions. (b) Global forward and backward plane waves.

with
kz,i = k0nicosθi, (6.65)

kx,i = k0nisinθi. (6.66)

The index F indicates ‘forward’, thus propagating in the positive z-direction. The total field in
layer 2 is then easily written as the series:

EF,2(x, z) = At12e
−j(kz,2z+kx,2x)

[
1 + r23r21e

−j2kz,2d +
(
r23r21e

−j2kz,2d
)2

+ . . .

]
(6.67)

=
At12

1− r23r21e−j2kz,2d
e−j(kz,2z+kx,2x). (6.68)

Here rij (tij) is the field reflection (transmission) coefficient for incidence from medium i on the
interface with medium j. For the directions of the waves in the three layers one uses Snell’s law:

kx,1 = kx,2 = kx,3. (6.69)

Analogously, one obtains for the backward field in layer 2:

EB,2(x, z) = At12r23e
−jkz,2de−j(kz,2(d−z)+kx,2x)

[
1 + r23r21e

−j2kz,2d +
(
r23r21e

−j2kz,2d
)2

+ . . .

]
=

At12r23e
−j2kz,2d

1− r23r21e−j2kz,2d
e−j(−kz,2z+kx,2x). (6.70)

Based on the expressions for EF,2 and EB,2 it is easy to write the total reflected field EB,1 and the
total transmitted field EF,3:

EF,3(x, z) = t23EF,2(x, d)e−jkz,3(z−d) (6.71)

=
At12t23e

−j(kz,2−kz,3)d

1− r23r21e−j2kz,2d
e−j(kz,3z+kx,3x), (6.72)

and

EB,1(x, z) = r12EF,1(x, 0)e+jkz,1z + t21EB,2(x, 0)e+jkz,1z (6.73)

= A

[
r12 +

t12t21r23e
−j2kz,2d

1− r23r21e−j2kz,2d

]
e−j(−kz,1z+kx,1x). (6.74)
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The second method starts from the insight that, upon incidence of a single plane wave, all contri-
butions to the forward field in every layer have the same direction, and thus they form one plane
wave. The same holds for the backward field in each layer. The situation is shown in figure 6.8(b).
In each layer the total forward or backward field is represented by a single plane wave, that we
can write as:

EF,1(x, z) = Ae−j(kz,1z+kx,1x), (6.75)

EB,1(x, z) = AB,1e
−j(−kz,1z+kx,1x), (6.76)

EF,2(x, z) = AF,2e
−j(kz,2z+kx,2x), (6.77)

EB,2(x, z) = AB,2e
−j(−kz,2z+kx,2x), (6.78)

EF,3(x, z) = AF,3e
−j(kz,3z+kx,3x). (6.79)

Determining the 4 complex coefficients AB,1, AF,2, AB,2 and AF,3 is possible in the following way.
At each interface we write the fields that propagate away from it in function of the fields that
propagate towards it. This amounts to applying the boundary conditions at the interface.

EF,2(x, 0) = t12EF,1(x, 0) + r21EB,2(x, 0), (6.80)
EB,1(x, 0) = r12EF,1(x, 0) + t21EB,2(x, 0), (6.81)
EB,2(x, d) = r23EF,2(x, d), (6.82)
EF,3(x, d) = t23EF,2(x, d). (6.83)

Solving this system of 4 complex equations with 4 complex unknowns leads to the same result as
with the first method.

For the power reflectance and transmittance of the Fabry-Perot etalon one obtains finally:

R =
∣∣∣∣EB,1(x, 0)
EF,1(x, 0)

∣∣∣∣2 =
∣∣∣∣r12 +

t12t21r23e
−j2kz,2d

1− r23r21e−j2kz,2d

∣∣∣∣2 , (6.84)

T =
n3cosθ3

n1cosθ1

∣∣∣∣ t12t23

1− r23r21e−j2kz,2d

∣∣∣∣2 . (6.85)

The latter expression is only valid if kz,2 is real. It is left to the reader to generalize this expression
for the case where kz,2 is complex. This happens either when the layer is absorptive or when the
field is evanescent in layer 2 due to total internal reflection.

In the next section we examine a symmetrical structure (n1 = n3), like the case of a transparent
plate in air. Then, the previous expressions simplify to:

R =

∣∣∣∣∣r12 − r12

(
r2

12 + t12t21

)
e−j2kz,2d

1− r2
12e
−j2kz,2d

∣∣∣∣∣
2

(6.86)

=

∣∣∣∣∣r12

(
1− e−j2kz,2d

)
1− r2

12e
−j2kz,2d

∣∣∣∣∣
2

(6.87)

= 4
∣∣∣∣ r12

1− r2
12e
−j2kz,2d

∣∣∣∣2 sin2 (kz,2d) , (6.88)

T =
∣∣∣∣ t12t21

1− r2
12e
−j2kz,2d

∣∣∣∣2 . (6.89)
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We can simplify this to:

R = 4
∣∣∣∣ r12

1− r2
12e
−j2φ

∣∣∣∣2 sin2φ, (6.90)

T =
∣∣∣∣ t12t21

1− r2
12e
−j2φ

∣∣∣∣2 (6.91)

with
φ = kz,2d =

2π
λ0
n2dcosθ2. (6.92)

For media with a real refractive index we can write the reflectance and transmittance for one
transition, respectively:

R1 = |r12|2 = r2
12, (6.93)

T1 = |t12t21| = 1−R1. (6.94)

Then, for the transmission of the plate we obtain:

T =
T 2

1

1 +R2
1 − 2R1 cos 2φ

=
(1−R1)2

(1−R1)2 + 2R1 − 2R1 cos 2φ

=
1

1 + F sin2 φ
with F =

4R1

(1−R1)2 (6.95)

This last equation is also called the Airy equation. Note that we have already calculated this trans-
mission for interference between multiple waves, see section 4.5.2. The maximum transmission is
1, and then we find for perpendicular incidence (cosθ2 = 1) that φ = mπ or d = m λ

2n2
, so the thick-

ness of the layer is an integer times the half wavelength in the material. The minimal transmission
is given by:

Tmin =
1

1 + F
(6.96)

For sharp maxima we need to ensure that Tmin is as small as possible. Therefore F has to be large,
so R1 needs to be close to 1. In practice, this is difficult because of the available materials.

Figure 6.9 shows the reflectance R for perpendicular incidence on a layer with thickness d and
index n, placed in air. R is presented in function of the wavelength (normalized to nd) for 4
values of n: 1.5, 2, 4 and 8 (this last value is unrealistic for normal materials). One notices that the
reflections drop to 0 if the thickness is an integer times the half wavelength. The reflection dips
become sharper as n increases (and thusR1 increases) and they obtain the character of a resonance.
Such a structure consisting of two semi-transparent mirrors is called a Fabry-Perot resonator.

It is interesting to consider what happens to the reflection or transmission spectrum if the light
incidence is no longer perpendicular but oblique. It is sufficient to realize that the maxima and
minima occur for certain values of φ. If the angle θ increases, then cosθ decreases and thus the
wavelength has to decrease also to keep φ constant. This means that a reflection or transmission spec-
trum always shifts to shorter wavelengths as the light incidence becomes more oblique. This contradicts
the intuition: for oblique angles the light has to travel a longer distance in the layer, and thus one
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Figure 6.9: Reflection of a layer in air with indices n = 1.5 (lower curve), n = 2, n = 4, n = 8 (upper curve).

Figure 6.10: Fabry-Perot structure with oblique incidence.

could expect that the wavelength has to increase to remain in the same maximum or minimum.
We show with figure 6.10 that this reasoning is incorrect: Consider the primary and secondary
contribution to the total transmission. Both contributions are plane waves. To know the phase
difference between them, we have to examine the phase at the same phase front, for example the
planeDD′. Thus the phase difference is not determined by the path length |BC|+ |CD|, but by the
difference in path length between |BC| + |CD| and |BD′|. This path length difference decreases
as θ increases, while |BC|+ |CD| increases! It is an exercise for the reader to show how this path
length difference translates into the phase 2φ.

6.8.2 Reciprocity

Upon careful inspection of equation 6.85 one can see that the power transmission T is invariant
to an exchange of layer 1 by layer 3 and vice versa. More precisely: the power transmission
is identical for transmission from left to right at an angle of incidence θ1 and from right to left
at an angle of incidence θ3 (connected to θ1 by Snell’s law). This remarkable property is called
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Figure 6.11: Reciprocity in an N -layer slab

reciprocity and is the consequence of a very general reciprocity theorem in electromagnetics. It is
not only valid for a 3-layer structure with real refractive indices but also for an N-layer structure
with complex refractive indices. Only in very special materials (non-reciprocal materials) - which
cannot be described by a simple refractive index - this property is broken. In lossless structures
the equality of Tforward and Tbackward implies that the reflection R is also equal for incidence from
the left (θ1) and from the right (θ3) respectively. However, in lossy structures this is not the case.
The forward and backward transmission are equal, but the reflection can be different, in which
case the absorption is also different. The situation is depicted graphically in figure 6.11, where A
denotes the fraction of power which is absorbed.

6.8.3 Coatings

Layer structures can be employed to increase or decrease the reflection of a surface. This is useful
for the design of anti-reflection coatings (AR-coatings) for lenses, and for the design of dielectric
mirrors. Most of the time one uses perpendicular incidence.

AR-coatings: quarter-wave layer

In designing an AR-coating we ensure that the reflection at the front of the film interferes destruc-
tively with the reflection at the back of the film. If n1 < n2 < n3 then one needs: (note: extra phase
shift π for reflection at interface 1-2 and interface 2-3!)

d =
1
4
λ0

n2
=
λ2

4
, (6.97)

hence the name quarter-wave layer. This is illustrated in figure 6.12 for the first two contributions
of the reflected field. In practice these are the most important contributions (note that our analysis
does take all reflections into account).
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Combining the previous equation with the Fresnel coefficients for perpendicular incidence:

rij =
ni − nj
ni + nj

(6.98)

tij =
2ni

ni + nj
(6.99)

and setting e.g. T = 1 in equation 6.85, one obtains:

n2 =
√
n1n3. (6.100)

Example: AR-coating for GaAs-structures

An AR-coating to minimize the reflection between air and a medium with index n = 3.2 at
λ = 1550nm (e.g. an optical amplifier in GalliumArsenide). We get n2 =

√
n1n3 = 1.79 and

d = 217nm. In figure 6.12 we see indeed that for an AR-coating with these values no reflections
occur at λ = 1550nm, and that reflection remains smaller than 0.5% in a wide interval (1450nm
tot 1650nm). In practice it is not easy to fabricate a coating with the exact index and thickness
(e.g. because only a limited number of materials are available). Moreover, a small error for d
and n immediately leads to higher values for the reflection coefficient.

Figure 6.12: AR-coating consisting of one layer. (a) Principle, (b) reflection spectrum for an AR-coating
designed for the telecom wavelength of 1550nm. n1 = 1, n3 = 3.2, n2 =

√
3.2 = 1.79, d = 217nm.

Highly reflective coatings

A HR-coating could consist of a quarter-wave layer made from a higher index than both consid-
ered media. In practice this is often not realizable, therefore one employs a periodic structure
of quarter-wave layers alternating between high and low index, see figure 6.13. Together they
behave as a Bragg reflector.

If the thickness of the consecutive layer can be controlled so that:

nHdH = nLdL =
λ0

4
(6.101)
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then the reflected beams from the different interfaces will all interfere constructively, leading to a
large reflection coefficient. Using the matrix method one can obtain for R:

R =

1−
(
nH
nL

)2N

1 +
(
nH
nL

)2N


2

. (6.102)

R converges to 1 as N increases. The convergence improves as the ratio nH
nL

becomes larger.

Example: HR coating for a He-Ne laser

A HR-coating consisting of silver sulfide (nH = 2.32) and magnesium fluoride (nL = 1.38) has
a reflection of 98.9% already after 13 layers, at λ = 633nm. Such a highly-reflective mirror is
used for fabrication of a helium-neon laser cavity.

Figure 6.13: HR coating. (a) Principle. (b) Reflection of a coating for a He-Ne laser at wavelength λ =633nm.
nH =2.32 (ZnS), nL=1.38 (MgF2)

Exercise: Explain why in the AR-coating a quarter wavelength thick layer leads to destructive
interference for the reflected light, whereas in the HR-coating quarter wavelength thick layers
lead to constructive interference for the reflected light.

Design of complicated coatings

For more complicated applications (broadband and narrowband filters, power and polarization
splitters. . . ) one uses specialized CAD-software.

Example: coating for sunglasses

Figure 6.14 shows an example of a design for sunglasses. The demands were the following:

• Transmission < 1% for wavelengths between 400nm and 500nm.

• Transmission between 15% and 25% between 510nm and 790nm.

• Transmission < 1% between 800nm and 900nm.

The designed coating has 29 layers of SiO2 and TiO2 with thicknesses between 20nm and
200nm on a glass substrate.
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Figure 6.14: Transmission of sunglasses ( c© 1995-98 Software Spectra, Inc., http://www.sspectra.com/).

6.9 Scattering

The scattering of light can be seen as the deviation from a straight trajectory when the electro-
magnetic (EM) wave (light) encounters obstacles or non-uniformities in the medium in which it
travels. The scattering mechanisms that we will discuss here involve scattering particles which
can be assumed spherical. When the EM wave encounters a particle it will cause a periodic per-
turbation in the electron orbits within the molecules of the particle. This perturbation has the
same frequency as the incoming EM-wave. The separation of the charges in the molecule due to
the perturbation is called the induced dipole moment. This oscillating dipole moment is now a
new EM source, resulting in scattered light.

When the wavelength of the scattered light is the same as the wavelength of the incoming wave,
we say that the scattering is elastic. This means that no energy is lost in the scattering process.
When energy is partly converted (e.g. to heat or vibrational energy) and the resulting wavelength
is larger than the original wavelength, the scattering process is said to be inelastic. Examples of
such inelastic scattering are Brillouin and Raman scattering. We will now discuss two elastic light
scattering mechanisms: Rayleigh scattering and Mie scattering.

Rayleigh scattering (named after Lord Rayleigh) is caused by particles smaller than the wave-
length of the incident light. It can occur in solids or liquids but it is mostly seen in gasses. The
criterion for Rayleigh scattering is: α<<1, with

α =
2πr
λ
. (6.103)

r is the radius of the particle and λ is the wavelength of the incident light. It can be shown that
in the Rayleigh regime, shorter wavelengths are scattered more efficiently (scaling1/λ4). This
explaines why the daytime sky looks blue. The (shorter) blue wavelengths are redirected more
efficiently towards earth than the (longer) red ones.

Mie scattering (named after Gustav Mie) is the general scattering theory without limitations on
the particle size. For large particles, this theory converges to geometric optics. It can also be
used for very small particles but in that case the Rayleigh theory is preferred due to the simplicity
compared to the Mie theory. E.g. Mie scattering explains why clouds are white as it involves
scattering of sunlight from particles (in this case water droplets) which are small but larger than
the wavelength of the light. Other examples are scattering from dust, smoke, pollen,...
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Chapter 7

Waveguide optics
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7.1 Introduction

Electromagnetic waves can transport energy, and thus also information, over very large distances.
This has led to an explosive development of modern communications techniques. Transport
through free space is inefficient however, because diffraction defocuses the energy. Therefore one
looks for structures that guide the electromagnetic energy more efficiently. For light, one mainly
employs dielectric waveguides. We will show in this chapter that such a waveguide gives rise
to field distributions that propagate without change at their own speed. These field distributions
are called the eigenmodes of the waveguide. The wave number corresponding to each mode is the
propagation constant of the mode.

Optical fibers are a very important type of waveguide. They replace the electrical cables in modern
communication networks (e.g. phone and internet). This is mainly the consequence of a much
larger bandwidth and much smaller losses, compared to electrical connections.

Just like in electronics where one has moved from components on PCBs to monolithic ICs, the
same move is happening in optics towards miniaturization and integration. Classical optical sys-
tems consist(ed) of a collection of components (lenses, mirrors, diffractive elements, sources) that
had to be aligned carefully. Therefore they are often expensive and large. The idea of integrated
optics originated in the sixties, and means that different optical functions (lasers, detectors, filters,
couplers . . . ) are integrated on a single substrate. Waveguides, instead of free space, are used to
guide light from one component to the next or within components. A major advantage of integra-
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Figure 7.1: Step-index waveguide.

tion is that all components are collectively and precisely aligned by the lithographic processes at
the moment of fabrication.

7.2 Waveguides with the ray approximation

Thus waveguides are optical systems that aim to confine the light. A simple type of waveguide is
the step-index waveguide, see figure 7.1. In this waveguide the rays follow a zigzag route because
of total internal reflection at the core-cladding interface (hence the term waveguide). To this end
the angle θ′ has to be sufficiently small:

θ′max = arccos
(
n2

n1

)
(7.1)

This immediately means that the core has to have a higher index than the cladding. We calculate
the maximum angle θ of the incident rays that undergo total internal reflection:

n0 sin θmax = n1 sin θ′max = n1

√
1−

(
n2

n1

)2

=
√
n2

1 − n2
2 (7.2)

In analogy with lenses we define a numerical aperture, NA. For n0 = 1 one obtains:

NA = sin θmax =
√
n2

1 − n2
2 (7.3)

In the chapter about geometric optics (see section 3.2.8) we discussed another type of waveguide,
the parabolic index or graded index waveguide (see figure 7.2). In these waveguides the trajec-
tories are not zigzag, but sinusoidal, with every ray having the same period. Therefore, a special
property of this type of guide is that all rays propagate with the same axial speed, regardless of
their incidence angle. Again we can define a NA, but now it is dependent on the incidence position
relative to the axis. The NA is largest at the axis.

The previous discussed two-dimensional waveguides. However, it is also possible to guide in
three dimensions. For this purpose one needs a core surrounded on all sides by a lower index
cladding. The most common types are the rectangular and the cylindrical (fiber) waveguide, see
figure 7.3. The latter type can have a constant or parabolic core index profile.
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Figure 7.2: Graded index waveguide.

Figure 7.3: Three-dimensional waveguides.

One of the most important waveguide properties is that they can guide light around a bend (fig-
ure 7.4). If the radius of curvature R is not too small, then the majority of guided rays will be led
through the bend. However, a small loss is unavoidable. If the index contrast n1 − n2 increases,
the radius R can be smaller.

The most well known waveguide is the optical fiber. It usually consists of glass, but sometimes
polymer is used (POF: polymer optical fiber). Typically the fiber has a core with diameter 50µm,
surrounded by a cladding with outer diameter 125µm. The index difference between core and
cladding is typically between 0.001 and 0.01. Because of the small diameter the fiber is very
flexible, and it is used in many applications: optical communications, sensors, medical applica-
tions. . . More and more in communications one uses a fiber with a very small core (< 10µm). For
this fiber geometric optics is not applicable anymore, and one has to use a more rigorous wave
approach.

7.3 Modes in longitudinally invariant waveguide structures

In this section we consider structures that are invariant along the propagation direction z of the
optical power (longitudinal direction), as shown in figure 7.5. Then the refractive index profile
is written as: n(r) = n(rt) = n(x, y). An eigenmode of the waveguide structure is defined as
a propagating or evanescent wave that keeps its transversal shape (thus the shape in the (x, y)-
plane).

Therefore, a forward propagating eigenmode can be written as

E(x, y, z) = E(x, y)e−jβz (7.4)
H(x, y, z) = H(x, y)e−jβz (7.5)

Three parameters, all interdependent, are used to describe the propagation characteristics of the
eigenmode. The first is the propagation constant β, the second is the effective refractive index
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Figure 7.4: Bend in a waveguide.

Figure 7.5: Example of a longitudinally invariant waveguide structure.
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neff = β/k0, and the third is the effective dielectric constant εeff = n2
eff . In the next section about

slab waveguides it is shown that these are the eigenvalues of the eigenvalue equation derived
from Maxwell’s equations, with the eigenmodes as solutions.

Before embarking on a detailed study of the eigenvalue problem, we present a short overview of
phenomena that are typical for lossless optical waveguides, so waveguides where:

Im(ε(rt)) = 0 (7.6)

We limit ourselves to the slab waveguide structure. This is a y-independent geometry, but the
following properties are generally valid. Figure 7.6 shows the dielectric profile of a step index slab
waveguide, with different types of eigenmodes. From Maxwell’s equations one can derive the
following characteristics:

• There are no eigenmodes with eigenvalue larger than the maximum of the dielectric func-
tion. So:

neff < max(n(rt)) (7.7)

• The guided modes form a set of discrete eigenvalues, that are limited to the region:

nmax > neff > max(ncladding) (7.8)

For these modes the radiation condition holds: limrt→∞Ψ(rt) = 0, so the field profile is lim-
ited to the ‘core’ of the waveguide. We will see that there are waveguide structures without
any guided mode.

• The radiation modes form a continuous set of eigenvalues, with:

neff < max(ncladding) (7.9)

Radiation modes have an oscillating behavior along at least one side of the structure. One
distinguishes between propagating (neff is real) and evanescent (neff is purely imaginary)
radiation modes. In the latter case the field profile decays exponentially in the positive
z-direction (hence there is no power transport by evanescent radiation modes in the z-
direction).

An important property of eigenmodes is that they form a complete set. This means that an arbi-
trary field distribution can be described by a superposition of modes.

Note that there is a connection between the kinds of modes of a waveguide calculated with
Maxwell’s equations and with ray theory. Rays propagating in the core (=highest index) that
are incident on the cladding (=lower index) will or will not be totally reflected. If the angle of
the ray is larger than the critical angle for total internal reflection (TIR), then there will only be
reflection (no transmission!) at the core-cladding interface. These rays are associated with guided
modes, although the relation is not straightforward. If the incidence angle is smaller than the TIR
critical angle there will be both reflection and transmission. This corresponds to radiation modes.
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Figure 7.6: Propagating and radiation modes in a longitudinally invariant waveguide structure.

Figure 7.7: The three-layer slab waveguide.

7.4 Slab waveguide

7.4.1 Three-layer slab waveguide

To determine the eigenmodes of a longitudinally invariant waveguide we use an approximation.
We consider a structure that is invariant both in the z and y-direction, see figure 7.7.

This waveguide consists of a plane dielectric layer (core), with thickness d, confined between
two semi-infinite dielectric layers (cladding layers). The core material has index n1, the lower
dielectric or substrate has index n2, and the upper dielectric or superstrate has index n3, so that:
n1 > n2 > n3. We assume wave propagation in the z-direction. Because the structure is infinite
in the y-direction all fields are independent of y. Thus, the complex amplitudes of the electric and
magnetic field become:

E(x, z) = E(x)e−jβz (7.10)
H(x, z) = H(x)e−jβz (7.11)
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Substitution of these two expressions in Maxwell’s curl laws gives:

jβEy = −jωµ0Hx

dEy
dx

= −jωµ0Hz (TE)

−jβHx −
dHz

dx
= jωε0n

2Ey (7.12)

and

− jβEx −
dEz
dx

= −jωµ0Hy

jβHy = jωε0n
2Ex (TM)

dHy

dx
= jωε0n

2Ez (7.13)

The index n takes the values n1, n2 and n3 in the corresponding media. The two-dimensional
nature of the problem leads to two decoupled sets of equations: TE- and TM-polarized modes. In
the TE case the Hx- and Hz-components are derived from the Ey-component. For TM Ex and Ez
follow from Hy:

Hx = − β

ωµ0
Ey (TE)

Hz =
j

ωµ0

dEy
dx

(7.14)

and

Ex =
β

ωε0n2
Hy (TM)

Ez = − j

ωε0n2

dHy

dx
(7.15)

The y-components satisfy the following wave equations, obtained from (7.12) and (7.13) after elim-
inating the x- and z-components:

d2Ey
dx2

+ (n2k2
0 − β2)Ey = 0 (TE) (7.16)

d2Hy

dx2
+ (n2k2

0 − β2)Hy = 0 (TM) (7.17)

With k0 the wave number in vacuum. Here k0n = k = kxex + kyey + kzez, with kz = β.

Guided TE-modes of the three-layer slab waveguide

Calculating the TE-modes now amounts to solving the wave equation (7.16) for Ey, from which
the other components follow with (7.14). For the eigenmodes we solve the transversal boundary
condition problem. As a boundary condition we demand continuity of the tangential components
of E and H at both interfaces x = 0 and x = −d. In addition we have the radiation condition for

7–7



|x → ∞|: a guided mode has a field profile that exponentially decays towards infinity. All other
field profiles are regarded as radiation modes.

From (7.14) we see that continuity of Hz implies that dEy/dx is also continuous, in addition to Ey.
Because we are looking for guided modes we demand that Ey → 0 as x→ ±∞. Then the solution
has the form:

Ey = Ae−δx x ≥ 0
= C cos(κx) +B sin(κx) 0 ≥ x ≥ −d
= Deγ(x+d) −d ≥ x (7.18)

with

κ =
√
n2

1k
2
0 − β2

γ =
√
β2 − n2

2k
2
0 =

√
(n2

1 − n2
2)k2

0 − κ2

δ =
√
β2 − n2

3k
2
0 =

√
(n2

1 − n2
3)k2

0 − κ2 (7.19)

Where we assume that the expression under the square root is positive, as we are now looking for
guided modes, so k0n1 > β > k0n2. Continuity of Ey in x = 0 and x = −d means:

A = C

C cos(κd)−B sin(κd) = D (7.20)

so

Ey = Ae−δx x ≥ 0
= A cos(κx) +B sin(κx) 0 ≥ x ≥ −d
= (A cos(κd)−B sin(κd)) eγ(x+d) −d ≥ x (7.21)

Continuity of Hz or dEy/dx implies:
δA+ κB = 0

(κsin(κd)− γ cos(κd))A+ (κ cos(κd) + γ sin(κd))B = 0 (7.22)

This homogeneous system has solutions that are not equal to zero if the determinant vanishes,
thus:

(κ cos(κd) + γ sin(κd))δ − (κsin(κd)− γ cos(κd))κ = 0 (7.23)

We can write this eigenvalue equation in the following form:

tan(κd) = F (κd)

F (κd) =
κ(γ + δ)
κ2 − γδ

(7.24)

This transcendental expression is depicted in figure 7.8. Every intersection of the tan(κd)-curve
with the F (κd)-curve gives an eigenvalue or discrete mode β for the slab waveguide. The guided
modes, and β, are a function of 5 parameters: λ0, n1, n2, n3 and d. We call neff = β/k0 the
effective index of a mode; this is the index that a mode ‘feels’. It represents a kind of average
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Figure 7.8: Solutions of the eigenvalue equation for a three-layer slab waveguide.

Figure 7.9: Schematic depiction of the dispersion relation for various TE-modes m = 0, 1, 2, ... and asym-
metry parameters a = 0, 1, 10,∞.

refractive index, that corresponds to weighing the index at each location with the local strength of
the TE-field.

One often uses the ω − β-diagram, the graphical representation of the dispersion relation for the
different modes, see figure 7.9b. We see on the figure that there are only discrete modes for β >
k0n2. The lowest order mode is called the fundamental mode or the 0th-order mode. Each discrete
mode also has a cutoff frequency (see below), for mode 2 it is ωc,2 (then β is equal to k0n2). If
the frequency increases then β increases too, and for large frequencies β approaches n1k0. In that
case the fields in the sub- and superstrate are strongly damped, and the field only ‘sees’ the core
medium.

To obtain a graph as general as possible one employs normalized quantities: the normalized fre-
quency V , the relative effective index b and the asymmetry parameter a:

V = k0d
√
n2

1 − n2
2 (7.25)

b =
n2
eff − n2

2

n2
1 − n2

2

(7.26)

aTE =
n2

2 − n2
3

n2
1 − n2

2

(7.27)
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Figure 7.10: Field components of the guided TE and Tm mode in an asymmetric three-layer slab waveguide

This gives the dispersion curves in figure 7.9a, for the three lowest order TE-modes for different
values of the asymmetry parameter a. Notice that for symmetrical waveguides a = 0 there is
always at least one guided mode, and the next mode starts at V = π. For strongly asymmetrical
waveguides there is no guided mode for V < π/2 and the second mode starts at V = 3π/2.

Guided TE and TM mode profiles in a single mode three-layer slab waveguide As an example,
the guided transverse electric and transverse magnetic mode profiles in a single mode three-layer
slab waveguide are plotted in figure 7.10. The slab waveguide structure considered is an asym-
metric structure with n1 = 1.5,n2 = 3.5 and n3 = 1. Notice the discontinuity in the Ex field
component of the transverse magnetic guide mode.

Cutoff frequency For certain frequencies if κd increases, or β decreases, γ becomes complex. If
γ is complex, then F (κd) is complex too and the F (κd)-curve stops, so there are no more intersec-
tions with tan(κd). The value of κd where this happens is given by γ = 0 or

β = n2k0 (7.28)

The cutoff happens first with γ because we assumed that: n1 > n2 > n3. Expression (7.24) be-
comes: tan(κd) = δ

κ (with β = n2k0). Working this out we obtain:

k0,c,md
√
n2

1 − n2
2 = arctan

(√
n2

2 − n2
3

n2
1 − n2

2

)
+mπ (7.29)

With ωc,m = k0,c,mv as cutoff frequency of the mth TE-mode. If ω decreases and approaches the
cutoff frequency ωc of a mode, then the longitudinal component β of the wave vector in the slab
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Figure 7.11: Field profiles of the lowest order TE-modes.

waveguide will decrease and become equal to β = n2k0 at cutoff. If the frequency decreases
further and becomes smaller than the cutoff frequency, the guided mode changes into a radiation
mode.

In figure 7.11 we show the Ey field distributions of the lowest order TE-modes for a symmetrical
slab waveguide for V = 2, 4, 8. As V increases the fundamental mode is more concentrated in the
core. The field profiles for higher order modes decay less rapidly in the cladding than for lower
order modes, at the same value of V .

Up until now we discussed the TE-problem. The solution of the TM-problem leads to analogous
results: The field profiles of Hy for TM-modes are similar, but not identical to those of Ey. The
same holds for the propagation constants of the ith TM-mode versus the ith TE-mode. This means
in fact that a ‘single mode’ waveguide has two guided modes: The fundamental TE- and the
fundamental TM-mode.

Radiation modes in a three-layer slab waveguide

In the previous section we derived a finite number of guided modes. These modes do not consti-
tute a complete set as they are unable to represent radiation outside of the core. We also noticed
that there are no more guided modes if β ≤ n2k0. Still we obtain standing wave patterns, as γ
becomes complex in expression (7.18) (proof: see below). This pattern is a superposition of radia-
tion incident from x = −∞ and radiation going to x = −∞. If n3k0 < β < n2k0 then there is still
total internal reflection at the core-superstrate interface, and the field decays exponentially in the
superstrate. However, on the side of the substrate there is a standing wave pattern. If β < n3k0

then there is radiation from and to infinity at both sides of the core. See figure 7.6 for an overview.
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As an example we calculate the TE radiation modes in the case n3k0 < β < n2k0. We obtain the
solution for Ey, based on (7.21) and with a complex γ:

Ey = Ae−δx x ≥ 0
= A cos(κx) +B sin(κx) 0 ≥ x ≥ −d
= (A cos(κd)−B sin(κd)) cos(ρ(x+ d)) + C sin(ρ(x+ d)) −d ≥ x (7.30)

With ρ = jγ being:

ρ =
√
n2

2k
2
0 − β2 (7.31)

Here we usedD sin(ρ(x+d))+C cos(ρ(x+d)) instead ofD eγ(x+d) in equation (7.18). The continuity
conditions for Hz or dEy/dx in x = 0 and x = −d result in the following:

δA+ κB = 0 (7.32)

κ sin(κd)A+ κ cos(κd)B − ρC = 0 (7.33)

For the guided modes the continuity relations are a homogeneous system, and setting the determi-
nant to zero one obtains an eigenvalue equation. Here however we have two equations for three
unknowns, so we choose one and the other two are determined by solving the resulting inhomo-
geneous system. Thus, we have no eigenvalue equation and the values for β cover a continuum
in the area β < k0n2, see figures 7.6 and 7.9. The radiation modes do not satisfy the radiation
condition and they have infinite energy, so these modes are not physical, but they are mathemat-
ical solutions of the eigenmode equation. We need these extra nonphysical solutions to obtain a
complete set of eigenmodes. With this complete set we can describe every possible physical field
propagating in the z-direction. This description consists of a discrete sum of guided modes, plus
an integral over the radiation modes. The integration works because the contributions of waves
from infinity cancel each other, so the total propagating energy is finite and equal to the energy of
the field.

7.5 Optical fiber waveguides

7.5.1 Introduction

The optical fiber is the best medium for transporting a large number of signal with high bandwidth
over large distances. In this section we discuss some main properties of fibers, where we focus
on monomode and multimode glass fiber (or silica fiber: SiO2), but we also mention other types
such as polymer fibers (POF: polymer optical fiber). We describe the propagation of light in these
fibers, using both the ray and the mode concept. In this way we introduce the phenomenon
of dispersion. This concept incorporates all effects caused by the property that the propagation
speed in a waveguide is not uniform but has a certain spread, which puts limits on the information
capacity. However, if one uses the right type of fiber and source the capacity is virtually unlimited.
Furthermore we describe the attenuation properties. Modern fibers exhibit a spectacularly low
attenuation. A decay with a factor 2 happens only after a few tens of kilometers, if one operates at
the correct wavelength.
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Figure 7.12: Overview of a number of different types of fiber.

7.5.2 Types of fibers

All optical fibers possess a cylindrical geometry with a core having a larger index than the sur-
rounding medium. In step index multimode fibers the core has a diameter of 50µm to 300µm, and
it has a cladding material with lower index, see figure 7.12. The graded index (GRIN) multimode
fiber however has a radially varying index profile for the core, that is approximately parabolic and
the core diameter is on the same order as the core in the step index fiber. The index profile of both
types can be described by the same mathematical expression:

n(r) = n0(1− 2∆(r/a)α)1/2 (7.34)

With α = 2 for graded index fiber and α =∞ for step index fiber.

The single-mode or mono-mode fiber has a much smaller core diameter: 5µm to 10µm, where
both step index and graded index (GRIN) are used as index profile. In most cases the index
difference between core and cladding is on the order of 0.001 to 0.01. The fibers for long-distance
communications are standardized: the core diameter for multimode fibers is 50µm to 62.5µm, the
one for single-mode fibers is ±9µm. The outer diameter is always 125µm.

The most important fiber is fabricated of amorphous silicon, that has a refractive index of about
1.5. To achieve the index difference between core and cladding one adds impurities to the material
during production (B2O3 and F are used for the cladding, P2O5 and GeO2 for the core). The
most important manufacturing method is the preform-method. Here one starts with a thick (2cm
diameter and 50cm length) cylindrical rod that is stretched under high temperature to a fiber that
is 100 times thinner and 10000 times longer. This process needs extreme precision.

For communication over short distances (< 100m) one increasingly uses polymer (POF) fibers.
They are cheaper and it is much easier to obtain a high quality fiber ending. Generally the core
diameter of POFs is almost equal to the cladding diameter (so a very thin cladding), and therefore
the fiber is always multimode. The cladding diameter varies from 125µm to a few mm. Usually
the index difference between core and cladding is higher than for glass fibers, and the propagation
losses are larger.

7.5.3 Optical fibers: ray model description

When a short light pulse is sent into an ideal optical fiber, there would be no losses nor deforma-
tion, as shown in the upper part of figure 7.13. Unfortunately, in reality each fiber shows attenu-
ation and dispersion. Because of attenuation, the pulse will have to be amplified after a distance.
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Figure 7.13: Propagation of a short light pulse in an optical fiber.

Otherwise losses would make detection impossible. Dispersion limits the data that can be sent
through the fiber: the speed of light in an optical fiber varies a little bit, so that a short light pulse
will spread out in time (this effect becomes worse with increasing fiber-length). Therefore, light
pulses cannot be too close to each other in order not to overlap (which means loss of information).

Propagation of light in fibers

Propagation of light in fibers can be described by different theories. The most important theories
are the ray theory and the electromagnetic theory. The ray theory is the high frequency limit
of the electromagnetic theory and is valid if the optical variations are large in comparison with
the wavelength. In the case of optical fibers, this means that the ray theory can be used for the
description of multimode fibers, but fails for the description of monomode fibers (i.e. the ray
theory in its simplest form).

Let us look again at figure 7.1 for the ray description of the multimode step-index fiber. We have
seen that the numerical aperture of the fiber is defined as:

NA = sin θmax =
√
n2

1 − n2
2 ≈
√

2n∆n (7.35)

The numerical aperture of the fiber determines whether or not the incident rays at the air-(fiber)core
interface, will be conducted via TIR at the core-cladding interface. Incident rays at the air-core in-
terface with an angle smaller than the critical angle θmax will be conducted.

Example

For a typical optical fiber with ∆n = 0.01 and n ≈ 1.5, is θmax = 10o and NA = 0.17.
For a typical POF with ∆n = 0.08 and n ≈ 1.5, is θmax = 30o and NA = 0.5.

Multi-path dispersion in a step-index fiber

The simple ray model for a step-index multimode fiber is able to explain multi-path dispersion.
This type of dispersion occurs because the different propagating rays through a fiber with length
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L have a different propagation time. An axial ray will propagate with the highest speed, v = c/n1,
whereas a ray at the critical TIR angle will propagate slowest, with v = c cos θ′max/n1 = c n2/n

2
1.

The time difference between both is given by:

∆T =
L

c

n1

n2
∆n ≈ L

c
∆n. (7.36)

Multi-path dispersion is defined as:

∆T
L

=
∆n
c

[ns/km]. (7.37)

This time dispersion is proportional to the length L of the fiber and is expressed in ns/km. For
a (typical) ∆n = 0.01, the multi-path dispersion is equal to 34ns/km. The maximum bit rate, B,
is limited by this dispersion because it widens the pulses. The bandwidth, ∆f , necessary for a
given bit rate depends on the used coding technique, but it is at least equal to half the bit rate. As
a rough rule of thumb one can assume that:

Bmax ≈ 2∆f ≈ 1
∆T

. (7.38)

A quantity that is often employed in optical fiber communications is the bandwidth-length prod-
uct, expressed in MHz.km:

∆f.L =
c

2∆n
[MHz.km]. (7.39)

For ∆n = 0.01 we get a bandwidth-length product of 15MHz.km. This means that 1km of fiber is
limited to 30Mb/s, while a length of 10km only reaches 3Mb/s. It is clear that one has to keep the
refractive index difference ∆n small.

Multi-path dispersion in graded index (GRIN) fiber

We saw previously (section 3.2.8) that the rays in a graded index medium with a parabolic profile
follow a sine trajectory, instead of a zigzag. Furthermore we noted that sine period is independent
of the incidence angle! Thus in a GRIN medium the guiding does not happen because of TIR, but
because of a gradual deflection. The maximum incidence angle θmax depends on the incidence
position, and it is maximal in the middle of the fiber core, and zero at the core-cladding interface.

Two different rays from a point A to a point B inside the core propagate a different length at
different speeds. However, Fermat’s principle, T =

∫ B
A

n
c ds, teaches us that the elapsed time is the

same for all possible neighboring rays. This means that all these rays have the same longitudinal
velocity, thus there is no multi-path dispersion! This property is unique to a parabolic index profile.

7.5.4 Optical fibers: electromagnetic description

Guided modes for step-index fiber

Just like the description of the slab waveguide we can calculate the guided modes of the optical
fiber via the rigorous Maxwell equations. We do not consider the mathematical details, but present
an overview.
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Consider a straight step-index fiber, where the z-direction corresponds to the propagation direc-
tion. We look for solutions to Maxwell’s equations in the form of modes. This means we look for
transversal field distributions that do not change upon propagation (in the z-direction). The only
evolution is a periodic phase change, with a characteristic propagation constant β. We search for
solutions in the form (complex amplitude representation):

E(r, φ, z) = E(r, φ)e−jβz, (7.40)
H(r, φ, z) = H(r, φ)e−jβz. (7.41)

Because of the fiber symmetry we work with cylindrical coordinates. The modes are rigorous so-
lutions to Maxwell’s equations, so they do not couple or exchange energy. Mathematically this
means the modes are orthogonal. Analogous as for the slab waveguide, β is related to the prop-
agation speed. Different modes have different β’s, so dispersion will occur. This phenomenon is
physically equivalent to multi-path dispersion, as discussed in the previous section with the ray
model.

Although the cylindrical step-index fiber seems like a simple structure, the calculation of the
modes is not easy. We give the most important results. Qualitatively the modes are equivalent
to the solutions for the slab waveguide, mutatis mutandis. We obtain a discrete set of guided
modes with different polarization states and field profiles. There are TE- and TM-modes (with
Ez = 0 and Hz = 0 respectively), but also complex hybrid solutions that are called HE- and HM-
modes (Ez 6= 0 and Hz 6= 0). Because of the two-dimensional character of the fiber, the modes
are characterized by two numbers. One gets that the HE11-mode is the lowest order mode. It has
a profile with maximum at the core axis and consists of two variants with orthogonal polariza-
tion that have the same β, thus they are degenerate (the origin of this is the rotational symmetry).
Every linear combination of these two degenerate modes is also a mode. The V -number is also
important here:

V = k0R
√
n2

1 − n2
2 ≈ k0R

√
2n∆n. (7.42)

in which n is the average of the core and cladding refractive index and ∆n is the refractive index
contrast between core and cladding. Figure 7.14 shows the V -number in function of the effec-
tive refractive index. We see indeed that HE11 is the lowest order mode, and that the fiber is
monomode if V < 2.405. Thus, for a typical fiber with ∆n = 0.0025 and λ0 = 1.5µm the fiber
diameter has to be smaller than 13µm to be monomode. Remember that the standard single-mode
fiber has a diameter of 9µm. This fiber is no longer monomode if the wavelength is smaller than
1µm, which is called the cutoff wavelength.

Dispersion

In the context of optical fibers, the term dispersion is used for all effects that cause the light to
propagate not with one single speed, but with a variety of speeds (in general with very small
speed differences!). All forms of dispersion create a widening in time of an optical pulse.

A monochromatic plane wave propagating in a uniform medium has a well determined velocity.
If we couple this monochromatic wave into a multimode fiber, a number of different modes will
be excited. Even in spite of the fact that only one wavelength was excited, multiple modes will
propagate with slightly different speeds. This is multimode dispersion.
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Figure 7.14: Effective index as a function of V -number for an optical fiber waveguide.

If the source is not perfectly monochromatic (which is generally the case), each mode will be
excited at various frequencies. This leads to waveguide and material dispersion for each mode.

In chapter 6 we introduced the concepts effective refractive index (neff ), phase velocity (vp), group
velocity (vg) and group index (N ):

vp =
(
β

ω

)−1

V neff =
β

k
=

c

vp
(7.43)

vg =
(
dβ

dω

)−1

V N =
c

vg
= c

dβ

dω
= n− λ0

dn

dλ0
(7.44)

We know that the information in a light wave propagates with the group velocity, so the propaga-
tion time equals:

t =
L

vg
= L

dβ

dω
=
L

c
N =

L

c

(
n− λ0

dn

dλ0

)
. (7.45)

Material dispersion

The group velocity depends on the wavelength. Thus, if a source has a certain spectral width
∆λ0, the wavelength components will propagate with different speeds, and the pulse widens. We
calculate the time difference because of ∆λ0 and n(λ0).

∆t = tmax − tmin =
dt

dλ0
∆λ0 =

L

c

dN

dλ0
∆λ0 = −L

c
λ0
d2n

dλ2
0

∆λ0 (7.46)

We call:
|∆t|
L∆λ0

=
λ0

c

d2n

dλ2
0

[
ps

km.nm
] (7.47)
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Figure 7.15: Material dispersion.

the material dispersion coefficient. Sometimes the dimensionless material dispersion coefficient is
used: Ym = −λ2

0d
2n/dλ2

0. Note that for a small L the time difference because of the spectral width
is negligible. But, because a fiber is several km long, material dispersion is significant!

Figure 7.15a shows the refractive index and group index of quartz glass in function of the wave-
length. Note that the group index reaches a minimum at 1.3µm. This means that a pulse travels
fastest through quartz glass at that wavelength.

From figure 7.15b the differential deceleration per unit of length and spectral width is equal
to 0ps/(km.nm) at λ0 = 1.3µm. At λ0 = 1.55µm the material dispersion coefficient is about
20ps/(km.nm). This means that a pulse from a laser with spectral width 1nm will widen about
20ps per traversed km.

Waveguide dispersion

Because an optical fiber is not a uniform medium, and a propagating light beam is not a plane
wave but a set of guided modes, dispersion of a non-monochromatic wave is more complex than
in the previous section. We have to take waveguide or intramodal dispersion of the propagation
constants of all guided modes into account. Even if the refractive index is not wavelength de-
pendent, each mode will disperse because the propagation constant is not perfectly linear with
frequency (as in a uniform medium). The propagation constant is a kind of weighted average
over core and cladding material, and this factor is frequency dependent.

Figure 7.16 shows the material dispersion (dimensionless material dispersion coefficient) Ym and
waveguide dispersion Yw in function of wavelength for different fiber diameters. We note that for
the most used fiber of 9µm the material dispersion dominates and it reaches a minimum at about
1.3µm.

The table below gives an overview of values for the different dispersion effects (material, waveg-
uide and multi-path dispersion) in a fiber for different sources (LED: Light Emitting Diode, LD:
laser diode, SLD: single longitudinal mode laser diode) at three important wavelengths. The spec-
tral width of the sources is approximately: LED: ∆λ0/λ0 ≈ 0.04, LD: ∆λ0/λ0 ≈ 0.004, SLD:
∆λ0/λ0 ≈ 0.0004.
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Figure 7.16: Material dispersion Ym, and wavelength dispersion Yw, in function of wavelength for different
fiber diameters.

∆t/L [ns/km] fiber type
step-index graded index single mode

multimode dispersion 15 0.5-0.05 0
LED @0.9µm 2 2 2

material LD @0.9µm 0.2 0.2 0.2
+ LED @1.3µm 0.1 0.1 0.1

waveguide LD @1.3µm 0.01-0.001 0.01-0.001 0.01-0.001
dispersion LED @1.55µm 1 1 1

LD @1.55µm 0.1 0.1 0.1
SLD @1.55µm 0.01 0.01 0.01

7.5.5 Attenuation in optical fibers

In this section we succinctly describe propagation losses in waveguides. There are different loss
factors: interaction of light and matter leads to absorption, imperfect guiding causes scattering
and radiation. If the origin of the loss is spread evenly over the guide, the guided optical power
decreases exponentially with propagation distance: P (z) = P0e

−αz , with α the attenuation coeffi-
cient.

Absorption losses

Absorption of light during propagating through a material is caused by the interaction of photons
with energy levels of the material. A dielectric such as SiO2 has a number of important absorption
peaks. The UV region has a strong absorption peak because of transitions between electron levels.
The IR region has a peak from transitions associated with molecule vibrations (SiO bindings).
Although these features lie outside of the optical window, their ‘tails’ cause important absorption
in the optical domain. In figure 7.17 we see a region from about 1µm to 1.5µm between the tails
with a low attenuation. However, on top of these UV and IR tails there are also narrow peaks
originating from material impurities. There are small absorption peaks at 2.73µm, 1.39µm (second
harmonic) and 0.93µm (third harmonic: see figure 7.17) from OH bindings in the material.
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Figure 7.17: Attenuation in optical fiber by absorption and scattering.

Scattering losses

Scattering is caused by spatial variations of the refractive index (volume or Rayleigh scattering:
α ∼ 1/λ4

0, see figure 7.17) or by roughness of the boundary interfaces of the waveguide (sur-
face scattering). These interfaces are the etched surfaces that determine the waveguide, or the
interfaces between two layers grown on each other. In practice the surface scattering is the most
important. Based on some simplifying assumptions one finds an approximate equation for the
boundary surface scattering loss:

α = αscat
(∆n)2E2

s

P
(7.48)

Here ∆n is the index contrast, P is the optical power and Es is the field strength at the boundary
(larger for higher order modes!). The constant αscat is determined empirically and depends on the
fabrication process.

One finds that the total absorption minimum of a glass fiber is 0.15dB/km at 1.55µm. There is an-
other important local minimum of 0.4dB/km at 1.3µm. Optical communications uses the follow-
ing wavelengths almost exclusively: 1.55µm for the most demanding long distance applications,
1.3µm for less demanding medium-range systems and 0.85µm for short connections (< 100m).
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Chapter 8

Photon Optics

Contents
8.1 The photon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–1
8.2 Photon streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–4

Classical electromagnetism succeeded in the explanation of a lot of optical phenomena, but failed
in the description of other experiences. This became clear in the beginning of the twentieth
century. It led to the development of a quantum-electromagnetic theory, often called quantum-
electrodynamics (QED). In the optical world it is also called quantum optics or photon optics.

8.1 The photon

Light consists of particles, called photons. A photon has zero rest mass and carries electromagnetic
energy. It also has a momentum and an intrinsic angular momentum (spin) that can be associated
with the polarization of the light. The photon travels at the speed of light in vacuum and at a
slower speed in a material. Photons also have a wavelike character that allows us to explain in-
terference and diffraction. The fact that the blackbody radiation spectrum could not be explained
with classical electromagnetism led to the concept of the photon. Max Planck solved the problem
by postulating that the electromagnetic energy, radiated from a resonator, is quantized.

8.1.1 Photon energy

Photon optics states that the total energy in an electromagnetic mode is quantized in discrete
energy levels separated by a finite interval. We then say that the mode contains a discrete number
of photons. If the mode has a frequency ν, the energy difference between successive energy levels
— thus the energy of the photon — is given by:

E = hν = ~ω (8.1)

with h Planck’s constant (h = 6.626 10−34Js) and ~ = h/2π. The concept of a mode is not so trivial
here. In a closed cavity with finite dimensions there are a number of electromagnetic modes satis-
fying the boundary conditions, each of them containing a discrete number of photons (at a given
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Figure 8.1: Electromagnetic modes.

time). Each of these modes has a different frequency, a different field distribution and a different
polarization. This is illustrated in figure 8.1. In a waveguide there are — at a certain frequency —
also a finite number of propagating modes and the power flux of each of these contains a discrete
number of photons in a finite time interval. A Gaussian beam is a mode of the free space, and
again we can state that a discrete number of photons will pass through a plane perpendicular to
the direction of propagation in a finite time interval. We could say that the energy in an electro-
magnetic mode is given by the number of photons multiplied with the photon energy. This is
however not correct. When a mode contains n photons, the energy En equals to:

En = (n+
1
2

)hν, n = 0, 1, 2 . . . (8.2)

When the mode does not contain any photons, there is still an energy E0 = 1
2hν in this mode.

This energy is called the zero-point energy and plays an important role in spontaneous emission
in atoms. Because the energy of the photon is proportional to the frequency, it is logical that the
particle nature of electromagnetic radiation becomes more important for increasing frequencies. In
microwaves, the particle nature is seldom relevant, while X-rays and gamma–rays nearly always
act as particles. Light is situated between these two extremes. Therefore, the wavelike character is
apparent on some occasions, and the particle nature on others.

8.1.2 Photon position

A photon has both a spatially distributed and a localized character. The first is the consequence
of the wavelike character, while the second is caused by its particle nature. When photons are
converted into electric energy with a detector, we perceive the particle nature. No matter how
small the detector is, it will either detect a photon in its vicinity or it will not detect it, even if
the photon is carried by a long stretched electromagnetic mode. The probability that a detector
with surface area dA, placed perpendicular to the light bundle, is going to detect a photon is
proportional to the intensity (the Poynting vector) of the optical mode at that location. This means
that if a photon is incident on a semi-transparent mirror that reflects 50% and transmits 50%, the
photon has a 50% chance of being reflected and a 50% chance of passing through.
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8.1.3 Photon momentum

The photon momentum is in a trivial way related to the wave vector concept: p = ~k. The photon
propagates in the direction of the wave vector and the magnitude of its momentum is: p = ~k =
h/λ = E/c. Energy and momentum are thus proportional to each other. If the photon is carried
by a plane wave, the k-vector is uniquely defined and thus also the momentum. However, if the
photon is carried by a more complex electromagnetic mode, its momentum becomes a statistical
quantity that has a certain value with a certain probability. When photons interact with materials,
there is always the conservation of energy and momentum. This means that if a photon is incident
on a material and absorbed by this material, not only the energy of the photon is transferred to
the material, but the material undergoes a force due to the momentum of the photon, and thus
accelerates. This is called the radiation pressure exerted by the photons.

Compare the forces on 2 plane plates, perpendicularly illuminated with photons: a black
plate absorbing the incident photons perfectly and a perfectly mirroring plate reflecting the
photons.

8.1.4 Photon polarization

Each elliptical polarization can be seen as the superposition of two linear polarizations or as the
superposition of a right-handed and a left-handed circular polarization. With the latter we can
associate the concept spin. We say that the spin of photons is quantized to two discrete values:

S = ±~ (8.3)

For a non-circularly polarized wave we can say that there is a certain probability the photons have
the one spin, and for the rest the other spin.

8.1.5 Photon interference

In an interference situation, the wave-particle duality is completely apparent. When for example
a plane wave is incident on a plate with two slits, an interaction pattern will arise behind the plate
(see figure 8.2). Even if the plane wave only contains one single photon, a small detector will detect
the photon with a probability proportional to the intensity distribution of the interference pattern.
We can however determine that if we place the detectors at the slits, each photon is detected only
by one detector. In other words, we can determine experimentally that the photon ‘passes through
both slits’. But also, a detector placed near one of the slits either detects the photon or does not
detect it.

8.1.6 Photon time

If a monochromatic wave carries photons, the energy of these photons is known exactly. How-
ever, the wave is then infinitely long in time, and the time needed for detection of the photon is
completely undetermined. If a light bundle has a finite duration, this automatically means that
the light is not monochromatic, and the energy of the photons in that bundle can not be known
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Figure 8.2: Young’s two-slit experiment with one single photon.

exactly. The duration and spectral width are inversely proportional to each other and we can
write:

σωσt > 1/2 (8.4)

This relationship is rewritten for photons as:

σEσt >
~
2

(8.5)

It is called the time-energy uncertainty.

8.2 Photon streams

In the previous section we studied properties of a single photon. Now we treat photon streams.

8.2.1 Mean photon flux

The concepts optical power density, optical power and optical energy can be converted into a
quantum-quantity by dividing by the photon energy. The optical power density (unit: W/m2) is
then converted into a mean photon flux density (unit: fotonen/(s.m2)). Optical power (unit: W )
is converted into a mean photon flux (unit: fotonen/s). Optical energy (unit: J) is converted into
a number of photons.

Moonlight for example corresponds to a mean photon flux density of 108fotonen/(s.cm2). Thus,
if the light of the moon is incident on a small aperture of 1µm2, one photon per second will pass
through this aperture. A simple mnemonic for the conversion of optical power into photon flux is
the following: for light with a wavelength of 0.2µm, a power of 1nW corresponds to (on average)
one photon per ns. For a wavelength of 1µm, 1nW contains 5 photons per ns.

8.2.2 Photon flux statistics

The mean photon flux is proportional to the optical intensity, but the exact time on which photons
arrive on the detector is random normally. If the intensity is high, the average ‘arrival frequency’ of
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Figure 8.3: Optical power.

Figure 8.4: The Poisson distribution.

photons is high, while at low intensities only now and then a photon will arrive. This is illustrated
in figure 8.3. The exact statistical distribution of the photon flux depends on the nature of the light
and we have to make a difference between coherent light, in which the optical power is constant,
and thermal light, in which the optical power fluctuates.

Coherent light

For coherent light (e.g. monochromatic light of an ideal laser), the light power is constant but the
arrival of photons is caused by uncorrelated events and thus completely random. Under those
circumstances the probability p(n) that in a given time interval with duration T , n photons will
arrive is given by a Poisson distribution:

p (n) =
nne−n

n!
, n = 0, 1, 2 . . . (8.6)

This distribution is depicted in figure 8.4 for different values of the average number of photons
arriving in the time interval T (this average is proportional to the optical power). The most im-
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portant characteristics of a statistical distribution are the average and the variance, defined as:

n =
∞∑
n=0

np (n) (8.7)

σ2
n =

∞∑
n=0

(n− n)2p (n) (8.8)

The standard deviation (square root of the variance) is a measure for the width of the distribution.
For a Poisson distribution we easily find that the variance is equal to the average:

σ2
n = n (8.9)

This means that when the average number of photons increases (because of increasing power or
increasing time interval), the standard deviation will also increase but not as fast as the average
itself, and thus, there will be less ‘noise’ on the photon flux. This plays an important role in com-
munication systems. If the light is only partially coherent, the light intensity will not be constant
and there will be an extra fluctuation in the signal. The variance of the number of photons (in
a certain time duration) will also be larger than predicted by the Poisson situation. Actually, a
photon flux with a Poisson distribution represents a quantized particle stream with the smallest
possible variance. This type of noise is also referred to as shot noise.

Thermal light

Thermal light is the other extreme of distributions that photon streams may show. A thermal radi-
ator arises when an object at a temperature T emits photons in a situation of thermal equilibrium.
Consider an optical cavity at equilibrium with walls at a temperature T. According to the laws
of statistical mechanics, the probability distribution for the electromagnetic energy in one of the
modes of the cavity will be a Boltzmann-distribution (figure 8.5).

P (En) ∝ e−
En
kbT (8.10)

with kB Boltzmann’s constant (kB = 1.38 10−23J/K). As the energy in an electromagnetic mode
is given by En = (n + 1

2)hν, the probability distribution for the number of photons in a mode is
given by

P (En) ∝ e
−
nhν

kbT

=

e− hνkbT

n

, n = 0, 1, 2 . . .

As
∞∑
n=0

p(n) = 1 (8.11)

we can obtain for the distribution p(n):

p(n) =
1

n+ 1

(
n

n+ 1

)n
(8.12)
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Figure 8.5: The Boltzmann probability distribution P (En).

Figure 8.6: The Bose–Einstein distribution.

with
n =

1

e
( hν
kbT

) − 1
(8.13)

This is a geometric distribution, in quantum-optical context also called the Bose-Einstein distri-
bution. This distribution is shown in figure 8.6 and we immediately see that the variance of this
distribution is a lot larger than the variance of the Poisson distribution. The variance is indeed
given by:

σ2
n = n+ n2 (8.14)

In practice, this distribution can be measured (approximately) if we filter the light of an incandes-
cent lamp so that only a small spectral band is transmitted, and furthermore, if we only consider
one mode of the free space (one plane wave with one direction). The light then fluctuates strongly
and is not suitable as a communications carrier.

Partitioning of photon bundles

When a photon bundle is incident on a semi-transparent mirror with reflectionR and transmission
T = 1 − R, each photon will have a probability R of being reflected and a probability T of being
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transmitted. We could think that this gives rise to a larger fluctuation of the resulting photon bun-
dles compared to the incident bundle. If there is no correlation between the ‘choice’ the successive
photons make at the mirror, we can however prove that Poisson distributed light remains Poisson
distributed and thermal light remains thermal light, of course each time with a new lower mean
photon flux.
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Chapter 9

Material Properties

Contents
9.1 General definition of polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–1
9.2 Models for linear, isotropic, dispersive materials . . . . . . . . . . . . . . . . . . . 9–3

Properties of materials such as refraction and absorption were introduced in chapter 6. These
properties were described by means of the quantity P(t) - the polarization. In most cases, P(t) is
approximately proportional to the electric field E(t). In this chapter we will give a more detailed
description of the polarization concept and deduce some simple classic models that describe po-
larization in dielectric structures and metals.

9.1 General definition of polarization

In chapter 6 polarization was defined in the frequency domain as:

P(ω) = ε0χ ·E(ω) (9.1)

For a general definition however, we will start in the time domain. As polarization is approxi-
mately proportional to the electric field, P(t) can be developed in a series in function of E(t):

P(t) = P(0)(t) + P(1)(t) + P(2)(t) + P(3)(t) + ... (9.2)

in which the number between brackets denotes the power of proportionality. In other words
P(1)(t) is the first-order polarization (proportional with E(t)), P(2)(t) the second-order polariza-
tion (proportional to the square of the electric field), etc. P(0)(t) is the statical polarization, which
is independent of the electric field. Statical polarization occurs for example in some crystals. Typ-
ically, the polarization is approximately proportional to the electric field. Higher order terms
(P(2)(t),P(3)(t), etc.) are studied in the field of nonlinear optics. These terms are responsible for
nonlinear optical effects such as frequency doubling (e.g. used to convert infrared light into the
visible), intensity dependent propagation of light, etc. These effects will not be considered in this
chapter and we will assume a linear relation between the electric field and the polarization.
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9.1.1 Time invariance and causality

Since we are assuming a linear system, we can write the polarization P(t, r) as

P(t, r) = ε0

∫ ∞
−∞

dt1T(t, r, t1) ·E(t1, r) (9.3)

in which T(t, r, t1) is a 3 by 3 matrix. It describes the response of the polarization when the
material is excited with a dirac-impulse in the electric field at a time t1. Furthermore, the response
of a material system that does not undergo any changes, is time invariant, which means that when
there is a time translation of the excitation, the dynamic response of the system shifts along with
this translation. In other words, T(t, r, t1) depends only on the time differences τ = t− t1. This is
expressed explicitly as,

T(t, r, t1) ≡ R(r, τ) (9.4)

so that the polarization can be written as

P(t, r) = ε0

∫ ∞
−∞

dτR(r, τ) ·E(t− τ, r) (9.5)

The quantity R(r, τ) is called the polarization response function of the first order. In addition,
R(r, τ) is zero when these time differences become negative. Otherwise, if τ < 0 and R(r, τ) 6= 0,
a field value at a time later on, would have an influence on the value of the polarization at time
t. This is of course impossible, as polarization can only be influenced by field values at previous
moments and not by future moments. This is called the principle of causality.

9.1.2 Polarization in the frequency domain - linear materials

The above equations in the time domain can easily be transformed into the frequency domain by
applying

P(t) =
∫ ∞
−∞

dωP(ω) exp(jωt) (9.6)

P(ω) =
1

2π

∫ ∞
−∞

dtP(t) exp(−jωt) (9.7)

Using these transformation formulas it is straightforward to deduce (using the convolution theo-
rem) that the electrical susceptibility χ and the polarization response function are related as

χ(ω) =
∫ ∞
−∞

dτR(τ) exp(−jωτ) (9.8)
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As we have seen in chapter 6, χ describes the refractive index as well as absorption and both effects
are dispersive. In the most general case, χ can only be represented as a symmetrical matrix. In this
case the material is anisotropic. This means that the medium has certain preferential directions,
which is the case with e.g. crystalline materials. However, in many cases this matrix can be
reduced to one single number. So the first-order polarization can be written as

P(ω) = ε0χ(ω)E(ω) (9.9)

This is e.g. the case with amorphous materials. In such structures, the orientation of the different
micro-components is random, so that there is no macroscopically preferential direction. Note that
this is exactly the same χ as in relationship (6.5) in chapter 6.

9.1.3 Kramers-Kronig relations

As a result of causality, the real and imaginary parts of χ(ω) = χR(ω)+jχI(ω) are not independent
of each other. This means that a dispersive material (thus with a frequency-dependant χR(ω)) will
also show absorption (described by χI(ω)) and vice versa. The relations between χR(ω) and χI(ω)
are called the Kramers-Kronig relations and are given by

χR(ω) =
2
π
P

∫ ∞
0

ω′χI(ω′)
ω′2 − ω2

dω′ (9.10)

χI(ω) =
2
π
P

∫ ∞
0

ωχR(ω′)
ω2 − ω′2

dω′ (9.11)

with P the principal value of the integral.

With these relationships the real or imaginary part of χ(ω) can be deduced if one part is known
over the entire frequency range.

9.2 Models for linear, isotropic, dispersive materials

In this section we will formulate by means of a few simple models, relations between macroscopic
quantities (namely the refractive index nR and the extinction coefficient nI , bundled in the com-
plex susceptibility) and microscopic parameters, which describe the material. We will distinguish
dielectric materials and metals.

9.2.1 Damped-oscillator model for dielectric structures

In general a material can be described as a collection of damped oscillators, which interact with
the incident light and in that way give cause to refraction and absorption. In materials with no
free charge carriers - named dielectrics - the microscopic response of the incident light is in its
simplest form an oscillation of bounded charged particles (ions, electrons, ...) under the influence
of the electromagnetic waves.

We assume that the material exists of N identical one-dimensional oscillators per unit of volume
with mass m, charge e and dampening coefficient γ. A displacement of the particles from their
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equilibrium state u(t) will cause a number of forces that try to restore the equilibrium. As the bond
between the particles is represented by a damped spring, we have on the one hand Hooke’s law
given by F = −kHu(t) = −mω2

0u(t), where ω0 represents the resonance frequency associated with
the spring constant kH , and on the other hand a dampening force −mγ dudt . Therefore Newton’s
law for the damped oscillation of these particle becomes

m
d2u

dt2
(t) = −mγdu

dt
(t)−mω2

0u(t) (9.12)

The interaction between these oscillators and the incident light can be described by adding another
power term to this damped harmonic oscillator equation. This power term oscillates with the
frequency of the incident light and is proportional to the charge of the oscillator as well as the
magnitude of the electric field E(t) = Re {E exp(jωt)} of the incident light, thus

m
d2u

dt2
(t) = −mγdu

dt
(t)−mω2

0u(t) + Re {eE exp(jωt)} (9.13)

By going to the frequency domain with u(t) = Re {u exp(jωt)}we get

(−mω2 +mjγω +mω2
0)u = eE (9.14)

or

u =
eE

m(ω2
0 − ω2 + jγω)

(9.15)

We conclude that the displacement u depends on the material parameters as well as on the incident
light. The total effect of the oscillation of N identical oscillators is a polarization of the material,
which is given by the number of electric dipoles per unit of volume. The induced dipole moment
of one single oscillator is equal to eu. The polarization P (t) = Re {P exp(jωt)} is then

P = Neu =
Ne2E

m(ω2
0 − ω2 + jγω)

(9.16)

Furthermore because P = ε0χE, the (linear) susceptibility becomes:

χ =
Ne2

mε0

1
(ω2

0 − ω2 + jγω)
(9.17)

The first factor on the right side of this relationship is usually indicated as the square of a fre-
quency, the so-called plasma frequency ωp, namely

ωp =

√
Ne2

mε0
(9.18)

Relationship (9.17) represents a resonance.

As seen in chapter 6, the relationship between the refractive index nR, the extinction coefficient nI
and the linear susceptibility χ is given by,

(nR + jnI)2 = 1 + χ (9.19)
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Figure 9.1: Example of the refractive index and extinction coefficient for a resonant dielectric.

or

n2
R − n2

I = 1 +
ω2
p(ω

2
0 − ω2)

(ω2
0 − ω2)2 + γ2ω2

(9.20)

−2nRnI =
γωω2

p

(ω2
0 − ω2)2 + γ2ω2

(9.21)

It is obvious that the microscopic dampening coefficient results in a macroscopic extinction coeffi-
cient.

Exercise

Materials with a low density have a refractive index close to 1. Furthermore, their extinction coefficient
is small usually. Approximate the equations (9.20) and (9.21) in this situation and find a closed rela-
tionship for nR as well as nI . Check if the limit of nR for ω = 0 and ω =∞ is approximately 1 and try
to explain this.

A typical sketch of nR(ω) and nI(ω) is given in figure 9.1.

Above we implicitly assumed that the so-called local field, which is felt by the microscopical par-
ticles is equal to the electric field of the incident light. This applies only if the density of the
oscillators in the material is small, such as in a gas. For dense materials we have to take the field
caused by neighbouring oscillators into account, which causes the so-called Lorentz contribution.

A typical dielectric material has multiple resonances that correspond with different lattice and
electron vibrations. The total susceptibility is then equal to the sum of the contributions of the
different resonances. An example is given in figure 9.2. The interaction between the incident light
and the ions, respectively electrons, can be seen.

Exercise

Can you explain the order of the interactions? In other words, why do the ions have a lower interaction
frequency than the electrons?

The extinction coefficient only has contributions near the different resonance frequencies, while
the refractive index is different from zero for all frequencies. In the limit for ω → ∞ one obtains
n = 1, no particle is able to move along with the frequency of the incident light. In other words,
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Figure 9.2: Example of the refractive index and extinction coefficient for a dielectric.

the light sees no particles. The successive resonances increase the refractive index for decreasing
frequencies. Between the different resonances, the refractive index is approximately constant. We
can also see that dispersion plays a role especially near the resonances, both for the refractive
index and the extinction coefficient.

In reality, the two spectra show not only resonances, but also relaxations. Then there is no sudden
augmentation of the refractive index, but a gradual transition between the two levels.

9.2.2 Drude-model for metals

Metals differ substantially from dielectric materials because they contain electrons that are not
bound to the ion-cores. The incident light now interacts with these particles and moves them.
But, contrary to the damped resonator model, they are (almost) not drawn back to their origi-
nal position. These electrons are almost free particles and the incident light will now generate
microscopic currents instead of oscillations.

The movement of the charges in a metal can be described by means of an equation that only
incorporates the dampening force on these particles. We do not have to take the restoring Hooke
force from the damped oscillator model into account, as the particles are not bound now. Thus,
this gives

m
d2u

dt2
(t) = −mγdu

dt
(t) (9.22)
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Figure 9.3: Example of the refractive index and extinction coefficient for a metal.

On the right side we now add the driving force from the incident light as a result of the interactions
with the free electrons. Thus, we get

m
d2u

dt2
(t) = −mγdu

dt
(t) + Re {eE exp(jωt)} (9.23)

Again we change to the frequency domain, with u(t) = Re {u exp(jωt)}. We get

u =
eE

m(−ω2 + jγω)
(9.24)

The induced polarization P associated with the interaction between the incident light and the free
electrons in metals becomes

P =
Ne2E

m(−ω2 + jγω)
(9.25)

and the (linear) susceptibility is

χ =
Ne2

mε0

1
(−ω2 + jγω)

=
ω2
p

(−ω2 + jγω)
(9.26)

Using the relationship between the refractive index nR, the extinction coefficient nI and the linear
susceptibility, we get

n2
R − n2

I = 1−
ω2
p

ω2 + γ2
(9.27)

−2nRnI =
γ

ω

ω2
p

ω2 + γ2
(9.28)

A sketch of nR(ω) and nI(ω) is shown in figure 9.3. The realistic case of the metal Au (gold) is
presented in figure 9.41.

These equations differ strongly compared to the case of dielectric structures, because the lack of
a resonance term. The singularity that we obtained when γ = 0 has now vanished. On the other
hand, the limit ω → 0 is now singular. Physically this means that metals are opaque for low

1reminder: 1µm = 1.24eV
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Figure 9.4: Example of the refractive index and extinction coefficient of gold.

frequencies. When we take the limit ω → ∞ we get nR = 1 and nI = 0 again. In other words,
metals are also transparent at high frequencies, like e.g. X-rays.

We will now try to deduce a relationship for the penetration depth of low-frequency electromag-
netic waves in metals. For very low frequencies we can approximate equation (9.26) as

χ ≈
ω2
p

jγω
(9.29)

In addition, since
√

1
j = 1−j√

2
, we get

nR ≈ −nI ≈
ωp√
2γω

(9.30)

The penetration depth is now defined as the distance by which the intensity of the incident light
drops to a 1/e fraction of its original value. Assume that the propagation occurs along the z-axis,
and that the metal extends along the positive z-axis, then the intensity is given by

I = I0 exp(−αz) (9.31)

with I0 the intensity at z = 0. The absorption coefficient α is related to nI as follows

α = −2
ω

c
nI (9.32)

In this way we get the penetration depth l

l =
1
α

= − c

2ωnI
=

c

ωp

√
γ

2ω
(9.33)

For a good conductor like copper, the penetration depth is

lCu =

√
1

48πω
m =

0.081√
ω
m (9.34)
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Exercise

Calculate the penetration depth of copper for an impinging wavelength of 1.55µm. What is the needed
thickness of a copper layer in order to let 99% of the incident light through at the same wavelength?
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Chapter 10

Photons and Atoms
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10.1 Atoms and molecules

Matter consists of atoms. These atoms can be rather isolated from each other, like in a thin gas,
or they can interact with each other and form molecules or crystal structures in the liquid or
solid phase. The movement and mutual interaction of all particles is determined by the laws of
quantum mechanics. The behavior Ψ(r, t) of one single particle with mass m in a potential energy
V (r, t) is determined by the time-dependent Schrödinger equation.

−~2

2m
∇2Ψ(r, t) + V (r, t)Ψ(r, t) = i~

∂

∂t
Ψ(r, t) (10.1)

A system consisting of multiple particles satisfies a more extensive equation (different Ψ’s). In
addition, the potential energy contains all sorts of terms allowing interactions with other particles
and exterior fields. The probability of finding the particle at a position r (volume cell dr) during
the interval [t, t+ dt] is

dP (r, t) = |Ψ(r, t)|2 drdt (10.2)

To determine the allowed energy states for a particle (assuming that the Hamiltonian and thus
V(r) is independent of time), we can use separation of variables on equation (10.1) and we get

Ψ(r, t) = Ψ(r) exp
(
i
E

~
t

)
(10.3)
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whereby Ψ(r) satisfies the time-independent Schrödinger equation

−~2

2m
∇2ψ(r) + V (r)ψ(r) = Eψ(r) (10.4)

These energy levels can be either discrete or continuous. For a system with multiple particles,
a similar equation applies. For such systems, the energy levels can even form bands of discrete,
but very closely spaced values, like e.g. in semiconductors. The interaction with an external field,
like an incident light beam, can cause the system to transfer to another energy level by absorbing
photons from this beam.

10.1.1 Energy levels

Isolated atoms

The energy levels of an atom with Z electrons can be determined approximately by solving the
time-independent Schrödinger equation, which describes the movement of Z particles in the field
caused by the nucleus (typically a Coulomb potential) as well as the Coulomb interaction between
the electrons themselves. The simplest problem is that of the isolated hydrogen atom. After solv-
ing the Schrödinger equation, we ultimately get for the discrete energy levels

Eq = −mre
4

2~2q2
q = 1, 2, 3, ... (10.5)

with e the charge of the electron and mr the reduced mass of the system, defined as

mr =
mM

M +m
≈ m (10.6)

with m the electron mass and M the mass of the hydrogen nucleus.

Molecular systems

The energy levels of systems with multiple atoms, like molecules, are a lot more complex. On
the one hand they are the result of the valence electrons which can move freely in the field of
the atomic nuclei and the other (bound) electrons. These electrons cause the bond between the
different atoms. On the other hand the nuclei can (together with their strongly bound electrons)
move w.r.t. each other, which causes rotational and vibrational energy levels. We will explain this
in more detail below.

• The electronic states in molecules are a lot more difficult to determine than these in the case
of isolated atoms. As mentioned before, they are the consequence of the movement of quasi-
free electrons (valence electrons) in the field caused by the different atomic nuclei and they
are the result of the interaction between the different valence levels of the valence electrons in
the original atoms. The levels are discrete, as was the case for atoms. The energy difference
between successive energy states is, like in isolated atoms, typically 1 to 10eV .
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• In additon, molecules can also vibrate because the mutual distance between the atomic nu-
clei can vary dynamically. This causes a splitting up of each electronic state in different
vibrational levels. A diatomic molecule, such as CO, can for example be modeled as a sys-
tem consisting of two masses that are connected with each other by a spring. The whole
forms a harmonic oscillator with potential energy V (x) = 1

2kx
2 with x the coordinate along

the connecting axis. As seen in chapter 8, the energy levels of a harmonic oscillator are given
by

Eq =
(
q +

1
2

)
~ω q = 0, 1, 2, ... (10.7)

where ω = k
mr

. Typical values of ~ω are 0.05− 0.5eV . This corresponds with energy levels in
the infrared. More complicated molecules can display different kinds of vibration, according
to the atoms that are moving. Each type of vibration is represented by its own quantum
number q.

• Finally, each vibrational energy level demonstrates different rotational levels. These cor-
respond to rotational movements of the molecule around different axes. For a diatomic
molecule, only rotation around the gravitational point (which is located on the connecting
axis between the two atoms) can occur. The energy levels are given by

Eq = q (q + 1)
~2

2=
q = 0, 1, 2, ... (10.8)

with = the moment of inertia. The differences between different rotational energy levels are
situated between 0.001 and 0.01eV . These values are in the far-infrared.

The transitions between all these different energy levels are submitted to a number of rules, the
so-called selection rules, which ensure that not all transitions are allowed.

Solid-state systems

In solids there are typically a bunch of atoms and molecules located very close to each other. Like
in molecules, the energy states can be determined by on the one hand considering the movement
of the electrons and on the other hand by taking the possibility of vibrational and rotational states
into account. We will only explain the role of the valence electrons a bit more thoroughly. In
contrast to molecules, this causes a quasi-continuous spectrum that consists of very closely spaced
energy levels as if they form bands. These bands are separated from each other by forbidden zones
and they fundamentally determine the properties of the solid.

In a system consisting of N closely spaced atoms1, such an energy band consists of N different
energy levels. In the three-dimensional case, it is possible that these bands partially overlap. Be-
cause of the Pauli-principle, each energy level can contain 2 electrons, namely one spin-up and one
spin-down. Thus, each energy band can contain 2N electrons. All this gives rise to three possible
situations:

1In the case of N atoms located far away from each other, we have in fact one single level that is N -times degener-
ated. In other words, by bringing the atoms near to each other, an interaction arises that cancels out the overlap of the
energy levels, but on the contrary forms a band of N levels.
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Figure 10.1: Energy levels of solid-state systems.

• Assume each atom has an odd (2k+ 1 with k natural) number of electrons, so that the entire
system consists of (2k + 1)N electrons, then we have, besides completely filled (with 2N
electrons) and completely empty bands, also a half filled energy band (with N electrons)
(figure 10.1(a)). This band is called the valence band. The previous is also possible with
an even number of electrons when the last filled band partially overlaps with the following
band (figure 10.1(b)). Because of the many empty states, electrons can easily be excited under
influence of e.g. an external electric field. Concretely, this means that they can move easily
through the solid. In other words, these are metals.

• When each atom has an even number of valence electrons and no band overlap occurs, then
we only have fully filled bands, that are separated by a forbidden zone from the empty bands
(figure 10.1(c)). It takes a lot of energy to excite such electrons. These materials are called
isolators.

• It is however also possible that this forbidden zone is not very large (figure 10.1(d)). So that
these electrons can leap over this zone by thermal excitation, and end up in the first non-
filled band, the so-called conduction band. These materials have some resistance, but it is
not insurmountable. These are the so-called semiconductors.

10.1.2 Occupation of energy levels in thermal equilibrium

Each atom or molecule in a whole of atoms and molecules continually undergoes transitions be-
tween the different energy levels because of thermal excitation and relaxation; for kinetic energy
(caused by temperature) is continually being exchanged when the different particles collide with
each other. These random transitions are described with statistical physics and result in a number
of thermal distributions.
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Figure 10.2: The Boltzmann distribution.

Boltzmann distribution

Consider a collection of identical atoms or molecules in a medium such as a dilute gas. Each atom
is then located in one of the allowed energy statesE0, E1, E2, ... If the system is in a state of thermal
equilibrium2 at a temperature T , then the probability that an arbitrary atom is in an energy state
Em, is given by the Boltzmann distribution

P (Em) = A exp
(
− Em
kBT

)
(10.9)

with A chosen so that
∑

m P (Em) = 1 and kB = 1.38× 10−23JK−1, Boltzmann’s constant. This is
an exponentially decreasing function of the energy (see figure 10.2).

For a large number of atoms N , the number of atoms Nm in the energy state Em is thus equal to

Nm = AN exp
(
− Em
kBT

)
(10.10)

and the proportion between the number of atoms in state Ei and the number in state Ej is thus

Ni

Nj
= exp

(
−Ei − Ej

kBT

)
(10.11)

The Boltzmann distribution clearly depends on the temperature. At T = 0K all the atoms are
in the ground state (logical). With rising temperature, the number of atoms occupying a higher
energy state increases. At equilibrium, the occupation of a higher energy level is, averagely speak-
ing, always lower than the occupation of a lower energy level. Thus, ifEi < Ej thenNi > Nj . This
is no longer necessarily true if the whole of the atoms is no longer in equilibrium. The situation
where Ei < Ej and Ni < Nj is called population inversion and lies at the base of the operation of
a laser. This will be explained in chapter 13.

Until now we assumed that an atom only has one state with energy Em. However, this is not
always the case: degenerate states are possible3. In general, we get

Ni

Nj
=
gi
gj

exp
(
−Ei − Ej

kBT

)
(10.12)

where gm represents the number of states with energy Em.
2E.g. by bringing the atoms in contact with a large reservoir at temperature T .
3Recall e.g. the different spin states.
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Figure 10.3: The Fermi-Dirac distribution

Fermi-Dirac distribution

Electrons in semiconductors satisfy another occupation distribution. As the atoms in such a situ-
ation are closely spaced to each other, the material has to be treated as one single system4. This
means that each possible state is either occupied or unoccupied, whereas in a system ofN isolated
particles all particles can occupy the same state (e.g. at T = 0)5. The probability that a state with
energy E is occupied, is then given by

f(E) =
1

exp
(
E−Ef
kBT

)
+ 1

(10.13)

This is called the Fermi-Dirac distribution, with Ef the Fermi-energy. We get that f(E) = 1
2 if

E = Ef . The Fermi-Dirac distribution is depicted in figure 10.3.

For E � Ef , we obtain

f(E) ∝ exp
(
−
E − Ef
kBT

)
(10.14)

and thus we again get the Boltzmann distribution.

10.2 Interactions between photons and atoms

As mentioned before, an atom can be excited by absorption of a photon, and inversely it can be
relaxed by emission of a photon. Now we go into a bit more detail.

Consider the energy levels E1 and E2 of an atom (with E2 > E1) in a cavity with volume V .
We are especially interested in photons with an energy hν0 = E2 − E1, as this corresponds with
the energy difference between the two atomic levels. Such photon-atom interactions can formally
be studied with quantum electrodynamics. Here, we only mention the results. The interactions
between atoms and photons are separated into three types, namely spontaneous emission, stimu-
lated emission and (stimulated) absorption.

4Recall the formation of energy bands by bringing the atoms closer to each other.
5The number of different occupied energy states occupied in this system is then also a lot larger than in the case of a

system with isolated atoms, where often the same energy state is occupied
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Figure 10.4: Spontaneous emission.

Figure 10.5: Example of a lineshape function.

10.2.1 Spontaneous emission

If an atom is initially in an energy state E2, it can spontaneously make a transition to a lower
energy state E1 by emission of a photon in a radiation mode with a specific energy hν ≈ E2 − E1

(figure 10.4(a)). The process in which this happens is called spontaneous emission, as the transition
occurs independent of the number of photons with this energy that are already present in the
cavity.

In a cavity with volume V , the probability density (per second) psp for spontaneous emission to
occur, depends on the frequency ν:

psp =
c

V
σ(ν) (10.15)

with σ(ν) a function centered around the atomic resonance frequency ν0 = E2−E1
h . This function

is called the transition cross section and is expressed in m2. This function can be determined by
using the time-dependent Schrödinger equation. In practice, the characterization is usually done
experimentally. The normalized version of this function is also called the lineshape function g(ν)

g(ν) =
σ(ν)∫
σ(ν)dν

(10.16)

A typical example of a lineshape function is given in figure 10.5. The width of this function is
called the linewidth ∆ν, defined as the full width of g(ν) at half its maximum (FWHM).

The term ‘probability density’ means that the probability of spontaneous emission between the
times t and t + dt is equal to pspdt. Thus, having N2 atoms in the energy state E2, the number of
atoms that spontaneously emits a photon during the time interval dt becomes:

dN2 = −pspN2dt (10.17)
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so that the population N2 evolves as

N2(t) = N2(0) exp(−pspt) (10.18)

Until now, we have studied only spontaneous emission of photons into a specific cavity mode
with frequency ν. The density of these modes (per unit of volume and frequency) in a three-
dimensional cavity is given by M(ν) = 8πν2

c3
. An atom can however emit a photon in any radiation

mode of frequency ν ≈ E2−E1
h . We get the total spontaneous emission probability density Psp by

integrating over all frequencies, namely,

Psp =
∫
psp(ν)VM(ν)dν (10.19)

= c

∫
σ(ν)M(ν)dν (10.20)

≈ cM(ν0)
∫
σ(ν)dν (10.21)

=
8π
λ2

0

∫
σ(ν)dν (10.22)

This relationship is independent of V . The fact that σ(ν) is typically varying faster than M(ν) has
been taken into account. The spontaneous lifetime τsp is defined as

τsp =
1
Psp

(10.23)

A = Psp = 1
τsp

is also called the A coefficient of Einstein. He deduced the expression for A by
analyzing the photon-atom interactions in thermal equilibrium.

10.2.2 Stimulated emission

If an atom is initially in an energy state E2 and the radiation mode with frequency ν ≈ E2−E1
h

contains a photon, then the atom can also make a transition to a lower energy state E1 stimulated
by this mode by emitting a photon that also belongs to this mode (figure 10.4(b)). This process is
called stimulated emission. The newly emitted photon is in every aspect the same as the already
existing photon of that mode. This lies at the base of laser operation.

The probability density pst of this process in a cavity with volume V is, in the presence of one
photon in the mode, the same as in the case of spontaneous emission, namely

pst =
c

V
σ(ν) (10.24)

If the mode contains n photons, the total probability density becomes

Pst = n
c

V
σ(ν) (10.25)

The total emission probability of a photon in a cavity mode with frequency ν is

psp + Pst = (n+ 1)
c

V
σ(ν) (10.26)
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In quantum electrodynamics, spontaneous emission is seen as the process stimulated by the zero-
point energy of a mode (analogous to the zero-point energy of the harmonic oscillator.

Now we consider a cavity with a broadband spectral energy density (energy per unit of volume
and frequency) given by ρ(ν). The number of photons with frequency between ν and ν+dν in the
cavity is then ρ(ν)

hν V dν, so that the total stimulated emission probability density Pst becomes

Pst =
∫
pst(ν)

ρ(ν)
hν

V dν (10.27)

= c

∫
ρ(ν)
hν

σ(ν)dν (10.28)

≈ ρ(ν0)λ0

h

∫
σ(ν)dν (10.29)

=
λ3

0

8πhτsp
ρ(ν0) (10.30)

Here we have again taken into account that σ(ν) is considered much more narrow than ρ(ν). If
we now define the average number of photons per mode as

n̄ =
λ3

0

8πh
ρ(ν0) (10.31)

we get

Pst =
n̄

τsp
= n̄Psp (10.32)

The quantity λ3
0

8πhτsp
is also called Einstein’s B coefficient. As mentioned before, Einstein used a

different approach to deduce this.

10.2.3 Absorption

If an atom is initially in an energy state E1 and a radiation mode with frequency ν ≈ E2−E1
h

contains a photon, then the atom can make a transition to a higher energy state E2 by absorbing
this photon (figure 10.4(c)). Thus, absorption is a process stimulated by the presence of a photon
with an appropriate frequency.

The probability density pab for absorption of a photon from a given mode with frequency ν in a
cavity with volume V , is the same as the one for spontaneous and stimulated emission, namely

pab =
c

V
σ(ν) (10.33)

Now if there are n photons in this mode, then the total absorption probability density Pab is equal
to

Pab = n
c

V
σ(ν) (10.34)

as only one atom can be absorbed and the events are mutually exclusive. Note Pab = Pst.
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Analogously to stimulated emission, we can prove that in the presence of a broadband spectral
energy density ρ(ν), the total absorption density Pab is also given by

Pab =
n̄

τsp
= n̄Psp (10.35)

so that again Pab = Pst.

10.3 Thermal light

Light emitted by atoms, molecules and solids under the condition of thermal equilibrium and in
the absence of other energy sources, is called thermal light. We will study the properties of thermal
light based on the interactions between photons and atoms.

10.3.1 Thermal equilibrium between atoms and photons

Consider a cavity of unit volume with the walls consisting of a large number of atoms that have
two different energy levels E1 and E2 (with again E2 > E1). Denote the number of atoms per unit
volume that are at the time t in state 1 by N1(t) and in state 2 by N2(t). Spontaneous emission will
cause electromagnetic radiation in the cavity, assuming that the population of the second energy
level is initially not equal to zero. At its turn, the radiation causes stimulated emission as well
as absorption. These three processes result in thermal equilibrium between on the one hand the
atoms and on the other hand the radiation of photons. We assume that each radiation mode with
frequency lying in the linewidth of g(ν) is occupied by an average number of photons n̄. This
means that

Pst = Pab =
n̄

τsp
(10.36)

Let us consider spontaneous emission. Analogous to section 10.2.1, the number of atoms sponta-
neously emitting a photon during the time interval dt is equal to

dN2 = −N2

τsp
dt (10.37)

so that the population N2 evolves as an exponentially decreasing function

N2(t) = N2(0) exp(− t

τsp
) (10.38)

However, spontaneous emission is not the only interaction that occurs. In the presence of radiation
stimulated emission and absorption will happen, which influences the occupationsN1 andN2. Let
us first consider absorption. At a time t N1 atoms per unit volume are able to absorb a photon.
During the time interval dt this will cause a rise of the number of atoms at the energy level E2

with dN2(t):

dN2 = N1Pabdt =
N1n̄

τsp
dt (10.39)
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Analogously, stimulated emission causes a decrease of the number of atoms in state 2, given by

dN2 = −N2Pstdt = −N2n̄

τsp
dt (10.40)

All these processes (spontaneous emission, stimulated emission and absorption) together give rise
to the equation for the rate of change of the population density N2(t) of the energy level E2

dN2

dt
=
N1n̄

τsp
− N2(n̄+ 1)

τsp
(10.41)

This relationship does not take the interaction of atoms transferring from/to other energy levels
than E1 and E2 into account, so the following also applies

dN1

dt
= −dN2

dt
(10.42)

Neither does this relationship take non-radiative processes and external excitations into account.
The solution at equilibrium dN2

dt = 0 gives

N2

N1
=

n̄

n̄+ 1
(10.43)

which clearly proves that N2 < N1 as expected. Furthermore, when the atoms are at thermal
equilibrium, the following applies according to Boltzmann (assuming no degenerate states)

N2

N1
= exp

(
−E2 − E1

kBT

)
= exp

(
− hν

kBT

)
(10.44)

so that the average number of photons in the mode with frequency ν is

n̄ =
1

exp
(

hν
kBT

)
− 1

(10.45)

The previous derivation applies for a system with two energy levels. The validity of formula (10.45)
goes a lot further. Consider a cavity occupied with atoms having a continuum of energy levels.
Again these will interact with a radiation field through spontaneous emission, stimulated emis-
sion and absorption so that finally thermal equilibrium arises. The average number of photons
with a frequency ν will be given by formula (10.45).

Remark: This is the average of the Bose-Einstein probability distribution6.

10.3.2 Blackbody radiation spectrum

In addition, relationship (10.45) tells us that the average energy of a radiation mode with frequency
ν at thermal equilibrium equals to

Ē = n̄hν =
hν

exp
(

hν
kBT

)
− 1

(10.46)

6This is the equivalent of the Fermi-Dirac distribution (that is only valid for fermions) for bosons. Bosons are par-
ticles like photons, for which the anti-particle is equal to the particle itself. Fermions have different particles and
anti-particles
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Figure 10.6: The blackbody radiation spectrum.

If hν << kBT this becomes, with exp
(

hν
kBT

)
≈ 1 + hν

kBT
,

Ē ≈ kBT (10.47)

This is nothing else than the classic value of the average energy of a radiation mode.

If we multiply the expression of Ē with the mode density (per unit of volume and frequency) of
a three-dimensional cavity M(ν) = 8πν2

c3
, we get the spectral energy density (energy per unit of

volume and frequency), namely

ρ(ν) =
8πhν3

c3

1

exp
(

hν
kBT

)
− 1

(10.48)

This relationship is called the blackbody radiation spectrum and is depicted in figure 10.6. This is
the same expression proposed by Planck in order to solve the problem of the ultraviolet catastro-
phe. Classically one obtains

Ē ≈ 8πν2

c3
kBT (10.49)

which is indeed nothing else than the relationship of Rayleigh-Jeans.

10.4 Luminescent light

An external energy source7 brought into contact with an atomic or molecular system may cause
transitions to higher energy levels. As a consequence, during the decay of these high energy
levels to lower energy levels, the system can emit optical radiation. This non-thermal radiation
is called luminescent radiation and the process is called luminescence. Luminescent radiators are
usually classified according to the source of excitation energy:

• Cathodoluminescence is caused by accelerated electrons that collide with the atomic system
such as in e.g. a cathode ray tube in which the electrons transfer their energy to the phosphor
atoms. The term betaluminescence is used when electrons are generated by nuclear β-decay
instead of an electron gun.

• Photoluminescence is caused by energetic optical photons, for example the radiation caused
by some crystals after illumination with ultraviolet light. The term radioluminescence is
applied when the energy source is an X- or γ-radiator, or other ionizing radiation. Photolu-
minescence is discussed in more detail below.

7In contrast with the situation of thermal light.
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Figure 10.7: Examples of photoluminescent processes.

• Chemiluminescence provides energy by means of chemical reactions. An example is the
radiation of phosphor when it oxidizes in air. Bioluminescence - light emitted by some living
organisms such as fireflies - is another example.

• Electroluminescence is caused by the energy provided by establishing an electric field. An
important example is injection electroluminescence. This occurs when an electric current is
injected into a forward-biased semiconductor junction diode. When the injected electrons
drop from the conduction band to the valence band, they emit photons. This is e.g. the case
in LEDs.

• Sonoluminescence is caused by the energy acquired from a sound wave. Light emitted by
water that is irradiated by a strong ultrasonic source is an example.

10.4.1 Photoluminescence

As mentioned above, photoluminescence occurs when an atomic system is excited to a higher
energy level by absorption of photons, and then spontaneously decays to a lower energy level
by emitting a photon. This emitted photon can not have a higher energy than the original ex-
citing photon, unless multiple photons are together responsible for the excitation of an atom or
molecule. A number of examples of luminescence are shown in figure 10.7. Intermediate nonra-
diative processes are also possible, indicated by the dashed line in figure 10.7. The electron can
also temporarily end up in a quasi-stable state and then later decay with emission of a photon.
This causes so-called delayed luminescence.

On the other hand, in photoluminescence we can distinguish radiative transitions allowed by the
selection rules - this is called fluorescence - and radiative transitions forbidden by the selection
rules - this is called phosphorescence. The lifetime of the electron after excitation is a lot smaller
(order 0.1 − 10ns) in the case of fluorescence compared to the lifetime in the case of phosphores-
cence (typically of the order 1ms− 10s).

Photoluminescence occurs in many materials, including a few simple inorganic molecules, such
as N2, CO2, Hg. It also happens in noble gases, inorganic crystals like diamond, zinc sulfide,
ruby and different aromatic crystals. Even semiconductors can act as photoluminescent materials.
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Part IV

Light as information carrier



Chapter 11

Analog and digital modulation of an
optical carrier
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11.1 Introduction

Optics is often used for communication purposes. In this application, an optical carrier (an elec-
tromagnetic wave at optical frequencies) is modulated by an information signal at the transmitter
side, transported over a medium (e.g. free space or optical fiber) and demodulated at the receiver
to retrieve the information encoded on the optical carrier. The high frequency of the optical car-
rier, typically around 200THz, together with the high bandwidth of the channel medium, allows
transporting huge amounts of information in a given time frame, which is one of the major ad-
vantages of optical communication. In this chapter we will elaborate on how information can be
transferred onto an optical carrier at the transmitter side, and how this information is retrieved at
the receiver. Both the modulation of analog and digital data signals will be considered.
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11.2 Analog versus digital modulation

Both analog and digital data signals can be imprinted on an optical carrier. The principal feature
of a digital communication system is that during a finite interval of time, it sends a waveform from
a finite set of possible waveforms. This is in contrast to an analog communication system, which
sends a waveform from an infinite variety of waveform shapes with theoretically infinite resolu-
tion. While analog communication systems can in principle provide communication with infinite
resolution, these communication systems are much more prone to distortion of the signal during
the transport over the medium between transmitter and receiver than in digital communications.
In a digital communication system, the objective at the receiver is not to reproduce a transmitted
waveform with precision; it is, instead, to determine from a noise and other impairments per-
turbed signal which waveform from the finite set of waveforms has been sent by the transmitter.
This makes digital modulation more robust than analog modulation. A drawback of digital mod-
ulation systems is that they often require a larger bandwidth to send the same information, which
makes them less bandwidth efficient (although compression and coding can reduce the required
bandwidth). In the following sections we will outline both the analog and digital modulation
formats that are often used in practical communication systems.

11.3 Spectral content of a modulated optical carrier

An important property of a modulated optical signal is its frequency spectrum or spectral content.
This spectrum can be obtained by calculating the Fourier transform F (ω) of the optical signal f(t)
as

F (ω) =

+∞∫
−∞

f(t) exp(−jωt)dt (11.1)

The optical signal f(t) represents the time variation of an arbitrary component of the electromag-
netic field.

For a real signal f(t), one can easily find that F (−ω) = F ∗(ω).

For the monochromatic optical carrier ψ(t), with

ψ(t) = A sin(ωct+ ϕc) (11.2)

the frequency spectrum is given by

F (ω) =
A

2j
[
ejϕc∂(ω − ωc)− e−jϕc∂(ω + ωc)

]
(11.3)

with ∂(ω) the Dirac-function.
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11.4 Analog modulation of an optical carrier

In this section we will describe various methods for analog modulation of an optical carrier. Mod-
ulation of the amplitude, the phase and frequency of the optical carrier signal will be discussed.

11.4.1 Amplitude modulation

Sinusoidal modulation of an optical carrier

A basic example of amplitude modulation of a monochromatic optical carrier is the sinusoidal
modulation. In this case we can write the field as

ψ(t) = A(1 +m sin(ωst+ ϕs)) sin(ωct+ ϕc) (11.4)

in which ωc is the radial frequency of the optical carrier, while ωs is the radial frequency at which
the amplitude of the optical carrier is modulated. m determines the depth of the amplitude mod-
ulation (0 < m < 1). The spectral content of this signal is characterized by its Fourier transform,
which can be written in the case of sinusoidal amplitude modulation as

F (ω) = F[A(1 +m sin(ωst+ ϕs)) sin(ωct+ ϕc)] (11.5)

or

F (ω) = F[A sin(ωct+ϕc) +
Am

2
(cos((ωc − ωs)t+ (ϕc −ϕs))− cos((ωc + ωs)t+ (ϕc +ϕs)))] (11.6)

From this equation we can conclude that the sinusoidal amplitude modulated signal contains
three frequency components (sometimes also referred to as tones), which results in three dirac-
functions in the frequency spectrum (considering only the positive frequencies): ωc, ωc − ωs and
ωc + ωs. Since the carrier frequency ωc in practice is much larger than the modulation frequency
ωs, the three frequency components are closely spaced.

While the weight of the dirac function around the radial frequency ωc is independent of the mod-
ulation depth, the weight of the dirac functions around (ωc−ωs) and (ωc+ωs) linearly scales with
this modulation depth.

A sinusoidally modulated optical carrier and its Fourier transform is shown in figure 11.1(a).

Amplitude modulation of an optical carrier using a deterministic signal

A more general amplitude modulated signal can be written as

ψ(t) = f(t) sin(ωct+ ϕc) (11.7)
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The spectral content of this signal can be written as

F (ω) = F[f(t) sin(ωct+ ϕc)] = F[f(t)] ∗ F[sin(ωct+ ϕc)] (11.8)

using the Fourier transform convolution property of a product of two time varying functions.
Using equation 11.3, the spectral content can be written as

F (ω) = F[f(t)] ∗ [
1
2j

(ejϕc∂(ω − ωc)− e−jϕc∂(ω + ωc))] (11.9)

or

F (ω) =
1
2j
ejϕc f̃(ω − ωc)−

1
2j
e−jϕc f̃(ω + ωc) (11.10)

with f̃(ω) the Fourier transform of the function f(t). This means that the spectral content of the
amplitude modulated signal consists of the spectral content f̃(ω), centered around the carrier
radial frequency ωc (and −ωc). An amplitude modulated optical carrier and its Fourier transform
is shown in figure 11.1 (b) . Again, since the spectral content of the time varying function f(t)
is much more narrow band than the carrier frequency ωc, the spectral content of the modulated
carrier is centered closely around this carrier frequency.

Square wave modulation of an optical carrier

Another important example of amplitude modulation of an optical carrier is the use of a square
wave function, especially due to its use in digital communications. In this case, the field can be
written as

ψ(t) = A(1 +ms(t)) sin(ωct+ ϕc) (11.11)

with s(t) satisfying

s(t) = +1
= −1

(iT < t < iT + T1)
(iT + T1 < t < (i+ 1)T )

(11.12)

in which i is an integer, T is the square wave period, T1
T is the duty cycle of the square wave and

m is the modulation depth.

Using the formalism described in the previous section to determine the spectral content of the
signal, one can find that the Fourier transform of the square wave modulated signal consists of a
dirac function at the optical carrier radial frequency, surrounded by an infinite set of dirac func-
tions spaced by a radial frequency 2π

T (ω = ωc ± k 2π
T ) and with a weight proportional to

wk =
Am

πk

[
1− exp(−j2kπT1

T
)
]

(11.13)
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with k an integer not equal to zero. Indeed, one can write the periodic function s(t) as a Fourier
series

s(t) =
+∞∑

k=−∞
wk exp(j

k2πt
T

) (11.14)

with

wk =
1
T

∫ T

0
s(t) exp(−j k

T
2πt)dt =

1
πk

[
1− exp(−j2kπT1

T
)
]

(11.15)

Using equation 11.10, this directly results in the spectral content of the square wave modulated
signal, as shown in figure 11.1(c).

11.4.2 Frequency and phase modulation

Besides the amplitude, also the frequency and phase can be used to imprint a signal on an optical
carrier. In these cases, the modulated signal can be written as ψf (t) = A sin(ωc(t)t + ϕc) and
ψp(t) = A sin(ωct+ϕc(t)), in the case of frequency and amplitude modulation respectively. As one
can write

sin(ωc(t)t+ ϕc) = sin((ωc,0 + ω̃(t))t+ ϕc) = sin(ωc,0t+ (ω̃(t)t+ ϕc)) = sin(ωc,0t+ ϕ(t)) (11.16)

it is clear that frequency modulation and phase modulation of an optical carrier are strongly re-
lated. If we consider the special case of sinusoidal phase modulation of an optical carrier, one can
write the field as

ψ(t) = A sin(ωct+ 2πm sin(ωst)) (11.17)

or

ψ(t) =
A

2j
(ej(ωct+2πm sin(ωst)) − e−j(ωct+2πm sin(ωst))) (11.18)

with m the modulation depth of the sinusoidal phase modulation (0 < m < 1).

In order to find the spectral content of a sinusoidally phase modulated monochromatic carrier,
the Bessel functions of the first kind have to be introduced. These functions can be defined as the
coefficients Jk(β) in the so-called two-sided Laurent expansion of the generating function

e
1
2
β(z− 1

z
) =

+∞∑
k=−∞

Jk(β)zk (11.19)
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Replacing z by ejωst, we obtain

x(t) = ejβ sin(ωst) =
+∞∑

k=−∞
Jk(β)ejkωst (11.20)

In other words, Jk(β) is the amplitude of the kth harmonic in the Fourier series expansion of the
periodic signal x(t).

Multiplying equation 11.33 by ejωct yields

x(t)ejωct = ej(ωct+β sin(ωst)) =
+∞∑

k=−∞
Jk(β)ej(kωs+ωc)t (11.21)

From equation 11.17 and equation 11.21, one finds that

A sin(ωct+ 2πm sin(ωst)) =
A

2j
(

+∞∑
k=−∞

Jk(2πm)ej(kωs+ωc)t −
+∞∑

k=−∞
J∗k (2πm)e−j(kωs+ωc)t)) (11.22)

One can show that for real values of β, Jk(β) is also real. Therefore, by taking the Fourier transform
of this expansion, we find that the spectral content of the sinusoidally phase modulated carrier
contains frequency components at ωc + kωs and −(ωc + kωs) (with k an integer from −∞ to +∞)
with a complex amplitude equal to± A

2jJk(2πm). This is shown in figure 11.1(d). The lowest order
Bessel functions of the first kind are shown in figure 11.2. Negative order Bessel functions are
related to these positive order functions by J−n(β) = (−1)nJn(β).

It can be seen in the figure that when β is zero, J0(0) = 1 and Jk(0) = 0 for all k different from
zero. Since J0(β) is the amplitude of the carrier frequency, there are no side bands when β = 0 (as
there is no modulation). As β (and therefore the modulation depth m) increases, the sidebands
begin to grow while the carrier term diminishes. This is how phase modulation produces an
expanded bandwidth as the modulation depth is increased. As a comparison, this is not the case
for a sinusoidally amplitude modulated optical carrier, where the bandwidth doesn’t increase for
an increased modulation depth .

11.4.3 Intensity modulation

So far, the discussed modulation schemes assumed a monochromatic optical carrier onto which
information was imprinted by means of amplitude, phase or frequency modulation. This is the
case when narrow line width laser light is used as an optical carrier. For short distance communi-
cation, often a low cost light emitting diode is used, of which the output intensity is modulated.
As the emission spectrum of this light source is already very broadband, modulating the intensity
nearly doesn’t modify the spectral content of the optical signal.
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Figure 11.1: Various analog modulation formats of monochromatic carriers: amplitude modulation using
a sinusoidal signal, a signal f(t) and a square wave signal, and sinusoidal phase modulation. Thee figures
shown the spectral content are not drawn to scale for clarity (typical optical carrier frequency fc = 193THz
and a typical modulation frequency is fs = 10GHz)

Figure 11.2: Lowest order Bessel functions of the first kind
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Figure 11.3: Principle of Radio-over-Fiber technology

11.4.4 Optical carrier versus radio frequency carrier

From the above discussion it is clear that amplitude, phase and frequency modulation can be real-
ized on a monochromatic carrier signal. No assumptions have been made on the frequency of this
carrier however. Therefore, this carrier could be both an optical carrier or a radio frequency (RF)
carrier. One can also modulate the amplitude of the optical carrier with an RF wave, onto which
the information is encoded. This technique of modulating the radio frequency subcarrier onto
an optical carrier for distribution over i.e. a fiber network is known as radio-over-fiber technol-
ogy (RoF). For example, for the case of a phase modulated RF subcarrier imprinted on an optical
carrier by means of amplitude modulation, the field can be written as

ψ(t) = (1 +A sin(ωsc,RF t+ ϕsc,RF (t)) sin(ωc,OP t+ ϕc,OP (t)) (11.23)

This radio-over-fiber technology is schematically illustrated in figure 11.3.

11.5 Digital modulation

In the previous section the analog modulation of an optical carrier signal was discussed. In this
section we will describe how an optical carrier can be imprinted with digital information. How-
ever, as nearly all information is analog by nature, we will first discuss how one has to transform
the analog information into a digital form, by means of the sampling theorem.

11.6 Sampling theorem

Consider the analog signal f(t) represented in figure 11.4. We will consider this to be a bandlim-
ited signal. This means that the signal contains no energy at radial frequencies higher than some
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Figure 11.4: Nyquist-Shannon sampling theorem: construction of the function x(t)

bandwidth 2πB. The sampling theorem describes how fast one should sample this analog signal
(sampling is the process of converting a signal, i.e. a function of continuous time, into a numeric
sequence, i.e. a function of discrete time) without losing information from the original signal. It
might seem strange that there exists such a minimum sampling rate (referred to as the Nyquist
rate), as all the information in between two samples is lost. However, a signal that is bandlimited
(as assumed) is constrained in how rapidly it can change in time, and therefore how much detail
it can convey in an interval of time. The sampling theorem asserts that the uniformly spaced dis-
crete samples are a complete representation of the signal if the signal bandwidth B is less than
half the sampling rate fs. This is the so called Nyquist-Shannon sampling theorem. In this section
we shall derive this sampling theorem.

To prove the Nyquist- Shannon theorem, we will construct a new signal x(t) from the samples
taken at nTs from the original signal f(t) as follows:

x(t) =
Ts
2π

+∞∑
k=−∞

f(kTs)∂(t− nTs) (11.24)

This signal consists of a set of dirac functions, spaced by the sampling interval Ts and with a
weight equal to the corresponding sample f(kTs), as shown in figure 11.4 . x(t) can be rewritten
as

x(t) =
Ts
2π

+∞∑
k=−∞

f(kTs)∂(t− nTs) =
Ts
2π
f(t)

+∞∑
k=−∞

∂(t− nTs) (11.25)

Calculating the Fourier transform of this signal X(ω) results in

X(ω) =
Ts
2π
f̃(ω) ∗ F [

+∞∑
k=−∞

∂(t− kTs)] =
Ts
2π
f̃(ω) ∗

+∞∑
k=−∞

e−jωkTs (11.26)
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with f̃(ω) the Fourier transform of the bandlimited signal f(t). As

Ts
2π

+∞∑
k=−∞

e−jωkTs =
+∞∑

k=−∞
∂(ω − 2πk

Ts
) (11.27)

we can rewrite equation 11.26 as

X(ω) = f̃(ω) ∗
+∞∑

k=−∞
∂(ω − 2πk

Ts
) =

+∞∑
k=−∞

f̃(ω − 2πk
Ts

) (11.28)

This equation implies that the Fourier transform of the constructed signal x(t) consists of an in-
finite number of replicas of the spectral content of the original analog signal f(t), shifted by 2πk

Ts
.

This is shown in figure 11.5 for two cases: in case (a), the highest radial frequency occurring in the
original analog signal 2πB is larger than π

Ts
, while in case (b), the highest radial frequency occur-

ring in the original analog signal 2πB is smaller than π
Ts

. It is clear that in case (a), it is no longer
possible to reconstruct the original Fourier transform of the analog signal f(t) from X(ω), as part
of the Fourier spectrum overlaps with a shifted version of that spectrum (and adds therefore). In
case (b) the Fourier spectrum doesn’t overlap with a shifted version, and therefore the original
Fourier spectrum (and hence the original analog signal f(t)) can be reconstructed, by passing the
signal x(t) at the receiver side through an ideal low-pass filter with a cut-off radial frequency π

Ts
.

Therefore, as soon as 2π
Ts
≥ 2(2πB) or fs ≥ 2B, all the information of the original bandlimited ana-

log signal is contained in the discrete samples at times n
fs

. This is the so-called Nyquist criterion.

Passing the signal x(t) at the receiver side through an ideal low-pass filter (transmission LP (ω)
equal to 1 for radial frequencies lower than π

Ts
, and zero elsewhere), implies that the individual

dirac pulses need to be replaced by sinc-functions. Indeed

X ′(ω) = LP (ω)X(ω) (11.29)

or

x′(t) = hLP (t)∗x(t) = hLP (t)∗ Ts
2π

+∞∑
k=−∞

f(kTs)∂(t− kTs) =
Ts
2π

+∞∑
k=−∞

f(kTs)hLP (t− kTs) (11.30)

with hLP (t) the impulse response of the filter

hLP (t) = F−1[LP (ω)] =
∫ + π

Ts

− π
Ts

1e+jωtdω =
sin( πtTs )

πt
Ts

2π
Ts

(11.31)

hLP (t) is plotted in figure 11.6. Note that the sinc-function is zero for t = nTs, with n an integer
different from zero.

In case (a), where part of the Fourier spectrum of f(t) overlaps with a shifted version of that spec-
trum, frequencies above half the sampling rate will be reconstructed as (and appear as) frequencies
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Figure 11.5: Spectral content of the signal x(t)

Figure 11.6: shape of the sinc-function required for the reconstruction of the analog input signal
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below half the sampling rate. The resulting distortion is called aliasing; the reconstructed signal
is said to be an alias of the original signal, in the sense that it has the same set of sample values.

In this analysis, we assumed that the signal to be sampled was a baseband signal f(t), this is a
signal with a central frequency at ω = 0. In the case of a modulated carrier, the spectral content
is located around the carrier frequency ωc and −ωc. The information encoded in the signal is
however typically a baseband signal before modulation at the transmitter and after detection at the
receiver. Therefore, the Nyquist-Shannon criterion can also be applied to the discussed modulated
carriers.

In practice, a signal f(t) will never be perfectly bandlimited, neither can the reconstruction for-
mula be precisely implemented. This would require the summing of an infinite number of points,
and weighing it with a sinc-function which is infinitely extending in time. Also, an infinite reso-
lution was assumed, which is a practical system not the case. This quantization which occurs due
to the availability of only a limited number of bits, further distorts the sampling process.

11.7 Bandwidth of optical signals

While in the previous analytical expressions the radial frequency was used to calculate the band-
width of an optical signal, in practice the corresponding frequency f = ω

2π is used. So, a 1.55µm
optical carrier (carrier frequency about 193THz) which is modulated with a periodic signal with a
period of 100ps, occupies an optical bandwidth of a few tens of GHz (depending on the modula-
tion format) around the 193THz carrier frequency.

11.8 Digital modulation formats

In the section on analog modulation formats, information was imprinted directly on an optical
carrier by means of amplitude modulation, phase modulation or frequency modulation. Also
the concept of using RF subcarriers was introduced, which are modulated on an optical carrier.
These schemes are also used for digital modulation formats. One major difference with the analog
modulation is that in digital modulation formats, only a discrete set of signals are available. At
the receiver side, the objective is to determine from a noise and other impairments perturbed
signal which waveform from the finite set of waveforms has been sent by the transmitter. In
this section we will describe amplitude shift keying (ASK), phase shift (PSK) and frequency shift
keying (FSK), as well as a combination of amplitude and phase shift keying, namely quadrature
amplitude modulation (QAM). Besides the modulation formats, we will also consider how the
digital information is demodulated from the optical carrier / RF subcarrier at the receiver side. In
order to schematically represent the different modulation formats, the constellation diagram will
be introduced first.

11.8.1 Constellation diagram

A monochromatic carrier can be modulated in amplitude, phase and frequency. In case the mod-
ulation is restricted to amplitude and phase, the different ”digital symbols” that can be sent by
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Figure 11.7: Constellation diagram

the transmitter can be represented in a two-dimensional constellation diagram, plotting the pos-
sible phasors Akejϕk of the optical carrier in the complex plane, which correspond to a signal
Aksin(ωct + ϕk) in a signalling interval T . An example of such a constellation diagram, in the
case of the square wave amplitude modulation of a monochromatic optical carrier, as described
in the section on analog modulation formats, is shown in figure 11.7. Although in theory the
constellation diagram consists only of discrete points, impairments at the transmitter, along the
communication channel and at the receiver side (such as noise), will blur these constellation di-
agrams, thereby requiring decision circuitry to decide which symbol was originally sent. This
addition of noise will be considered in more detail in the next chapter.

11.8.2 Amplitude shift keying

In amplitude shift keying (ASK), 2N amplitude levels can be sent by the transmitter. These ampli-
tude levels are equidistant. This results in the constellation diagram shown in figure 11.10, for the
case of N = 2. In this case, each symbol sent by the transmitter consists of two bits of information.

In the case N = 1, ASK is referred to as OOK (On-Off keying). This is the simplest form of
amplitude shift keying. However, more complex waveforms can be used to to represent a digital
’1’ or ’0’ in the OOK format . The most used waveforms are non-return-to-zero (NRZ), return-to-
zero (RZ) and Manchester coding.

The NRZ waveform is probably the most commonly used waveform. In this case typically a binary
1 is represented by one level and a binary zero is represented by another level. There is a change
in level whenever the data changes from a one to a zero or from a zero to a one.

In RZ-coding, a binary 1 is represented by a half-bit-wide pulse, and a zero is represented by the
absence of a pulse.
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Figure 11.8: Line coding formats: non-return-to-zero, return-to-zero and Manchester coding

In Manchester coding, a binary 1 is represented by a half-bit-wide pulse positioned during the
first half of the bit interval. A zero is represented by a half-bit-wide pulse positioned during the
second half of the bit interval.

These three modulation formats are illustrated in figure 11.8 .

Besides these waveforms there exist a myriad of other waveform formats (or line codes). The rea-
son for the large selection relates to the differences in performance that characterize each wave-
form. Some waveform formats allow for easy self-clocking (bit synchronization is for example
easier in Manchester coding as there is a transition in the middle of every bit interval wether a
one or a zero is sent), some waveforms are more immune to noise (for example NRZ waveforms
have a better immunity to noise than RZ), and some waveforms allow a more efficient bandwidth
utilization, by allowing a reduction in the required signal bandwidth for a given data rate.

11.8.3 Phase shift keying

In phase shift keying (PSK), only the phase of the optical signal is varied and can take on 2N

different values, while the amplitude stays constant. This means that the constellation points are
located on a circle with radius 1 in the complex plane. The case ofN = 2 is particularly interesting
as it is used a lot in practical systems. This results in the quadrature phase shift keying (QPSK)
constellation diagram shown in figure 11.10.

Differential phase shift keying (DPSK) is a format that is often used in high-speed optical com-
munication systems. The modulating signal is not the binary code itself, but a code that records
changes in the binary code.

For forming for example a DBPSK (differential binary PSK) signal from a BPSK signal (with con-
stellation points at 1 and -1 in the complex plane, which makes it an alternative form of ASK),
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Figure 11.9: BPSK and Differential BPSK modulation format

the BPSK signal is converted to a DBPSK signal by two rules: a 1 in the BPSK signal (phase 0)
is denoted by no change in the DBPSK signal and a -1 (π phase shift) in the BPSK signal is de-
noted by a change in the DBPSK signal. The DBPSK sequence is initialized with a leading 1. An
example of corresponding patterns is shown in figure 11.9. In order to find the optical field, the
optical carrier signal sin(ωct + ϕc) has to be multiplied by the respective (D)BPSK functions. In
differentially-encoded QPSK (DQPSK), the phase-shifts are 0, π2 , π, −π

2 corresponding to data ’00’,
’01’, ’11’, ’10’.

11.8.4 Quadrature amplitude modulation

A combination of Amplitude Shift Keying (ASK) and Phase Shift Keying (PSK) is used in quadra-
ture amplitude modulation (QAM). In this case the constellation diagram consists of a square
lattice of constellation points. When only four lattice points are used (QAM-4), this modulation
format is the same as QPSK, as shown in figure 11.10. More complex constellation diagrams, e.g.
QAM-512, are used in practice, typically in the RF subcarrier modulation format.

11.8.5 Frequency shift keying

In Frequency Shift Keying (FSK), a different frequency of the optical carrier wave is used to rep-
resent the different symbols. Typically, FSK in its standard form (wide-band FSK) consumes a lot
of bandwidth, as two different carrier frequencies are used, which are not very closely spaced.
When the difference between the optical frequencies of the two optical carriers is half of the data
rate and the phase at each bit transition instant is continuous, a so-called minimum shift-keying
(MSK) format is used. The signal s(t) can be written in this case as

s(t) = cos[ωct+ bk(t)
πt

2T
+ φk] (11.32)

where bk(t) takes on the value of +1 and -1, and φk is chosen such that the phase of the signal
changes continuously. From this expression it is clear that the frequency shift keying is the same as
phase modulation of the optical carrier using a sawtooth driving signal. MSK has the advantage
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Figure 11.10: Constellation diagram of various modulation formats: ASK, BPSK, QPSK and QAM-4

of higher spectral efficiency compared to simple FSK. The demodulation is however somewhat
more complicated.

11.9 Demodulation

After the information was modulated onto the carrier at the transmitter and transmitted over the
channel medium, it needs to be demodulated again at the receiver side.

There are two types of demodulation which are distinguished by the need to know the phase of
the carrier (or the RF subcarrier) to perform the demodulation. Demodulation schemes requiring
the knowledge of the phase of the carrier are termed coherent. Those that do not need the phase
are termed incoherent. Incoherent demodulation can be applied to ASK and FSK (when sending
the optical signal through a bandpass filter, which filters out one carrier frequency).

In PSK, the information is demodulated at the receiver by means of coherent optical detection.
Coherent optical detection implies using a local oscillator (LO) at the receiver side, of which the
phase is locked with respect to the source used at the transmitter side. With coherent demodula-
tion systems, the incoming signal is compared with a replica of the carrier wave. For example, by
letting the local oscillator and the incoming field interfere on an envelope detector, we find that a
signal sk is created, the amplitude of which is directly related to the phase of the incoming data
signal.
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sk =< (sin(ωct) + sin(ωct+ ϕk))2 >= 1 + cos(ϕk) (11.33)

The difficulty with coherent detection is the need to keep the phase of the replica signal, termed
local oscillator, ”locked” to the carrier. This is not easy to do, definitely not in optical communi-
cation (it is done frequently for RF subcarrier demodulation). Oscillators are sensitive to (among
other things) temperature, and a ”free-running” oscillator will gradually drift in frequency and
phase.

Therefore, often differential phase shift keying is used. Differential PSK is actually a simple form
of coding. The modulating signal is not the binary code itself, but a code that records changes in
the binary code, as explained in the previous section. This way, the demodulator only needs to
determine changes in the incoming signal phase. This it can do done by comparing the incoming
signal with the same signal which is delayed by one bit period.

11.10 PRBS signals and eye diagrams

For testing a communication channel or individual optical signal processing components, it is
interesting to have a random digital optical signal at the input and assess how the component
under investigation processes this signals. In practice, a pseudo random bit sequence (PRBS) is
used as a data signal. This PRBS is created by an algorithm which generates a sequence of numbers
(bits) that approximate the properties of random numbers. The sequence is not truly random in
that it is completely determined by a relatively small set of initial values. The maximal length of
the PRBS is determined by the algorithm and is 2N −1, after which the PRBS signal starts to repeat
itself.

The eye diagram is an oscilloscope display of a digital signal, repetitively sampled to get a good
representation of its behavior. The eye diagram is a useful tool for the qualitative analysis of sig-
nals used in digital transmission. It provides at-a-glance evaluation of system performance and
can offer insight into the nature of imperfections. Careful analysis of this visual display can give
the user a first-order approximation of the signal-to-noise ratio, clock timing jitter, etc.. Linear
impairments (such as dispersion and the associated intersymbol interference or a lack of band-
width in the system) and nonlinear impairments can be observed. An undistorted eye diagram of
a bandlimited signal together with a ”real life” eye diagram is shown in figure 11.11.

11.11 Multiplexing techniques

Multiplexing techniques are used to more efficiently make use of the bandwidth of the channel
medium (i.e. optical fiber in the case of optical communication). It allows to send multiple sig-
nals, addressed to different users, over a single optical fiber. These signals therefore have to be
multiplexed at the transmitter side and are demultiplexed (unraveled) at the receiver side.
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Figure 11.11: Eye diagram of a PRBS signal: undistorted eye diagram and a real life eye diagram

11.11.1 Wavelength division multiplexing

Wavelength-division multiplexing (WDM) is a technology which multiplexes multiple optical car-
rier signals on a single optical fiber by using different wavelengths of laser light to carry different
signals. This allows for a multiplication in capacity of the fiber-optic link. Each individual optical
carrier can be modulated using a different modulation format. A WDM system uses a multiplexer
at the transmitter to join the signals together, and a demultiplexer at the receiver to split them
apart. This technology is used both in long haul telecommunication systems (using DWDM or
dense WDM, where the different optical carrier wavelengths are spaced 0.8nm or 100GHz apart)
and in shorter distance communication link (using CWDM or coarse WDM, where the different
optical carrier wavelengths typically are spaced 20nm apart).

11.11.2 Frequency domain multiplexing

As discussed before, one can also modulate the amplitude of the optical carrier with an RF sub-
carrier wave, onto which the information is encoded. This means that multiplexing can also be
achieved in the RF domain, using RF subcarriers with a different frequency and imprinting these
on a single optical carrier.

11.11.3 Time domain multiplexing

In the case of time domain multiplexing, the time domain is divided into several recurrent time
slots of fixed length, one for each sub-channel (each user). One TDM frame consists of one time
slot per sub-channel. After the last sub-channel the cycle starts all over again with a new frame.
Each user is only allowed to transmit/receive information in its assigned time slot.
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Figure 11.12: Multiplexing techniques: wavelength division multiplexing, frequency division multiplexing,
time division multiplexing and code division multiple access

11.11.4 Code division multiple access

A hybrid combination of frequency domain multiplexing and time domain multiplexing is code-
division multiple access or CDMA. CDMA employs a special coding scheme (where each trans-
mitter and receiver is assigned a code) to allow multiple users to be multiplexed over the same
physical channel. In this case, the time domain is divided into several time slots, and the assign-
ment of a particular frequency band to a signal source is reordered during each time slot. This is
the so-called frequency hopping CDMA. Each user receives the whole signal, but employs a code
sequence, which allows him to extract the information which was meant for him, while suppress-
ing the other channels.

CDMA is a form of ”spread-spectrum” signaling, since the modulated coded signal has a much
higher bandwidth than the data being communicated. Spread-spectrum techniques allow for
higher security in information transport (eves dropping) and are more resistant to for example
jamming.

These four multiplexing techniques are schematically illustrated in figure 11.12: for the wave-
length division multiplexing different carrier frequencies are individually modulated and multi-
plexed on a single fiber, while in FDM a single optical carrier is imprinted with frequency mul-
tiplexed RF signals. For time domain multiplexing and CDMA, the ”codes” in time space (and
frequency space for CDMA) are also shown.
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Chapter 12

Optical signals with stochastic
modulation
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12.1 Introduction

In the previous chapter, various modulation formats for optical communication were described.
The analysis of these signals was however restricted to deterministic signals: the ”information”
which was encoded on the optical carrier wave was a periodic signal (sinusoidal wave or square
wave), which contains no real information. Also the influence of noise in the communication
channel was not assessed (which is in a real communication system always added, both at the
transmitter side, the communication channel and at the receiver). In order to discuss these topics,
stochastic signal analysis needs to be introduced in this chapter. Indeed, noise can be regarded
as a stochastic process, and also the encoding of ”real” information onto the optical carrier can
be described by a stochastic process (although the information is not random in nature for the
transmitter and receiver).

12.2 Stochastic signals

12.2.1 Stochastic variables

A statistical variable or stochastic variable (e.g. x) is an ensemble of possible values X which all
have a certain probability density of occurrence f(X). A stochastic process x(t) is an ensemble of
possible functionsX(t) with a certain probability density of occurrence f(X(t)). Alternatively, one
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Figure 12.1: Sample functions from a stochastic process

can say that at each time instant t, x(t) is a statistical variable with a certain probability density
function f(x(t)). However the probability function can be different at different times, i.e. f =
f(x; t). An example of a few sample functions Xi(t) from a stochastic process are shown in figure
12.1.

The function f(x(t); t) doesn’t completely define a stochastic process however: it only defines the
first order statistical properties. In general, one also needs higher order statistical properties, e.g.
f(x(t1), x(t2), t1, t2), etc. to completely define a stochastic process.

12.2.2 Stationarity and ergodicity

Most (if not all) of the stochastic processes with a physical origin can be called approximately
stationary. This means that none of their statistics are time-dependent; i.e. a time shift doesn’t
affect any of its statistical properties. For a stationary process, f(x; t) would be independent of
time, i.e. f(x; t) = f(x). The same holds for the average value (or first order moment) of a
stationary process: m =< x(t) > with <> the expectation (or statistical average) value

m =
∫
xf(x)dx (12.1)

with m a constant, independent of time. For a stationary process, the second order moment can
be written as

< x(t1)x(t2) >= f(t2 − t1) (12.2)

Most physical stochastic processes are in addition ergodic, which means that the statistical averages
over different sample functions can also be calculated as time averages of a single sample function.
This ergodicity thus allows to calculate the statistical averages, even if no information about the
statistics is available and it is therefore a very useful property. For ergodic processes one thus has:
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m = lim
T→∞

1
T

∫ T
2

−T
2

x(t)dt (12.3)

12.2.3 Autocorrelation of a stochastic process

The autocorrelationRx of a stochastic process x(t), which is stationary and ergodic, can be defined
as:

Rx(τ) =< x(t)x(t+ τ) >= lim
T→∞

1
T

+T
2∫

−T
2

x(t)x(t+ τ)dt (12.4)

Due to the ergodicity and stationarity, this quantity is not stochastic. The autocorrelation is a
measure of the statistical correlation between the values of x(t) and the values of x(t + τ). That
is, if Rx(τ) decreases rapidly as τ increases, there is little correspondence between values of x and
values of x, a time τ later. Or in other words, in this case we have a stochastic process x(t) which
fluctuates very fast in time.

12.2.4 Spectral density of a stochastic process

Since the autocorrelationRx(τ) decreases rapidly with τ if the stochastic process contains very fast
fluctuations, and vice versa, conclusions about the frequency content of x(t) can be drawn from
Rx(τ). This frequency content is expressed by the power spectrum of x(t), which can be derived as
follows. With Fx(ω) the Fourier transform of x(t), we can express the average power P =< x2 >
as:

P = lim
T→∞

1
T

T
2∫

−T
2

x2(t)dt = lim
T→∞

1
T

T
2∫

−T
2

x(t)dt

+∞∫
−∞

Fx(ω)ejωtdω (12.5)

or

P = lim
T→∞

1
T

+∞∫
−∞

Fx(ω)dω

T
2∫

−T
2

x(t)ejωtdω = lim
T→∞

1
T

+∞∫
−∞

|Fx(ω)|2 dω =

+∞∫
−∞

Sx(ω)dω (12.6)

because Fx(−ω) = F ∗x (ω) for a real signal x(t). The power spectrum of x, Sx(ω), is therefore
defined as:

Sx(ω) = lim
T→∞

1
T
|Fx(ω)|2 (12.7)
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Mathematically speaking, the above analysis was not rigorously correct, as a signal x(t) of infinite
duration doesn’t necessarily have a Fourier transform, e.g. the integral from−∞ to +∞might not
converge or in other words, Fx(ω) could be singular. The power spectrum as defined through the
limit for T on the other hand will always exist, even for infinitely long signals.

Using the definitions for Sx(ω) andRx(τ), one can easily derive the relation between both. Indeed,

Rx(τ) = lim
T→∞

1
T

T/2∫
−T/2

dt
∞∫
−∞

dω1Fx(ω1) exp(jω1t)
∞∫
−∞

dω2Fx(ω2) exp(jω2(t+ τ))

= lim
T→∞

1
T

∞∫
−∞

dω1

∞∫
−∞

dω2Fx(ω1)Fx(ω2) exp(jω2τ)
T/2∫
−T/2

dt exp[jt(ω1 + ω2)]

= lim
T→∞

1
T

∞∫
−∞

dω1

∞∫
−∞

dω2Fx(ω1)Fx(ω2) exp(jω2τ)∂(ω1 + ω2)

(12.8)

This expression can be rewritten as (because Fx(−ω) = F ∗x (ω) for a real signal x(t))

Rx(τ) = lim
T→∞

∞∫
−∞

dω
|Fx(ω)|2

T
exp(jωτ) =

∞∫
−∞

dωSx(ω) exp(jωτ) (12.9)

In other words, the power spectrum and the autocorrelation are each others Fourier transform.
This is the so-called Wiener-Khintchine theorem.

12.2.5 White processes and Gaussian processes

Stochastic processes for which Sx(ω) is constant are called white processes. This implies that the
autocorrelation function is a dirac function or Rx(τ) = N∂(τ).

Stochastic processes are Gaussian if the distribution function f(x1, ..., xn; t1, ..., tn) is Gaussian for
all values of n and t1, ..., tn. Stationary and ergodic Gaussian stochastic processes are completely
determined by their statistical average m and autocorrelation function Rx(τ) or by their statistical
average m and spectral density Sx(ω).

12.3 Power spectrum of digitally modulated signals

In this section we will use the analysis of stochastic signals described above, to assess the power
spectrum of various types of digitally modulated signals. We will describe non-return-to-zero
(NRZ) amplitude shift keying, return-to-zero (RZ) amplitude shift keying and (differential) phase
shift keying signals.
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12.3.1 non-return-to-zero amplitude shift keying

In an amplitude shift keying modulation format, the modulated optical field can be written as
ψ(t) = v(t) sin(ωct). In the case of a non-return-to-zero on-off keying format, v(t) can be written
as

v(t) = xk(kT < t < (k + 1)T) (12.10)

with P (xk = 1) = 1/2 and P (xk = 0) = 1/2.

v(t) is constant in each interval of duration T , with a value which is either 0 or 1 and with both
values being equally probable. We write v(t) as v(t) = y(t)+1

2 , with y(t) being

y(t) = yk(kT < t < (k + 1)T) (12.11)

with P (yk = 1) = 1/2 and P (yk = −1) = 1/2.

One can prove that the signal as described above is ergodic (and stationary), but this lies outside
the scope of this course. Therefore, the statistical and time average of y(t) are both zero.

To calculate the autocorrelation functionRy(τ) =< y(t)y(t+τ) >, we first consider the cases τ = 0
and τ > T . It is obvious that Ry(0) =< y2(t) >= 1. For τ > T , y(t) and y(t + τ) always are in
different bit periods and so Ry(τ) =< ykyl >, with l > k. Since yk and yl are uncorrelated, it
follows that Ry(τ) = 0 for τ > T . For the more difficult case of 0 < τ < T we make use of the
ergodicity and replace the statistical average by a temporal average. I.e. we calculate

Ry(τ) = lim
n→∞

1
2nT

nT∫
−nT

y(t)y(t+ τ)dt (12.12)

for 0 < τ < T , with n the number of bit periods. This integral can be rewritten as a sum over the
different bit periods

Ry(τ) = lim
n→∞

1
2nT

n−1∑
k=−n

(k+1)T∫
kT

y(t)y(t+ τ)dt (12.13)

and in each bit interval, a fraction (T − τ) will be overlapping with the same bit, in which case
y(t)y(t + τ) = 1 and a fraction τ will be overlapping with the next bit, in which case y(t)y(t + τ)
will be zero when averaged over a large number of bits. As a result, we find:

Ry(τ) =
1
T

(T − τ) = 1− τ

T
(12.14)

for 0 < τ < T .

As Rx(−τ) = Rx(τ), we find that the spectral density can now easily be calculated using the
Wiener-Khintchine theorem, indeed
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Sy(ω) =

∞∫
−∞

dτRy(τ) exp(−jωτ) =

T∫
−T

dτ

(
1− |τ |

T

)
exp(−jωτ) = T

sin2(ω T2 )(
ω T2
)2 (12.15)

From this power spectrum it is easy to calculate the power spectrum of the function v(t) as Sv(ω) =
∂(ω)+Sy(ω)

4

The autocorrelation function of v(t) and its spectral density Sf (ω) are plotted in figure 12.2(a).

12.3.2 return-to-zero amplitude shift keying

We consider a rectangular return-to-zero signal ψ(t) = v(t) sin(ωct), with v(t) = xk, for kT < t <
(k + d)T (with 0 < d < 1) and v(t) = 0 for (k + d)T < t < (k + 1)T . xk, which takes on the values
1 and 0, has the same statistical properties as for the NRZ case.

In order to find the power spectrum, again one has to calculate the autocorrelation function. We
leave it as an exercise to show that the autocorrelation function looks like the function depicted in
figure 12.2(b).

This autocorrelation function can be analytically expressed as the sum of a non-periodic function
Rnper and a periodic function. The non-periodic function can be written as

Rnper(τ) =
d

4
− |τ |

4T
for |τ | ≤ dT (12.16)

with Rnper(τ) equals zero elsewhere. The periodic function can be written as

Rper(τ) =
+∞∑

n=−∞
Rnper(τ − nT ) = Rnper(τ) ∗

+∞∑
n=−∞

∂(τ − nT ) (12.17)

The power spectrum corresponding with the non-periodic part is given by

Sv(ω) =
d2T

4

[
sin(ωdT2 )

ωdT
2

]2

(12.18)

The spectrum corresponding with the periodic part consists of a number of dirac functions at
frequencies f = n/T = nB , with B the bit rate (with a weight given by the corresponding non-
periodic function contribution to the power spectrum).

The power spectrum for a RZ signal has the same form as the spectrum of a NRZ signal, but
occupies a much larger bandwidth (inversely proportional with 1/d and proportional with the bit
rate B). The lines at multiples of the bit rate now allow to extract a clock with frequency equal to
the bit rate. This was not the case for a NRZ signal, where it can be seen that for f = 1/T = B, the
spectral density is zero.
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Figure 12.2: Power spectrum of a NRZ and RZ modulation

12.3.3 Phase shift keying

A binary phase shift keying (BPSK) signal is a signal with constant amplitude of which the phase
changes between 0 and π for a logical ’0’, resp. ’1’. It is thus mathematically equivalent to the
signal y(t) considered under section 1 and also has the same spectrum (i.e. the NRZ spectrum but
without the DC component). A DBPSK signal is a signal with constant amplitude of which the
phase changes with an amount π for every ’1’ and stays constant for every ’0’. It also has the same
spectrum as the signal y(t) considered in the previous section.

12.4 Influence of noise in a digital communication channel

12.4.1 White Gaussian noise

The term noise refers to unwanted signals that are always present in a communication system.
The presence of noise superimposed on a signal tends to obscure or mask the signal, which leads
to errors in detection. There are many sources of noise, including thermal noise, relative intensity
noise, phase noise, shot noise... which are differentiated by their origin and statistical properties.
Often noise can be described by a zero-mean Gaussian random process. This implies that the noise
term n(t) is a random function, whose value n, at any arbitrary time is statistically characterized
by the Gaussian probability density function p(n):

p(n) =
1

σ
√

2π
exp(−1

2

(n
σ

)2
) (12.19)

where σ2 is the variance of n.

12–7



Many types of noise can be considered to be a white process, meaning that the power spectral
density is the same for all frequencies of interest. This is the case for thermal noise, and can be
assumed for other types of noise, within the system bandwidth. The noise terms often can be
simply added to the (noise-free) sent signal. This is often referred to as additive white Gaussian
noise (AWGN).

For a white Gaussian noise process n(t), one can write

Rn(τ) = σ2∂(τ) =
N0

2
∂(τ) (12.20)

12.4.2 Sources of noise in an optical link

In an optical link, several sources of noise can be identified.

Thermal noise is the electronic noise generated by the thermal agitation of the charge carriers
inside an electrical conductor at equilibrium. It is a white stochastic process, with a Gaussian
distribution.

Shot noise consists of random fluctuations of the electric current due to the fact that the current is
carried by discrete charges. This is also a white process, characterized by a Poisson distribution,
which resembles a Gaussian distribution function for large carrier numbers.

The amplified spontaneous emission in lasers and optical amplifiers is another source of noise:
electrons in the upper energy level can also decay by spontaneous emission, which occurs at ran-
dom. Photons are emitted spontaneously in all directions, but a proportion of those will be emitted
in a direction that falls within the aperture of the laser/amplifier waveguide and therefore add to
the signal.

It speaks for itself that these contributions are the most harmful there where the signals are the
weakest.

12.4.3 Detection of binary signals in Gaussian noise

In this section we will discuss the detection of binary signals in the presence of zero-mean additive
white Gaussian noise (AWGN). The signal received by the receiver is represented by r(t) = si(t)+
n(t), where si(t) = s1(t) for a binary 1 and where si(t) = s2(t) for a binary zero, in the signalling
interval T .

A first step in signal detection consists of reducing the received waveform r(t) to a single number
z = si(ts) + n(ts), the sample value. In case there would be no noise, one should choose the
sampling time such that z is either a1 in the case of a binary 1 or a2 in the case of a binary 0.

Therefore, one can write the conditional probability density functions, p(z|s1) and p(z|s2) as

p(z|s1) = 1
σ
√

2π
exp(−1

2

(
z−a1
σ

)2)

p(z|s2) = 1
σ
√

2π
exp(−1

2

(
z−a2
σ

)2)
(12.21)
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Figure 12.3: Detection of binary signals in Gaussian noise: origin of bit errors

This is schematically illustrated in figure 12.3. The second step of the signal detection process
consists of comparing the test sample z, to a threshold level γ = a1+a2

2 (in the case that s1 and s2

are equally probable).

For this binary signal example, there are two ways in which errors can occur. An error ewill occur
when s1(t) was sent, and the channel noise results in a receiver output signal z, which is lower
than the threshold level γ. The probability of such an occurrence is

P (e|s1) =

γ∫
−∞

p(z|s1)dz (12.22)

A similar equation can be deduced for the case where s2(t) is sent and an error occurs

P (e|s2) =

+∞∫
γ

p(z|s2)dz (12.23)

If both signals are equally probable, we can write the probability of a bit error as

PB =
1
2
P (e|s1) +

1
2
P (e|s2) =

+∞∫
γ

p(z|s2)dz =

γ∫
−∞

p(z|s1)dz (12.24)

or

PB =

+∞∫
γ

1
σ

1√
2π

exp(−1
2

(
z − a2

σ
)2)dz = Q(

a2 − a1

2σ
) (12.25)

with Q(x), the complementary error function

Q(x) =
1√
2π

+∞∫
x

exp(−u
2

2
)du (12.26)
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Figure 12.4: Complementary error function: bit error probability versus signal to noise ratio

Figure 12.5: Application of a bandpass filter prior to sampling to improve the signal to noise ratio

It is clear that the real signal in this case is the difference A = a2 − a1. This complementary error
function is plotted in figure 12.4, as a function of A2

σ2 , with A = a2 − a1. Practical systems require
bit error rates in the order of 10−9 or better. This puts an upper limit on the amount of noise that
can be tolerated in a system (although redundancy can be incorporated in the data signal to be
able to detect and correct bit errors in a bit stream, e.g. forward error correction codes or FEC).
The ratio A2

σ2 is therefore referred to as the signal to noise ratio (SNR).

Although this analysis was performed on the most simple digital modulation format, it can be ex-
tended to more complex formats. The addition of noise to a communication system is represented
in the constellation diagram by a blurring of the individual constellation points. Also in these
cases a decision circuit has to decide which constellation point is the closest to the sample. For all
of these modulation formats an assessment of bit error probability can be performed, resulting in
slightly differing ”waterfall”-like curves as the one shown in figure 12.4.

In order to improve the signal to noise ratio, a bandpass filter can be applied before sampling
the signal, as shown in figure 12.5. This bandpass filter changes the power spectrum of the noise
component as

Rn′ (u) = N0
2

+∞∫
−∞

h (t)h (t+ u) dt

Sn′ (f) = N0
2 |H (f)|2

Pn′ = Rn′ (0) = N0
2

+∞∫
−∞

h2 (t) dt = N0
2

+∞∫
−∞
|H (f)|2 df

(12.27)
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This change in noise spectrum is also referred to as colored noise. Using an ideal bandpass filter
with a bandwidth W and assuming white noise at the input this results in

Pn′ = Rn′ (0) =
N0

2

+∞∫
−∞

h2 (t) dt =
N0

2

+∞∫
−∞

|H (f)|2 df = N0W (12.28)

The minimum bandwidth of the bandpass filter is limited by the bandwidth if the signal s(t). This
is determined by the spectral efficiency of the modulation format, being the number of bits that
can be transmitted per second, per Hertz of the signal power spectrum.
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Lasers and Optoelectronic Components



Chapter 13

Lasers
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13.1 Gain medium

The most important coherent optical source is the LASER or “Light Amplification by Stimulated
Emission of Radiation”. It reveals the process of stimulated emission upon which the light am-
plification process is based. A laser as we know it, refers to an oscillator, in which amplification
is obtained due to stimulated emission. Although Albert Einstein proved the existence of stimu-
lated emission already in 1917, it took until 1960 to show laser oscillation at optical frequencies.
Theodore Maiman made the first laser operational on 16 May 1960 at the Hughes Research Labo-
ratory in California, by shining a high-power flash lamp on a ruby rod with silver-coated surfaces.
The succeeding years saw all kinds of laser types being developed. It would take some time how-
ever for lasers to be used in a broad range of applications. The laser was described as “a solution
looking for a problem”.

Nowadays, the number of applications for lasers is growing fast, and there is no reason to believe
that this trend will slow down. The main application fields are material processing, medical treat-
ments, optical recording (e.g. compact disk), optical fiber communication, metrology (e.g. distance
measurements), barcode readers, holography, laser induced fabrication techniques, architectural
lighting, etc. In almost all of these applications, lasers are used for their high optical power and co-
herence. This combination makes it possible to focus laser light to an extremely small and intense
spot.
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Figure 13.1: Absorption, spontaneous emission and stimulated emission.

13.1.1 Emission and absorption

We discussed the interaction of photons and atoms exhaustively in chapter 10. To refresh our
minds, let us quote again the possible interaction mechanisms with the respective rate equations
(see figure 13.1)

1. Absorption.

The excitation of an atom to a higher energy level due to absorption of a photon.

dN2

dt
= −dN1

dt
= PabsN1 = B12ρ (ν0)N1 (13.1)

2. Spontaneous emission.

The relaxation of an atom to a lower energy level with emission of a photon.

dN2

dt
= −dN1

dt
= −PspN2 = −A21N2 (13.2)

3. Stimulated emission.

The relaxation of an atom to a lower energy level with emission of a photon having a phase,
frequency and polarization equal to that of the incident photon causing the relaxation.

dN2

dt
== −dN1

dt
= −PstN2 = −B21ρ (ν0)N2 (13.3)

With B12, A21 en B21 the Einstein coefficients given by:

B12 = B21 (13.4)

A21 = B21
8πhν3

c3
(13.5)

The Einstein coefficients can be derived from equations (10.32) and (10.35).

13.1.2 Population inversion

First, we examine the absorption or amplification of a monochromatic radiation field in case of
an arbitrary occupation of the two energy levels. To this extent, we consider a cylindrical volume
with unit surface area and thickness dx (figure 13.2).
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Figure 13.2: Amplification of a monochromatic field propagating through an amplifying substance.

The incident field is impinging the cylinder perpendicularly with an intensity given by:

I = ρ (ν0)
c

n
= Nfhν0

c

n
(13.6)

with c the speed of light, n the refractive index, and Nf the number of photons per unit volume.

While the light propagates through the material, its intensity is altered due to absorption and stim-
ulated emission of photons. Per unit time and unit volume, N1ρ (ν0)B12 photons are absorbed,
and N2ρ (ν0)B21 photons are produced by stimulated emission, if the occupation of the lowest
and the occupation of the highest energy level is respectively represented by N1 and N2 (with
a degeneration factor of 1). This is translated in a change of intensity after propagating over a
distance dx:

I + dI = I + (N2 −N1)ρ (ν0)B21dx hν0 (13.7)

or

dI

dx
= (N2 −N1) ρ (ν0)B21hν0

=
hν0n

c
(N2 −N1) I B21 (13.8)

Integration over x gives
I = I0e

gx (13.9)

with
g = (N2 −N1)

hν0n

c
B21 (13.10)

g is the relative power increase per unit distance, expressed in 1/m (or 1/cm) and is called the
‘gain’. The net gain is positive only if the occupation of the highest energy level is larger than the
occupation of the lowest energy level. This is called population inversion. The gain is zero if both
occupations are equal. It is as if the material is transparent. The intensity of the light is constant
while propagating, although absorption and emission still occur.

13.1.3 Pump systems

How can we ‘pump’ a system to population inversion? At first sight, it seems enough to let a
2-level system (a system with 2 energy levels relevant for laser action) absorb a flood of photons
in order to bring enough atoms to a higher energy level.
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Figure 13.3: Thermal equilibrium versus population inversion.

Figure 13.4: Establishing population inversion in a two-, three- and four-level system.

This is however not true in a static regime. From the moment population inversion would occur,
further absorption is obstructed, and, if excited further, the occupation of the higher level would
decrease due to the enhanced stimulated emission. In a 2-level system, population-inversion can
not be attained. Considering a net upwards flux equal to the net downwards flux in a static regime,
we have:

(N1 −N2) ρ (ν0)B12 −A21N2 = 0 (13.11)

and thus
N2 =

N1

1 + A21
B21Nfhν0

(13.12)

It is clear that, by an ever increasing photon density, population inversion can be arbitrarily well
approximated but never established.

However, population inversion can be established in systems with more than two energy levels,
as shown in figure 13.4.

In a 3-level system, atoms are pumped to the third energy level. This can be realized by incident
photons having an energy corresponding to this energy difference. Atoms at this third energy
level can relax spontaneously to the second energy level. Relaxation from this second energy level
to the base energy level corresponds with the laser transition. The needed population inversion
for stimulated emission can only be built up if the lifetime of the atoms at level 3 (average time
spent at this level) is much smaller than at level 2. If this is the case, energy level 3 will only be
weakly occupied. Excitation of atoms from level 1 to level 3 by absorption of the incident photons
is then unimpeded. Level 2 can be quite crowded, leading to population inversion. As the flux of
atoms excited from level 1 to level 3 is proportional to the occupation degree of level 1 and as the
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occupation of level 2 has to be even higher than this level 1 occupation (population inversion), it
is clear that the needed pump power to reach population inversion will be pretty high.

For that reason, it is more convenient to work with a 4-level system. Laser action is established
between energy levels 1 and 2, while the outer levels - level 0 and 3 - are used by the pump system.
In that way, both processes are decoupled. The ideal situation is reached when relaxations from
level 3 to level 2 and from level 1 to level 0 are fast in comparison with the lifetime of level 2.
Level 3 is occupied weakly, a guarantee for an efficient pump process. In the meantime, level 2 is
more easily filled than level 1. This means that with a relatively low pump power, the transition
between level 1 and level 2 can be inverted. However, the 4-level system demands a high energy
to pump the outer transition. The difference between the pump transition energy and the laser
transition energy is lost irrevocably.

How the pump system works, depends on the type of laser. Optical excitation, gas ionization,
electron bombardments, release of chemical energy, etc. can all be used to pump the laser. A
semiconductor laser is pumped by a current injection through its junction. In this case, the energy
levels are no longer discrete, but the carriers are distributed over the energy bands.

13.1.4 Homogeneous and inhomogeneous broadening

As described above, laser transitions in many systems occur from and to discrete energy levels.
In this case, the spectral dependence of the absorption and gain curves is expected to be sharply
defined as well, or in other words, only photons with a specific frequency ν0 are absorbed or
emitted. However, in reality, several phenomena result in a broadening of the linewidth. This
makes it possible that photons with slightly deviating frequency ν0±δν are absorbed or emitted as
well. The line shape function g (ν0) of the atomic transition is no longer a discrete peak but shows
a certain width. Two types of mechanisms are distinguished: homogeneous and inhomogeneous
broadening.

Homogeneous broadening

Homogeneous broadening is an increase of the linewidth of an atomic transition caused by ef-
fects that equally affect different radiating or absorbing atoms. The lineshape of the individual
atoms and the lineshape of total emission and absorption spectrum are identical. The atoms are
indistinguishable.

• Natural broadening

Natural broadening finds its origin in the finite lifetime of the atoms at the higher energy
level. Heisenberg’s uncertainty principle dictates:

δ (E2 − E1) .τ =
h

2π
, (13.13)

or, expressed in terms of frequency

δν =
1

2πτ
. (13.14)
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Figure 13.5: Gaussian versus Lorentzian line shape.

The electron is only for a short time in an excited state, so its energy cannot have a precise
value. Since energy levels are ‘fuzzy’, atoms can absorb photons with slightly different en-
ergy, with the probability of absorption declining as the difference in the photon’s energy
from the ‘true’ energy of the transition increases.

• Collisional Broadening

The energy levels of an atom are perturbed by collisions or close encounters with other atoms
or ions. When molecules collide with each other or with phonons (crystal lattice vibrations),
the gain and absorption curve is broadened. The broadening is enhanced with increasing
temperature and pressure (in case of a gas). The gain curve is a Lorentzian lineshape (fig-
ure 13.5a):

g (ν) =
∆ν

2π
[
(ν − ν0)2 +

(
∆ν
2

)2] (13.15)

with ν0 the central frequency and ∆ν the 3dB bandwidth of the broadened lineshape.

Inhomogeneous broadening

Inhomogeneous broadening is an increase of the linewidth of an atomic transition caused by
effects that act differently on different radiating or absorbing atoms. Inhomogeneous broad-
ening spreads the resonance frequency ν of the individual atoms over the frequency interval
[ν0 − δν, ν0 + δν]. This can be caused by e.g. the different velocities of the atoms of a gas or by
different lattice locations of atoms in a solid medium. Light with a specific frequency will interact
with a group of atoms, while light with a slightly different frequency will interact with another
group of atoms. This mechanism spreads the line shape of the system as a whole without broad-
ening the line shape of every single atom.

For example, elastic strain (at microscopic level) and defects in crystal structures result in a dif-
ferent local environment for the individual atoms. This influences the energy levels of the atoms
and leads to inhomogeneous broadening. In a semiconductor, for example, electrons and holes are
spread over energy bands, instead of linked to discrete energy levels. This can be considered as
inhomogeneous broadening of one energy level. Another important example of inhomogeneous
broadening is Doppler-broadening in gas lasers. Thermal agitation is the random movement of
atoms. When a photon interacts with an atom that propagates in the same direction as the photon,
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the atom will experience the light with a slightly different frequency due to the Doppler effect. Al-
though all atoms show the same energy levels and transitions, there will be a certain broadening
concerning interaction with light. The 3dB linewidth associated with this effect is given by:

∆νdoppler = 2ν0

√
2kT
Mc2

ln 2, (13.16)

with M the atom mass. Doppler broadening is most significant for light atoms at high tempera-
tures. At room temperature for a He-Ne laser, Doppler broadening is about 1.5 GHz. Inhomoge-
neous broadening results in a Gaussian gain/absorption function (figure 13.5):

g (ν) =
2
√

ln 2√
π∆νD

e
−
[
4 ln 2

(
ν−ν0
∆νD

)2
]
. (13.17)

Remark

It is not always clear how to distinguish inhomogeneous and homogeneous broadening. For ex-
ample, Doppler broadening is considered as a homogeneous broadening when the average time
that an atom moves in a certain direction with a certain velocity is small with respect to the lifetime
of the excited level. Electrons and holes will be able to relax equally rapidly in the conduction and
valence band respectively, resulting in homogeneous broadening.

13.1.5 Gain saturation

If the frequency of the light incident on an inverted medium approaches the optical transition
level, we expect gain. When the intensity of the incident light increases, the amount of downwards
transitions will increase as well. The extent of population inversion will decrease, as well as the
gain. Dependent on the extent of pumping, the gain will reside between a minimal value in the
order of transparency and a maximal value in case of small optical intensities. This is called gain
saturation, because, if the material is used as an optical amplifier, the intensity of the outgoing
light will saturate as a function of the incident power (figure 13.6).

For the spectral gain function, saturation acts differently for homogeneous and inhomogeneous
broadening of the material. In case of homogeneous broadening, all atoms are considered identi-
cal, resulting in a decrease of the spectral gain function as a whole, when the level of population
inversion decreases (figure 13.6c).

In case of inhomogeneous broadening, the atoms themselves show a certain energy bandwidth.
This implies that the incident light will only interact with those atoms showing a corresponding
transition energy. As a result, the spectral gain function will show a local dip for the frequency
of the incident light (figure 13.6d). This is called ‘hole burning’, as if the dip is burned into the
spectral gain function. Some materials (for example semiconductors) show homogeneous broad-
ening at low optical intensities. Replenishing of the levels is fast in comparison with the lifetime
of stimulated emission. The latter will decrease with increasing optical intensities and inhomo-
geneous broadening then dominates, resulting in a dip in the spectral gain function at the optical
frequency.
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Figure 13.6: Gain saturation.

Figure 13.7: A cavity with amplification.

13.2 Laser cavities

13.2.1 Introduction

The previous section explains how to obtain amplification of light in a material. To realize lasing,
we need to place this amplifying material in a resonator. A resonator consists of a cavity with two
fully or partially reflecting ends. The amplifying material together with the reflecting ends form
the necessary conditions for oscillation: amplification and feedback. Laser oscillators, or lasers,
often show a lateral dimension larger than the transversal dimensions. This makes it possible to
analyze the oscillation mechanism in a simple manner.

In this section we discuss the most elementary analyzing methods for laser cavities. We explain
the principles and main concepts of modes for these lasers. To obtain oscillation, the light propa-
gating in the cavity has to satisfy a condition for resonance. The resonance condition implies that
the phase and amplitude of the field at a certain position in the laser remains the same after one
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Figure 13.8: A three-level system.

round trip in the laser (figure 13.7), or in other words, the loop gain equals unity. This resonance
condition is intuitively interpreted when considering the process to start the laser activity. As long
as the laser is weakly pumped, there is barely any amplification. On the contrary, spontaneously
emitted light will be present. When pumping gets stronger, light over a finite wavelength range
is amplified. Part of the spontaneously emitted light will be amplified. Some frequencies will
interfere constructively while propagating in the laser cavity, while others will interfere destruc-
tively. The amplitude of the constructively interfering light increases. This increase of amplitude
will continue until a balance exists between the rate of pumping electrons to a higher energy level
and the relaxation of electrons to lower energy levels due to stimulated emission pro rata of the
intensity of the light in the resonator. At that time, a stable regime is created in which the loop
gain is equal to one.

13.2.2 Resonance: Rate equations analysis

The simplest way to describe the oscillation mechanism is to use the rate equations. These equa-
tions describe the dynamics of the average amount of particles per unit volume in the cavity. These
particles can be electrons, atoms or photons. They do not tell us anything about the phase or the
frequency of the light to fulfil the resonance condition. They do tell us however the conditions for
a power balance in a quantum mechanical way.

Using the notations of the previous section, a simple set of ‘rate equations’ for a three-level system
(level 1, 2 and 3, see figure 13.8) looks like:

dN2

dt
= Rp −A21N2 −Nf hν B21 (N2 −N1)

dN1

dt
= A21N2 +Nf hν B21 (N2 −N1)−Rp

dNf

dt
= Nf hν B21 (N2 −N1) + βA21N2 −

Nf

τp
(13.18)

The first two equations describe the amount of particles at level 1 and level 2 as a function of time.
The third equation describes the amount of photons Nf as a function of time. Rp is the pump rate,
i.e. the amount of particles per unit of time pumped from level 1 to level 2 via level 3. β represents
the fraction of spontaneously emitted photons that is coupled with the laser oscillation. The loss
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term Nf/τp represents the amount of photons that leaves the laser cavity per unit of time (due
to transmission losses at the end facets, scattering, absorption, etc.). τp can be considered as the
photon lifetime, i.e. the average time a photon spends in the laser cavity.

A numerical analysis of this set of nonlinear equations is rather simple. For the static regime, the
derivations w.r.t. time are set to zero. In case of a three-level system, the first two equations are
set equal. One equation must be added to solve this set of two equations and three unknown
parameters. The additional equation describes the total atom concentration in the system:

N1 +N2 = N. (13.19)

Equations (13.18) are rewritten as:

dN2

dt
= Rp −A21N2 − cgNf

dNf

dt
= cgNf −

Nf

τp
+ βA21N2

g = B21
hν

c
(2N2 −N) (13.20)

For simplicity, we assumed a refractive index n equal to one. If this is not true, one needs to change
c by c/n. Neglecting the rather small term βA21N2, the net relative photon amplification per unit
of time is given by cg − 1/τp. Dividing this term by the speed of light c, the net relative photon
amplification per unit of distance is obtained. The loop gain in a laser with a length L is thus given
by:

loop gain = e

(
g− 1

cτp

)
2L (13.21)

As long as the gain g is smaller than 1/cτp, the loop gain will be smaller than 1 and laser action
is impossible. Solving equations (13.18) or (13.20) gives us N2, N1 and Nf as a function of the
pump rate R. This relation is shown in figure 13.9a. As long as the pump rate is low, population
inversion and thus light amplification do not occur. The small amount of light that escapes from
the cavity is spontaneously emitted light. Increasing the pump rate accomplishes population in-
version: the laser material becomes transparent. This however is not sufficient for resonance due
to the losses in the cavity (expressed by a finite τp). It is needed to pump more for the laser to reach
the oscillation threshold. Then the material gain compensates for cavity losses. The loop gain is
one.

Increasing the pump rate even higher, the loop gain must remain one to preserve the static regime.
Therefore, the gain g must be clamped to a fixed value at and above treshold. This implies that the val-
ues of N2 and N1 need to be clamped on the value they have at the oscillation threshold. This is
possible if the photon density Nf increases as well. Stimulated emission will increase also, com-
pensating the increased pump rate. The analytical solution of the static equations for N1 and N2

is very simple, if we assume that Nf is zero for pump levels lower than or equal to the thresh-
old value. Above threshold we assume that spontaneous emission is small in comparison with
stimulated emission. Spontaneous emission can thus be neglected above threshold. We get:
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Figure 13.9: Occupation of the respective energy levels as a function of the pump rate for a three- and a
four-level system.

• Below threshold:

N2 −N1 <
1

hν B21 τp
(13.22)

g <
1
cτp

(13.23)

N2 =
Rp
A21

(13.24)

N1 = N −N2 (13.25)
Nf = 0 (13.26)

• At threshold:

(N2 −N1)d =
1

hνB21τp

=⇒ N2d =
N +N2 −N1

2
=

1
2

(
N +

1
hνB21 τp

)
(13.27)

g =
1
cτp

(13.28)

Rd = N2dA21 =
A21

2

(
N +

1
hν B21 τp

)
(13.29)

N1d = N −N2d (13.30)
Nf = 0 (13.31)
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Figure 13.10: A plane Fabry-Perot cavity.

• Above threshold:

N2 −N1 = (N2 −N1)d (13.32)

g =
1
cτp

(13.33)

N2 = N2d (13.34)
N1 = N1d (13.35)

Nf =
Rp −Rd

hν B21 (N2 −N1)d
= τp (Rp −Rd) (13.36)

These last equations tell us that the optical power increases linearly as a function of the pump rate.
For a 4-level system, similar equations are found showing conceptually the same principle. This
is presented in figure 13.9b.

13.2.3 Resonance: analysis with plane waves

The frequency needed to fulfill the phase resonance condition in the cavity can not be deduced
using the rate equations. To calculate the frequency, it is most easy to consider a simple one-
dimensional analysis of the cavity. The cavity is assumed to be transversally invariant. This allows
us to treat the waves in the cavity as plane waves.

Let us consider the optical transmission of the structure shown in figure 13.10. The structure con-
sists of two parallel semitransparent mirrors at a distance L from each other. In chapter 6 we called
such a device a Fabry-Perot etalon or a Fabry-Perot interferometer. For example, a glass substrate
covered on both sides with a thin metal layer, semitransparent and semireflective, can be a practi-
cal implementation of such an etalon. The transmission coefficient t for the electromagnetic field
can be calculated as the sum of the contributions of successive reflections (see (4.68), interference
of an infinite number of waves with progressively decreasing amplitude but identical phase shift).
If the structure does not show any losses, this results in:

t = t1t2e
−jφ + t1t2r1r2e

−j3φ + t1t2 (r1r2)2 e−j5φ + . . .

=
t1t2e

−jφ

1− r1r2e−j2φ
(13.37)

with
φ = k0nL. (13.38)
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Figure 13.11: The transmission spectrum of the Fabry-Perot cavity from figure 13.10.

If r1 and r2 are real, the power transmission coefficient is given by:

T = |t|2 =

|t1t2|2

(1−r1r2)2

1 + 4r1r2
(1−r1r2)2 sin2 φ

=
Tmax

1 + F sin2 φ
(13.39)

with

Tmax =
|t1t2|2

(1− r1r2)2 and F =
4r1r2

(1− r1r2)2 (13.40)

If the structure is symmetric (r1 = r2), and the mirrors are lossless (t1t2 = (1 + r′1)(1 + r2) =
(1−r1)(1+r2)), then Tmax will be equal to one. This is consistent with equation (6.95) in chapter 6.
The spectral transmission is shown in figure 13.11. The periodical maxima get sharper as r1r2 = r2

approximates 1. These maxima appear when

2φ = 2mπ, with m integer (13.41)

or
L = m

λ

2n
. (13.42)

In other words, the length of the etalon needs to be a whole number of half the wavelength of the
light. The numberm is in general quite large (103 to 107). It is easy to show that the spectral period
or spectral distance between two adjacent peaks is given by:

∆λ =
λ2

2nL
, (13.43)

or
∆ν =

c

2nL
, (13.44)

and thus
1

∆ν
=

2nL
c
. (13.45)

In words: the (temporal) period of the mode spacing equals the round trip time of the cavity. The
finesse F of the Fabry-Perot cavity (see chapter 4) is defined as the distance between successive
maxima, divided by the 3dB width of a maximum. The larger the reflection coefficients are, the
larger the finesse F.

A quality factor Q can be defined as well. The quality factor of an oscillator is the amount of
radials an oscillator covers before its energy has decreased with a factor of 1/e. Translating this to
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a Fabry-Perot cavity, the Q factor is defined as 2π times the number of ‘round trips’ made by the
light in the cavity before its intensity has decreased with a factor of 1/e. Considering the material
as being lossless, we can calculate Q:

(
r2

1r
2
2

)Q/2π =
1
e

Q =
2π

ln
(

1/
r2

1r
2
2

) (13.46)

It is clear that Q will be smaller when the cavity has higher (transmission) losses. The quality
factor is a measure for the ratio of energy stored in the oscillator (or cavity) to the energy leaving
the cavity periodically.

Let us consider the same structure made of an amplifying material. If g is the gain per length unit,
the increase in amplitude of the optical field after one round trip is given by:√

exp (g2L) = exp (gL) (13.47)

Equation (13.37) is then reformulated as:

t =
t1t2 exp (gL/2) exp (−jφ)

1− r1r2 exp (gL) exp (−2jφ)
(13.48)

Transmission will be infinitely large if:

r1r2 exp (gL) exp (−2jφ) = 1 (13.49)

Or: for an input power equal to zero, the structure can generate a finite power. This is exactly what
is meant with the resonance condition. The gain g in equation (13.49) depends on the pump rate
R and on the wavelength λ. (13.49) is as such a complex equation of two real unknown quantities
R and λ. This complex equation can be split up in an equation for the intensity (loop gain) and an
equation for the phase shift:

r2
1r

2
2 exp (2g (R, λ)L) = 1, (13.50)

2π
λ
nL = mπ. (13.51)

Let us now consider the spectral loop gain in figure 13.12. Besides the spectral loop gain, fig-
ure 13.12 also shows the frequencies for which the phase resonance condition is fulfilled. Two
situations can occur: the width of the spectral loop gain can be either small or broad compared to
the distance between the phase resonance frequencies. In the first case, the laser cavity will emit
light at a single frequency. In most practical cases however, the width of the spectral loop gain is
broad in comparison with the distance between the spectral resonance peaks. In these situations,
the laser is able to emit at different phase resonance frequencies. The laser is said to show several
axial or longitudinal modes.

The loop gain for the respective phase resonance frequencies is slightly different however. If the
material is broadened homogeneously, only one mode can have a loop gain equal to one. The loop
gain for the other modes will be slightly smaller than one. They will oscillate in the cavity due
to the contributions of spontaneous emission, but their intensity will be smaller than the intensity
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Figure 13.12: Determination of the laser spectrum.

Figure 13.13: A laser cavity with a Fabry-Perot etalon as mode filter.

of the principal mode. In case of homogeneous broadening, all modes will ‘eat’ from the same
reservoir of particles at the higher energy level.

As an example, consider theHe−Ne laser emitting at 633nm. The cavity of this laser is typically 30
cm long, resulting in a mode spacing of 500 MHz or 0.0007 nm. As mentioned above, the spectral
width of the loop gain is about 1.5GHz due to Doppler broadening. Thus, the spectrum of a He-
Ne laser will show several longitudinal side modes. Another example is the GaAs semiconductor
laser. The cavity is typically small, i.e. on the order of 0.3 mm. This results in a mode spacing
of 140GHz or 0.4 nm. In spite of this very large mode spacing, we will find several longitudinal
modes in the emitted spectrum of the laser due to the very broad loop gain (typically 50 nm).

If we want a laser with several longitudinal side modes to lase in a single mode, we can use
a passive Fabry-Perot etalon in the cavity (figure 13.13). This structure of two parallel mirrors
shows a frequency selective transmission profile. In this way the spectral loop gain is forced to
show a sharper maximum, suppressing the unwanted longitudinal side modes.
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Figure 13.14: The cavity with spherical mirrors.

13.2.4 Resonance: beam theory analysis

In the previous paragraph, we assumed a transversally invariant cavity. This allows an analysis
of the cavity based on plane waves. In practical situations, this is not true. A real cavity has finite
transverse dimensions.

Assume we work with a cavity using plane mirrors with finite dimensions. We can intuitively
guess that an oscillating electromagnetic wave loses power per round trip in the cavity due to light
diffracting beside the finite mirrors. We call this an unstable resonator. An unstable resonator can
still show laser activity, if the stimulated emission is strong enough to compensate for this loss
of power. In most lasers, this loss will be avoided as good as possible using spherical mirrors.
Spherical mirrors can transform the divergence of the light due to diffraction into a convergent
propagation. Using beam theory, we can deduce the conditions for the curve of the mirrors to
create a stable resonator.

Using the matrix formalism for translation (3.39) and for reflection at a spherical mirror (3.62), the
system matrix for one round trip propagation in the cavity is given by:

M =
[
A B
C D

]
=
[

1 0
−P2 1

] [
1 L
0 1

] [
1 0
−P1 1

] [
1 L
0 1

]
=

[
1− P1L L(2− P1L)

P1P2L− P1 − P2 1− P1L− 2P2L+ P1P2L
2

]
(13.52)

with
P1,2 =

2
R1,2

(13.53)

Two succeeding periods are then characterized by:[
xn+1

αn+1

]
=

[
A B
C D

] [
xn
αn

]
(13.54)[

xn+2

αn+2

]
=

[
A B
C D

] [
xn+1

αn+1

]
(13.55)

Elimination of the angles gives us a recursive equation for the transversal position after each pe-
riod:

xn+2 − (A+D)xn+1 + (AD −BC)xn = 0 (13.56)
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As AD −BC = 1 we have:
xn+2 − (A+D)xn+1 + xn = 0 (13.57)

with

A+D = 2
[
1− P1L− P2L+

P1P2L
2

2

]
= 2

[
2
(

1− P1L

2

)(
1− P2L

2

)
− 1
]

(13.58)

We propose a solution for this difference equation:

xn = e±jnθ (13.59)

Substituting this solution in the difference equation gives:

cos θ =
1
2

(A+D) (13.60)

The general solutions takes the following form:

xn = ρ+e
jnθ + ρ−e

−jnθ (13.61)

As a function of the boundary conditions x1 and x2, i.e. the transversal location of the incident
beam and of the beam after one period, we obtain:

xn = −x1
sin(n− 2)θ

sin θ
+ x2

sin(n− 1)θ
sin θ

. (13.62)

It is clear that the solution oscillates periodically around the optical axis. This is true if θ is real or:

− 1 ≤ cos θ ≤ 1 (13.63)

or

− 1 ≤ 2
(

1− P1L

2

)(
1− P2L

2

)
− 1 ≤ 1 (13.64)

or

0 ≤
(

1− P1L

2

)(
1− P2L

2

)
≤ 1 (13.65)

or

0 ≤
(

1− L

R1

)(
1− L

R2

)
≤ 1 (13.66)

This expression is shown graphically in figure 13.15. The gray zones in the graph represent the
configurations for a stable resonator. Along the bisectors (R1 = R2 = R), the condition is:

R ≥ L/2. (13.67)

Possible symmetric configurations are shown in figure 13.16. Configurations with R = ∞, R = L
and R = L/2 are at the edge of stability. The figure presents concentric and confocal situations. In
a concentric configuration, the centers of the two spherical mirrors coincide (R1 + R2 = L). In a
confocal configuration, the foci of the two mirrors coincide (R1 +R2 = 2L). It is clear that a simple
paraxial beam theory gives us the necessary conditions for a laser to be stable, i.e. to show low
losses. This condition is connected with the (amplitude) resonance condition, but does not tell us
whether or not the cavity can be brought above threshold. To this end, light amplification and
the transversal intensity profile of the field have to be taken into account. Wave theory becomes
necessary.
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Figure 13.15: Stable resonators with spherical mirrors.

Figure 13.16: Different cases of a stable cavity with spherical mirrors.

13–18



Figure 13.17: A Gaussian bundle in a cavity with spherical mirrors.

13.2.5 Resonance: Gaussian beam analysis

Finding an exact solution for the modes in the resonator is not simple. We show however that for
long cavities with a length much larger than the transversal dimensions, modes show a Gaussian
transversal amplitude distribution and a spherical phase front (at the end mirrors, this front coin-
cides with the surface of these spherical mirrors). We present this using a paraxial approach, and
we assume that a homogeneous medium is located between the spherical mirrors (this is true for
most gas lasers).

The (amplitude) resonance condition implies that the transversal field profile is identical after one
round trip in the cavity. Or q1 = q2 in equation (5.23):

q =
Aq +B

Cq +D
(13.68)

with A, B, C and D the elements of the system matrix of the resonator (see previous section). This
allows us to check whether or not the resonator has Gaussian solutions and to deduce their profile.
Intuitively it is also possible to deduce a sufficient condition for resonance. If, as schematically
presented in figure 13.17, the phase front of the Gaussian wave at the location of the two mirrors
coincides with the mirror surfaces, we expect to have found a solution of the resonator cavity.

The characteristics of the Gaussian beam can be deduced from (see chapter 5):

R1 = z1 +
b20
z1

(13.69)

R2 = z2 +
b20
z2

(13.70)

L = z1 + z2 (13.71)

If L, R1 and R2 are given, b0, w0, z1 and z2 can be found. For a configuration with R1 = R2 we
have:

z1 = z2 =
L

2
(13.72)

b20 =
L

2

(
R− L

2

)
(13.73)

w0 =

√√√√2
k

√
L

2

(
R− L

2

)
(13.74)

13–19



Figure 13.18: A Gaussian bundle in a cavity with spherical mirrors. (a) The cavity is shorter than the
Rayleigh length. (b) The cavity is longer than the Rayleigh length.

It is clear that a solution can only be found if:

R ≥ L

2
(13.75)

This is exactly the same condition as we obtained using beam theory.

By studying the beam profile as a function of the ratio of the curve of the mirrors to the length of
the cavity, we can distinguish three regimes (figure 13.18): The Rayleigh length of the Gaussian
beam will be larger than the cavity length if the curve of the mirrors is much larger than the cavity
length. The beam can then be considered as a quasi-plane beam in the cavity. When the light
escapes from the cavity, the beam will only fan open at a large distance from the output facet of
the laser (figure 13.18a). If the mirrors are confocal, i.e. when the curves of the mirrors are as large
as the length of the cavity, the Rayleigh length of the beam will be exactly half the cavity length.
For mirror curves smaller than the cavity length, the Rayleigh length as well will be smaller than
the cavity length, resulting in a fanning open of the beam inside the cavity. The beam outside the
cavity can be considered as spherical (figure 13.18b).

The cavity mode described above is the lowest order transversal mode, i.e. the TEM00-mode. The
higher order modes, i.e. the Hermite-Gaussian beams, are also possible solutions of the cavity.

Considering the three-dimensional structure, we would find that the transversal field is the prod-
uct of two Hermite-polynomials and a 2D Gaussian profile. These modes have two mode numbers
(see equation (5.31)). Some Gauss-Hermite modes are depicted in figure 5.7.

We conclude that modes in a laser cavity have three independent mode numbers. Besides the two
transversal mode numbers, each mode will have a longitudinal mode number related to the phase
resonance condition. As mentioned above, all longitudinal modes have a different oscillation fre-
quency. The transversal modes (with same longitudinal mode number) also have a slightly differ-
ent oscillation frequency because of their possible different propagation constants (figure 13.19).

The number of longitudinal modes is predominantly determined by the spectral loop gain. The
number of transversal modes depends on the transverse dimensions of the cavity. The expression
for Hermite-Gaussian beams reveals that for a given w(z), the higher order modes have a larger
transverse width. By limiting the transversal dimension of the mirrors or the amplifying medium,
or by simply inserting a diaphragm inside the cavity, the higher order modes can be suppressed.

As an example, let us consider a He-Ne laser with a typical beam diameter of 2mm, i.e.w0 = 1mm.
This results in b0 = 5m which is much larger than the typical cavity length of 300mm. The radius
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Figure 13.19: Longitudinal and transversal laser modes.

of curvature of the mirrors needs to be approximately 170m. It is clear that the laser mirrors have
to be fabricated with a high accuracy. The divergence angle of the beam will be less than one
arc-minute.

13.3 Characteristics of laser beams

Light generated by lasers is quite different from light generated by other sources like bulbs, TL
tubes, etc. Laser light is highly monochromatic, coherent, directional and shows a high radiance.
We briefly discuss these specific characteristics. The possibility to generate very short light pulses
is a less fundamental but a very important characteristic of laser light. We discuss this in a separate
section.

13.3.1 Monochromaticity

As opposed to conventional light sources that generate light with a broad spectral range, a laser
emits light at a certain frequency. This high degree of monochromaticity is accomplished by two
effects. First, only light in a small spectral range is amplified (this is determined by the width
of the loop gain). Second, this amplified light oscillates in a cavity, imposing conditions for the
oscillating frequency, namely the resonance frequency. The latter effect strongly reduces the width
of the line function obtained for spontaneous emission.

13.3.2 Coherence

If a light source is perfectly monochromatic, the source is perfectly coherent as well. The elec-
tromagnetic field varies purely sinusoidal in time and this for all positions. This means that there
exists a fixed phase relation between the lightfield at two different positions in space, and between
the lightfield at two different moments at a certain position. A laser is a source that pursues this
perfect coherence. However, perfect coherence is never attained, of course. Laser light is partially
coherent. But how is partial coherence defined?
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Figure 13.20: Temporal and spatial coherence.

Partial coherence is expressed by the coherence degree γ12(τ). This is a measure for the correlation
between the field at a point P1 and the field at a point P2 at different times t and t+ τ :

γ12(τ) =
〈E1(t+ τ)E∗2(t)〉√〈
|E1(t)|2

〉〈
|E2(t)|2

〉 (13.76)

with <> a temporal or statistical average (which are normally the same as the processes are in
general ergodic). E1 and E2 are analytical signals corresponding to the real field. The absolute
value of γ12 lies between 0 and 1.

Two different aspects of coherence are considered: temporal coherence and spatial coherence.
Temporal coherence is described by γ11(τ) telling us the measure of correlation between the field
at a certain position at a certain time and the field at the same position at a time τ later. The
coherence time τc is defined as the time for which the coherence degree is decreased to a certain
amount (e.g. 0.5). A coherence length lc is defined as well:

lc = τc · c (13.77)

Spatial coherence is described by γ12(0) telling us the measure of correlation between the field at
a certain position at a certain time and the field at a different position at the same time. Mostly
the spatial coherence is measured between two points on the same wave front. Depending on the
situation, spatial coherence and temporal coherence can be related.

Temporal coherence is linked with the spectral width of the field. For purely monochromatic
fields, coherence is infinite. If the field has a spectral width ∆ν, the temporal coherence τc will be
in the order of:

τc ≈
1

∆ν
(13.78)

Taking the He-Ne laser with its spectral width of 1.5 GHz for example, a coherence length of 20cm
is achieved. The coherence length is important in interferometric applications, such as holog-
raphy, where the laser beam is split in separate beams to subsequently let them interfere. The
coherence length needs to be longer than the largest optical path difference between the two bun-
dles.
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13.3.3 Directionality

Incandescent lamps emit light in all directions. Using all kinds of optical systems, this light can
be redirected in a certain desired direction. The cavity of a laser determines the directionality of
the light propagating in the cavity and the light escaping from the cavity. In most cases, laser light
can be described by Gaussian beams diverging with the smallest angle for a given beam width.
In chapter 5, we defined the M2-number (see equation (5.33)), a quality label for laser beams. For
example, using a laser it is possible to create a laser spot on the moon (about 400.000km removed
from the earth) with a diameter of only 800m.

13.3.4 Radiance

A low power laser beam (few milliwatts) has a radiance some orders of magnitude larger than
the brightest conventional light sources. This is due to the high degree of directionality, result-
ing in very high intensities when focusing the laser beam (see equation (2.8) for the definition of
radiance).

13.4 Pulsed Lasers

The lasers discussed above are mainly used in a continuous wave (CW) operation. However,
many applications need short intense pulses periodically. Two techniques can be used to produce
these short laser pulses.

13.4.1 Q-switching

The first technique is Q-switching. An element that changes the quality factor is put inside the
cavity. For example, a rotatable mirror or an optical intensity modulator (e.g. an electro-optical or
acousto-optical cell) can be used. This is shown in figure 13.21.

Initially, the cavity losses are made to be large (t < t0). Pumping is started. Due to the huge losses,
the threshold for lasing is high. The population inversion is pumped to a high level. At t = t0,
the cavity losses are lowered, corresponding to a sudden increase of Q. The number of excited
particles needed for laser action is strongly decreased. Because of the high degree of population
inversion, the system contains a surplus of excited elements, causing an intense stimulated emis-
sion. The number of photons in the cavity increases fast due to the strong stimulated emission,
diminishing population inversion as well. The moment population inversion reaches its threshold
for continuous operation, the light intensity is at its maximal value (t = t1). In the meantime, the
cavity losses are increased again. The photon density relaxes to zero. Using this technique, it is
possible to create peak powers in the order of MWatt to GWatt. The pulses last some ns. The pulse
energy can be as high as 1 Joule. Of course, it is essential that the cavity losses can be varied very
fast.
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Figure 13.21: Q-switching.

13.4.2 Mode-locking

If even shorter pulses are desired, mode locking has to be used. This technique is based on the
presence of several longitudinal modes. The total electrical field emitted by the laser can be written
as, in complex notation:

E (t) = Re

[∑
n

Ene
j[(ω0+n∆ω)t+φn]

]
(13.79)

with
∆ω = π

c

L
. (13.80)

Normally, the phase shifts φn fluctuate due to noise. The total field intensity can thus be approxi-
mated by the sum of intensities of the individual modes, increased by a certain amount of intensity
noise (see figure 13.22).

However, imagine that it is possible to lock the phase shifts at constant values. The spectrum of
the laser will then be very similar to the spectrum of an amplitude modulated carrier wave. As
a function of time, we expect a periodically fluctuating intensity. Moreover, when all phase shifts
φn are chosen in such a way that the modes are at their maximal value at the same time (and this
periodically repeated), we expect strong laser pulses. This is for example the case when φn = 0
for all modes. Let us assume for simplicity that there are N modes with the same amplitude. The
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Figure 13.22: Mode locking by using a fixed phase shift between the respective modes.

total field is:

E (t) = Re

 (N−1)/2∑
−(N−1)/2

ej(ω0+n∆ω)t


= Re

[
ejω0t

] sin N∆ωt
2

sin ∆ωt
2

(13.81)

and the intensity distribution:

I(t) =
sin2 N∆ωt

2

sin2 ∆ωt
2

(13.82)

It is clear that the period is given by:

T =
2π
∆ω

=
2L
c
. (13.83)

This is the time needed for one round trip in the cavity. The peak intensity is given by N times the
average intensity and the pulse duration τ is about T/N , corresponding to a pulse length of 2L/N .
Thus, the pulse is short compared to the cavity length. The number of modes N is determined by
the spectral line of the loop gain, setting the maximal number of modes to:

Nmax =
∆ωgain

∆ω
(13.84)

with ∆ωgain the spectral width of the loop gain. The duration of the pulses can thus be as short as:

τmin =
2π

∆ωgain
(13.85)

A short pulse travels back and forth in the laser cavity with a period equal to the roundtrip time.
This intuitively points out a method to achieve this ‘mode locking’: inserting a suitably fast light
modulator at the end of the laser cavity (near the mirror) which is actuated in such a way that the
modulator is transparent when the pulse passes and non-transparent when the pulse is elsewhere
In that way the laser has no other option than to oscillate in this pulsed fashion. The period of
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Figure 13.23: Position of the modulator in the laser cavity and resulting pulse train.

Figure 13.24: A long and a short pulse propagating through a saturable absorber.

the modulating signal should then be equal to the roundtrip time, 2L/c, and the transmission has
to be large during a time that is short in comparison with the time of one cavity roundtrip. This
way only one pulse can survive in the laser. We can now see that if the modulator is placed in
the center of the cavity (see figure 13.23) and if it has a pulsed periodic transmission profile with
periodL/c, then two pulses can exist in the cavity. They cross each other at the modulator when its
transmission peaks. This results in an output pulse train with twice the repetition rate. The same
reasoning can be followed for a modulator at other places in the cavity. To obtain this kind of
mode locking, an external signal is needed to drive the modulator. This is why it is called ‘active’
mode locking.

Alternatively, a saturable absorber is put in the cavity (see figure 13.24). This nonlinear element
shows a high absorption when the light intensity is low and a low absorption when the light
intensity is high. It is clear that in these systems, a short intense pulse will be favored with respect
to longer less intense pulses with the same total power. Mode locking is established automatically.
This is called ‘passive’ mode locking.
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Figure 13.25: The gas laser.

13.5 Types of lasers

13.5.1 Introduction

All kinds of lasers exist. Nevertheless, the basic principles remain the same: a material emitting
light at a specific wavelength range is brought to population inversion; a cavity with a high quality
factor is holding this material. The difference between the laser types is in the first place found
in the used laser material. This implies different methods to pump, different dimensions and
different technical implementations of the cavity. We discuss the most important laser classes,
grouped according to the phase of the active material: gas (He − Ne laser, Ar−laser, CO2−laser,
etc.), liquid (dye laser), or solid state lasers (dopedisolators, semiconductor lasers) or freeelectron
lasers consisting of an electron beam in a vacuum cavity.

13.5.2 Gas lasers

Gas lasers have been the most popular lasers for a long time, e.g. the He −Ne laser, Argon laser,
Krypton laser and CO2 laser. Although they remain popular, other laser types are replacing the
gas lasers more and more. For example, the He-Ne laser competes with the semiconductor laser.
This hard competition is related to the quite large dimensions of gas lasers, their need for an
expensive high voltage supply and their relatively short lifetime. Different types of gas lasers
exist. The energy transitions can be electronic transitions of atoms or ions or vibrational/rotational
transitions of molecules. In all three cases, pumping is due to excitations caused by electronic or
molecular collisions in a gas discharge. The gas discharge is generated by a high voltage between
two electrodes in the low pressure gas mixture. One gas in the gas mixture is excited by electronic
collisions. Its energy is transferred to the other gas by atomic or molecular collisions.

The typical cavity of a gas laser is sketched in figure 13.25. Two windows inclined at the Brewster
angle end the plasma tube. This causes maximal transmission (minimal cavity losses) for only
one polarization. Thus, the laser light is polarized. The tube is placed in between two spherical
mirrors. Due to the little gain in the cavity, the tube needs to be quite long, typically 30cm to
3m. The laser threshold is reached only when using a long cavity and mirrors with a very high
reflectivity.

He-Ne lasers are the oldest and most popular low power gas lasers. The pressure inside the tube is
a few mmHg and the gas mixture typically contains ten times more He than Ne. It is a four-level
system. The laser transition happens between two levels of the Ne-atom (figure 13.26). Helium is
used for pumping. It is excited by electrons and transfers its energy by atomic collisions with Neon
atoms. Several laser transitions are possible in this system. The most popular is the transition at a
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Figure 13.26: Energy levels of a He-Ne laser.

wavelength of 632.8nm; besides that one there is also 1150nm, 1520nm and 3390nm. The frequency
selection is obtained by the wavelength dependent reflectivity of the mirrors.

The power of a He-Ne laser is low due to the small efficiency of about 0.01%. Most lasers emit a
power of about 1 to 10mWatt. But the light can be made very pure, both concerning transversal
and longitudinal modes.

A second important class of gas lasers are the ion lasers, like the Argon laser and Krypton laser.
First the gas is ionized by electrons in the plasma, and further excited to even higher energy levels.
The relaxation from these levels causes laser action at several frequencies (lines). An Argon laser
emits at lines between 350 and 520 nm. A Krypton laser can cover the whole visual spectrum.
The frequency is selected by the use of a rotatable prism in the cavity (in between the tube and the
facet mirror) or by employing a coated frequency selective mirror. Although the efficiency of these
lasers is not much higher than the efficiency of a He-Ne laser, the emitted power can be relatively
high, typically about 20Watt. The technology used to obtain this higher output power is quite
complex. Specifically, the heat dissipation is critical. High power ion lasers need a water-cooling
system. Moreover, the tube of the cavity is made of special materials showing a large thermal
conductivity (BeO, graphite,etc.).

Metal vapor lasers form a third class of gas lasers. The active particles are metal atoms or ions in
a low pressure atmosphere. A popular example is the He-Cd laser with the most used lines at 442
nm and 325 nm.

Molecular lasers, such as the CO2 laser, the nitrogen laser and the excimer laser are the fourth and
final class of gas lasers. Vibrational and rotational modes of the CO2 molecule are responsible for
the transitions in a CO2 laser. Another gas, typically nitrogen in combination with helium, is used
for the excitation of the CO2 atoms. The CO2 laser is in most cases used to emit at 10.6µm (far
infrared). The windows and output mirrors need to be transparent in the infrared. This restricts
the possible materials to Ge, ZnSe, GaAs, diamond, etc. The high power efficiency of the CO2

laser is remarkable. It can be as high as 30%. This high efficiency makes it possible to build
lasers emitting high powers to about several kWatts in continuous wave. The main application is
material processing. Nitrogen lasers emit mainly at 337.1 nm.
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Figure 13.27: The principle of the excimer laser.

The excited particles of an excimer laser are excited dimers (excimer). This is a metastable molecule
consisting of an excited atom/molecule compound with a not-excited atom/molecule. Mostly it
concerns a halide - noble gas combination. Popular for their high efficiency are the XeF and the
KrF lasers (10%).

Let us examine the ArF excimer laser (figure 13.27). A gas mixture of Argon and Fluor is heated
by means of a discharge. Some Argon and Fluor atoms collide and compound as a stable excimer.
Upon collision with an Argon atom, an Ar*Ar excimer can be formed. When excited, this excimer
is weakly bound, as opposed to the ground state, where it is not bound. In presence of a photon
field, the excimer will quickly relax to the ground state. It disintegrates with emission of a photon.

Excimer lasers emit at wavelengths between 120 and 500nm. They are the main lasers used in the
UV spectrum. Two important types of applications can be considered. In the first applications
the UV light is used for its short wavelength (for example high resolution imaging systems). This
field is gaining importance in the deep UV lithography for the definition of advanced integrated
circuits with line widths (smallest width of the patterns) of about 0.1-0.3 micrometer. The second
kind of application uses the excimer lasers for its high photon energy. It permits to stimulate all
kinds of chemical processes. We mention laser ablation. Laser ablation is used to ‘drill’ very small
holes or vias in printed circuits or plastic shields.

13.5.3 Solid-state lasers: the doped isolator laser

Solid state lasers use a transparent substance (crystalline or amorphous glass, usually an oxide)
as the active medium, doped with a small amount of metal ions to provide the energy states
necessary for lasing. The pumping mechanism is the radiation from a powerful light source, such
as a flash lamp. The first laser of this type, and the very first laser in general, is the ruby laser,
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Figure 13.28: The principle of the first ruby laser.

invented in 1960 by Maiman. Ruby, and similarly sapphire and corundum, are crystalline Al2O3.
The crystals are different due to the presence of impurities. These impurities define the typical
color of the crystals (ruby is red, sapphire blue and corundum white or transparent). Ruby lasers
uses synthetically grown Al2O3, doped with 0.05 volume% Cr3+ ions. It is a three-level system,
demanding for a high pump level to reach population inversion. Continuous wave operation is as
such difficult due to the high heat dissipation. The laser transition has a wavelength of 0.6943µm,
dark red light, only just visible to the human eye.

Typically, a rod of 10 cm length and 1 cm diameter is used. The first lasers had polished and
metalized end facets. Nowadays, external spherical mirrors are used. The crystal can be cut with
an inclination angle equal to the Brewster angle (figure 13.25). An intense flashlight pumps the
system. The flashlight is curled as a spiral around the crystal rod, surrounded by reflectors (see
figure 13.28). The Neodymium-YAG laser is the most important solid-state laser. Its active ma-
terial is Yttrium-Aluminum garnet or Y3Al5O12, doped with Nd3+ ions. It is a four-level system,
which means that less energy is needed to pump the system to the laser threshold in comparison
with the ruby laser. The emitted wavelength is 1.06µm. Alternatively, a second laser transition
can be used at 1.3µm, although requiring more pump energy (higher threshold).

The Nd-YAG laser works both in a continuous wave and pulsed operation. In both cases, optical
pumping is used mostly (flashlight or continuous). An often used configuration is sketched in
figure 13.29a. Both the laser rod and the pump light source (a rod as well), are placed at the foci of
the surrounding elliptic reflector. High optical powers, on the order of 100 Watt, can be obtained.
The efficiency is about several percents. Material processing is one of the main applications where
Nd-YAG lasers are used. The choice to use a Nd-YAG or a CO2 laser for material processing
is based on the needed resolution (the wavelength of a YAG laser is ten times smaller) and the
absorption/reflection characteristics of the material for the given wavelengths.

Recently (±1987) an alternative manner of pumping has been developed, using the light of a high
power semiconductor laser (1Watt) axially coupled into the crystalline rod (figure 13.29b). The
Nd-YAG light is extracted at the other side of the rod. The efficiency of this configuration is far
better due to a better use of the pump light, both spatially and spectrally. With an efficiency of
20-30%, an output power in the order of 100mWatt can be obtained. These lasers can be made
compact and are quite cheap. Moreover, it is possible to insert a nonlinear crystal in the cavity for
frequency-doubling. Green light with a frequency of 530nm is obtainable.

Many variants on the Nd-YAG laser exist. YAG can be replaced by other crystals, like YLF
(Yttrium-Lithium-Fluoride) or even amorphous glass. Amorphous glass is cheap and can be pro-
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Figure 13.29: Pump mechanisms for the Nd-YAG laser: (a) with rod lamp and elliptical mirror, (b) with a
laser diode.

cessed easily. However, the structure of the glass results in a broad spectral gain width and thus
a higher required pump energy (only pulsed operation). Due to the higher possible concentration
of Nd in the glass, the energy per pulse can be higher.

An important evolution for solid-state lasers, are the tunable wavelength solid-state lasers. The
active material of these lasers shows a very broad spectral gain width. A tunable frequency se-
lective transmission element is inserted in the cavity. Doing so, any wavelength in the spectral
gain window can be chosen to be emitted. Examples of wavelength tunable solid-state lasers are
Alexandrite Lasers and Titanium-Sapphire Laser (active material is Al2O3 doped with Titanium
ions) with a tunable range between 700 and 950nm. These lasers are in general optically pumped
by an axially installed gas laser.

Fiber lasers form a special class of solid-state lasers. The active gain medium is an optical fiber
which is doped with rare-earth ions such as neodymium (Nd3+), erbium (Er3+) or ytterbium
(Y b3+). The pump light is usually provided by one or more fiber-coupled laser diodes and prop-
agates in the fiber. The cavity is often formed by splicing fiber Bragg gratings to the doped fiber.
These are optical fibers with a periodically varying refractive index in the direction of propagation.

Fiber lasers are an attractive alternative for the heavy, fragile and power consumptive bulk solid-
state lasers. The light in the fiber is shielded from the surroundings and the laser is quite robust.
Doped fibers boast a high gain efficiency and the fibers can operate with low pump powers while
output powers can be as high as several kilowatts. Due to new fiber concepts and technologies,
fiber lasers have made massive progress during the past few years and are ready to compete with
solid-state lasers in many practical applications.

13.5.4 Semiconductor lasers

Semiconductor lasers are discussed in more detail in chapter 14.

13.5.5 Dye lasers

A dye laser is a laser that uses an organic dye as a lasing medium, usually a liquid solution. Or-
ganic dyes (organic molecules that strongly absorb light at some wavelength ranges of the optical
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Figure 13.30: (a) Absorption and emission spectrum of a dye; (b) schematic setup of a dye laser.

spectrum) efficiently emit light when relaxing to the ground state. Due to the many available
energy levels, the laser can be tuned over a broad spectral range. Figure 13.30a shows a typical
absorption and emission spectrum of the Rhodamine 6G molecule. Using a tunable dispersive
element (etalon, prism or diffraction grating) laser oscillation can be obtained for any wavelength
in a spectral range of about 50nm. With the existing dye lasers, the whole visible spectrum and
near-infrared can be covered.

A simplified scheme of a dye laser is given in figure 13.30b. One of the spherical mirrors is trans-
parent for the pump light (often Krypton or Argon laser light), the other spherical mirror trans-
mits the dye laser light. The dye, dissolved in water or alcohol and pumped in a closed circuit,
is squirted into the laser beam. This system avoids cooling problems. Some dispersive elements
inside the cavity complete the laser.

13.5.6 The free electron laser

A free electron laser transforms the kinetic energy of a relativistic electron beam into electromag-
netic (EM) radiation. The interaction between the photons and the electrons is rather complex
and is not described in detail here. The basic principles are the following. An accelerated electron
emits radiation. E.g. synchrotron radiation in ring accelerators, which is however not a suitable
candidate for lasing. The electron beam can be produced by a particle accelerator like a microtron,
storage ring, etc. The transformation occurs when the beam goes through an alternating magnetic
field that forces the electrons to move in an oscillatory trajectory along the axis of the system. One
can prove that an electron exchanges energy with an existing electromagnetic field only if its ve-
locity has a component parallel to the present electric field. This requirement is imposed by the
conservation of energy and conservation of momentum. Considering the electromagnetic field to
be amplified as a plane wave propagating along the z-axis, the electric field is oriented normal to
the z-direction. Thus, the electron and the photon may not propagate in exactly the same direction.

Now, we want the electron to transfer its energy to the electromagnetic field. Or, the electro-
magnetic field receives energy, to which a negative work is related. (Work is defined as positive
if the force transfers energy to the object and negative if the force transfers energy from the ob-
ject)(figure 13.31). Power is defined as the rate at which a force does work on a body:

∆W = F.∆re
= qe.E.∆re = −eE.∆re (13.86)
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Figure 13.31: Emission of photons by accelerating electrons.

Figure 13.32: Propagation of an electron in an alternating magnetic field.

The energy that an electron transfers per time unit to the electromagnetic field is then given by:

dEe
dt

= −dW
dt

= eE.
dre
dt

= eE.ve (13.87)

Assuming the electromagnetic field to be a plane wave, propagating in the z-direction and linearly
polarized along the x-direction, the transferred energy can be written as:

dEe
dt

= eE0x.vex.e
−j(ωt−kzz) (13.88)

If the electromagnetic field and the electron propagate rectilinearly in different directions, interac-
tion will occur, but the average energy transfer will be zero due to the oscillating character of the
electromagnetic wave. The sign of the energy transfer would change every time the electron gets
behind the electromagnetic field another distance λ/2.

Therefore, the electron needs to cover a periodic path instead of a rectilinear one. This can be ob-
tained using a spatially alternating DC magnetic field oriented along the y-axis (see figure 13.32).
An undulator or a Wiggler is used for this purpose (see figure 13.33). If the period P of the spa-
tially alternating DC magnetic field is given by:

P = λ
vz

c− vz
(13.89)

with c the velocity of light in the laser substance (often this is vacuum) and vz the speed of the elec-
tron along the z-axis, Ex and vx will be in phase and change sign simultaneously. The transferred
energy is positive and net amplification is obtained. This is depicted in figure 13.34, showing the
electron and the electric field at different times. The electromagnetic field passes by the electron,
but the speed of the electron along the x-direction vx inverts when Ex changes sign. This results
in a product Ex · vx that remains positive.
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Figure 13.33: The ‘Wiggler’ in a free-electron laser.

To obtain laser action with this amplification mechanism, the wiggler needs to be set up in between
the mirrors of the cavity. The ensemble action of the electromagnetic field and the alternating B
field of the wiggler bundles the electrons in packets. These electrons amplify the electromagnetic
field coherently.

Most experiments with free electron lasers are limited to wavelength ranges in microwave and
infrared. The applications remain restricted. It is also possible to use this mechanism for amplifi-
cation of laser light. The mirrors are removed and the laser light (e.g. from a CO2-laser) is directed
to the Wiggler and amplified.

An important disadvantage of the free electron laser is the need for an electron accelerator, and the
related dimensions. However, the free electron laser is a very efficient laser source as the energy of
the electrons that is not used for amplification can be recuperated. The possible broad wavelength
range and high output power promises the free electron laser a wealth of applications.
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Figure 13.34: The path of an electron in a free-electron laser.
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Chapter 14

Semiconductor Light Sources
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Semiconductors and more specifically semiconductor diodes are of utmost importance in pho-
tonics. They are at the basis of a large number of components at the interface between electrical
signals and optical signals, including light emitting diodes (LED’s), laser diodes, photodiodes,
photovoltaic cells etc.

In this chapter we start with a discussion of the optical properties of semiconductors and continue
with a review of the basic properties of semiconductor diodes before discussing light emitting
semiconductor components. In the next chapter light detecting semiconductor components are
covered.

The student is assumed to be familiar with basic concepts of semiconductor physics. Hereafter a
list of terms (and associated symbols) is given of which the reader is assumed to have some basic
understanding:

• bandgap Eg

• valence band

• conduction band

• direct and indirect bandgap

• electrons

• holes

• electron/hole effective mass m∗e/m∗h

• Fermi-Dirac distribution
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Figure 14.1: Semiconductor elements in the table of Mendeljev.

• Fermi level Ef

• density of states Dc/Dv

• intrinsic semiconductor

• intrinsic electron/hole concentration ni

• doping

• donor/acceptor concentration Nd/Na

• electron/hole mobility µn/µp

• electron/hole diffusion

• electron/hole diffusion coefficient Dn/Dp

• recombination

• electron/hole lifetime τn/τp

14.1 Optical properties of semiconductors

14.1.1 Types of semiconductors

There are many sorts of semiconductors. They can be classified according to the number of el-
ements in their chemical combination. The most common and mostly used semiconductors are
the elementary semiconductors, such as Silicon and Germanium, consisting of one element out
of group IV of the table of Mendeljev (see figure 14.1). They have a diamond structure, in which
each atom is bound covalently to four other identical atoms according to a tetrahedron structure.
The crystal structure of compound semiconductors consists of different elements. In III-V semi-
conductors these elements are group-III elements (Al, Ga, In) and group-V elements(P, As, Sb). In
II-VI semiconductors we find elements from group II (Cd, Zn, Hg...) and group VI (O, S, Se, Te... ).
Finally, we also have the IV-VI semiconductors in which Pb for example is the group-IV element.

In the compound semiconductors we also make a difference between binary, ternary and quater-
nary semiconductors. Examples of binary semiconductors are GaAs, AlAs, InP, ZnSe etc. GaAs
and InP also have the diamond structure, but in this case each Ga (resp. In) atom is bound to
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Figure 14.2: Correlation between the bandgap and the lattice constant for some important semiconductors.

four As (resp. P) atoms and vice versa. This bond is no longer purely covalent, but has a slightly
ionic character. This means that there is a partial transfer of electrons from one type of atoms to the
other. This gives rise to dipole momenta at an atomic level that contribute to the dielectric constant
and cause a deviation between the static dielectric constant and the optical dielectric constant. Due
to this slightly ionic character, these semiconductors are also called polar semiconductors.

When we mix two different binary semiconductors, we get ternary semiconductors. GaAs and
AlAs can be mixed in any relation to AlxGa1−xAs. Each As-atom is still surrounded by four
group-III atoms, that can be Ga or Al, so that there is a mean fraction x Al and a fraction 1− x Ga.
Quaternary semiconductors arise by mixing three binary semiconductors. Examples are InxGa1−x
AsyP1−y and InxAlyGa1−x−yAs.

Next to the chemical structure, semiconductors can also be classified according to their band struc-
ture. For the optical properties it is of utmost importance to know whether or not a semiconductor
has a direct or indirect band structure. When having a direct band structure, the minimum in the
conduction band will occur for the same k-vector as the maximum of the valence band. This means
that the free electrons have approximately the same k-value as the free holes, which is good for
their interaction. The elementary semiconductors like Ge and Si have an indirect band structure.
Many (but not all) III-V and II-VI semiconductors have a direct band structure.
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Figure 14.3: Absortion coefficient α of a number of important semiconductors.

The lattice constant and the bandgap are represented in figure 14.2 for a number of semiconduc-
tors. The lines denote ternary semiconductors. These lines combine two binary semiconductors.
In practise all layers are grown on an appropriate substrate and thus al layers need to have the
same lattice constant as this substrate. GaAs and InP are the mostly used substrates in the III-V
semiconductors. Notice on the figure that AlxGa1−xAs has a lattice constant that is quasi indepen-
dent of x. This is very handy cause it implies that AlGaAs-layers can be grown on GaAs and on
each other with an arbitrary Al-concentration. The case of InxGa1−xAsyP1−y is bit more difficult.
This material is usually grown on InP. One of the two degrees of freedom x and y has to be sac-
rificed to equal the lattice constant to the one of InP. The other degree can then be used to choose
the bandgap.

The last qualification is according to doping with donors or acceptors which leads to n-type and
p-type semiconductors respectively. Si and Ge are doped with group-III acceptors or group-V
donors. III-V semiconductors are doped with group-II acceptors or group-VI donors (group-IV
atoms can sometimes be an acceptors sometimes a donor).

14.1.2 Optical properties

Like in all other dielectric materials, optical properties of semiconductors can be described by a
complex refractive index nC = nR + jnI . The imaginary part expresses whether the material
shows losses or amplification. The power absorption coefficient α is defined in this context

α = −4πnI
λ

(14.1)

A positive value for α implies losses.
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Figure 14.4: Absorption/gain-spectrum in function of the electron concentration.

Absorption and amplification of light in a semiconductor

The absorption in semiconductors shows a typical behavior in function of the wavelength. As long
as the photon energy of the incident light is small (i.e. long wavelengths) compared to the bandgap
of the material, only little absorption will occur. For larger photon energies, photons can cause
excitation of electrons from the valence band to the conduction with transfer of energy from the
photon to the electron. The k-value of the electron remains the same in this transition. This means
that the absorption coefficient is low for E < Eg and high for E > Eg. In semiconductors with a
direct band structure (e.g. GaAs) this transition is abrupt, while for indirect semiconductors (e.g.
Si) this transition is more gradual. The absorption coefficient of a few semiconductors is showed in
figure 14.3. We note that α is larger than 104 cm−1 ifE > Eg. This means that the incident light has
been considerably absorbed after a distance 10−4 cm (= 1µm). If the material shows population
inversion, which implies in semiconductors that there has to be a large concentration of electrons
in the conduction band as well as holes in the valence band (this means that the material is no
longer in a state of thermal equilibrium), stimulated emission will become more important than
absorption. Stimulated emission is the process in which an electron recombines with a hole in the
valence band (in other words drops back to the valence band) under the influence of an incident
photon. The energy that comes free in this process is released as a new photon that has the same
propagation direction and phase as the incident photon. Light amplification thus occurs. In other
words, the absorption coefficient becomes negative. This phenomenon arises when the photon
energy is approximately equal to the bandgap.

A typical absorption/gain spectrum is sketched in figure 14.4 for the quaternary semiconductor
InGaAsP. The latter is important for optical communication. The absorption/gain at the band tran-
sition is represented as function of the photon energy for different values of the electron concen-
tration n (that is supposed to be equal to the hole concentration). A typical gain value is 100 cm−1
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Figure 14.5: Refractive index of AlxGa1−xAs in function of the photon energy and x.

(much smaller than the absorption values of 104 cm−1 and more for greater photon energies). No-
tice that the gain only occurs for photon energies near the bandgap.

Refractive index

The refractive index n of most semiconductors is pretty high. Si, Ge, GaAs, InP all have a refractive
index between 3 and 4. Generally spoken, semiconductors with a large bandgap will have a rather
small refractive index and conversely a small bandgap will lead to a bigger refractive index. In
AlxGa1−xAs for example the bandgap will increase and the refractive index will decrease with
increasing Al-percentage. This characteristic is of crucial importance for semiconductor lasers.
Furthermore, the refractive index is dispersive (wavelength-dependent) and normally decreases
with increasing wavelength. A small peak often occurs in the refractive index near the bandgap.
Due to the very sudden variation of the absorption, the refractive index will show a perturbation
there (because of the Kramers-Kronig relations). In figure 14.5 the refractive index of AlxGa1−xAs
is showed in function of different x-values.

Spontaneous emission

If a semiconductor is brought out of thermal equilibrium (e.g. by absorption of light or by a cur-
rent injection across a junction) the condition np = n2

i will be broken. If np > n2
i (i.e. a surplus of

electrons or holes), the semiconductor will spontaneously try to restore the equilibrium. Electrons
will hereby recombine with holes releasing the energy to a photon (radiant recombination) or to
another electron or hole (which then gains kinetic energy) or to a phonon (crystal lattice vibration).
The latter cases are called non-radiant recombination. A recombination process is often described
by means of the lifetime of the electrons and the holes. The lifetime is the average time a charge
carrier spends in an excited state before falling back to its ground state. The recombination process
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Figure 14.6: Typical spontaneous emission spectrum.

with the smallest lifetime will be dominant. In semiconductors with a indirect bandgap, the prob-
ability of radiant recombination is small as the electrons at the bottom of the conduction band have
a different k-value than the holes at the top of the valence band. The difference in k-vector can no
longer be compensated by a photon. Non-radiant recombination processes therefore dominate in
which the difference in k-vector is usually compensated by a phonon. Radiant recombination can
dominate in semiconductors with a direct bandgap, which causes a good energy transfer of the
excited particles to light. Spontaneous emission is of course the strongest for photon energies near
the bandgap. A typical spontaneous emission spectrum is sketched in figure 14.6.

Other phenomena

In conclusion of this paragraph, we briefly mention that the optical properties of semiconductors
show a number of more complex aspects that are being used in lots of components. The complex
refractive index of a semiconductor can be influenced in different ways. We mention:

• influence of the temperature on n (thermo-optic effect)

• influence of the electron and hole concentration on n (the previously mentioned effect of
charge carriers on the gain/absorption as well as the plasma effect)

• influence of a static electric field on the refractive index or on the absorption (Pockels-effect,
Kerr-effect, Stark-effect)

• influence of elastic tension on the refractive index (photo-elastic effect)

14.2 Diodes

14.2.1 The pn-junction

Suppose that in a certain semiconductor crystal a n-type area with doping Nd borders on a p-
type area with doping Na. Such a junction is called a homojunction. The concentration gradient
will cause diffusion currents: electrons will move from the n-type to the p-type and leave their
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Figure 14.7: The pn-junction: doping, space charge, built-in potential and band-bending.

positively charged donor atoms behind, analogously holes will move from the p-type to the n-
type and leave their negatively charged acceptor ions behind. This gives rise to a space charge and
an electric field E that counteracts further diffusion. The situation is sketched in figure 14.7. If no
external voltage Va is applied across the junction, the built-in electric field and the corresponding
internal voltage across the junction (built-in potential Vb) will be just so large that the diffusion
forces are compensated by the forces caused by the electric field, so that the netto current across
the junction is equal to zero. In this situation of equilibrium, the fermi-level is constant in the
entire structure. The (fixed) charges to the left and the right of the junction form the depletion region
or space charge area, in which almost no free charges are present. The depletion layer becomes
thicker for decreasing doping levels. The voltage drop across the depletion region implies a drop
in the energy levels of the conduction and the valence band. This is called band-bending.

The calculation of Vb follows from figure 14.7 with the condition that the fermi-level is constant
across the entire structure. The energy of the bottom of the conduction band in the neutral n- and
p-areas is denoted as Ecn and Ecp, analogously for the top of the valence band Evn and Evp. We
get:

eVb = Ecp − Ecn = Eg − (Ecn − Ef )− (Ef − Evp) (14.2)

Using

n = Nc exp
[
−
Ec − Ef
kBT

]
(14.3)

p = Nv exp
[
−
Ef − Ev
kBT

]
(14.4)

ni =
√
np =

√
NcNv exp

[
− Eg

2kBT

]
(14.5)
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Figure 14.8: Charge carrier density in the pn-junction: forward biased, not biased, backward biased (loga-
rithmic scale).

with

Nc = 2
[

2πm∗ekBT
h2

]3/2

(14.6)

Nv = 2
[

2πm∗hkBT
h2

]3/2

(14.7)

we obtain:

Vb =
kBT

e
ln
(
NdNa

n2
i

)
(14.8)

For the progress of n and p we get

n(x) = nn0 exp
[
e(V (x)− Vb)

kBT

]
(14.9)

p(x) = pp0 exp
[
−eV (x)
kBT

]
(14.10)

with nn0 the electron concentration in the n-area and pp0 the hole concentration in the p-area
sufficiently far from the junction. V (x) is the potential. The densities n and p are indeed very
small in the depletion region compared to Nd and Na. The space charge ρ(x) in the depletion
region is thus fully dertermined by the density of ionized donors and acceptors. The situation is
depicted in figure 14.8 (Va = 0).

The field E(x) can be calculated with the Poisson equation:

∂E(x)
∂x

= −∂
2V (x)
∂x2

=
ρ(x)
ε

(14.11)

For the maximal electric field Em we get

Em = −eNaa

ε
= −eNdb

ε
(14.12)

The width W of the depletion region can be calculated as

W = a+ b (14.13)
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Figure 14.9: The pn-junction with an external voltage Va.

We get

W =
√

2ε
e

Na +Nd

NaNd
Vb (14.14)

EXAMPLE: For Si with Eg = 1.12 eV, Ec − Ed = 0.045 eV= Ea − Ev, ε = 11.9 ε0, Na = 1019 cm−3,
Nd = 1015 cm−3 we calculate Vb ≈ 0.8 V, W ≈ 1µm and Em = 1.6× 104 V/cm.

The pn-junction with an external voltage

An applied voltage Va is defined as positive if it decreases the internal potential barrier, this is
if the p-area is positively biased w.r.t. the n-area. The external voltage will be mainly across the
depletion region. The fermi-level is now no longer constant everywhere: the fermi-level in the
p-type area will be an amount eVa lower than the fermi-level in the n-type area. The altered band-
bending is sketched in figure 14.91. For the calculation of the electric field and the width of the
depletion layer, if suffices to replace Vb by Vb − Va in the results of the previous paragraph.

When no voltage is applied, the netto electron current and netto hole current in the pn-junction
is zero. This is obvious for the neutral areas. In the depletion area the diffusion and drift current
are equal but opposite. For Va > 0 the potential barrier is decreased and the diffusion current gets
the upper hand. As a consequence, the holes diffuse into the neutral area past x = b, where they
penetrate over a distance Lp. As in this area np > n2

i applies, the (minority) holes will recombine
here. The same happens with the electrons: they penetrate the area x < −a over a distance Ln and
recombine there. The distances Lp and Ln are the diffusion lengths of the minority carriers: for
holes Lp =

√
Dpτp applies and for electrons Ln =

√
Dnτn applies. This length increases when the

lifetime of the minority carrier increases and the diffusion coefficient becomes larger. For Va < 0
the opposite happens: minority carriers are extracted instead of being injected over a distance of

1In fact, the situation is a bit more complex: for semiconductors that are not in thermal equilibrium we actually have
to define two fermi-levels: one for the electrons and one for the holes. These are also called quasi-fermi-levels
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Figure 14.10: Charge carrier transport in a biased pn-junction.

approximately a diffusion length. A graphic representation of these phenomena is given in figure
14.10. The density of the charge carriers is also sketched for both cases in figure 14.8.

If we make a few assumptions, the current-voltage characteristic of the pn-junction can be calcu-
lated. For this we start from the continuity equations (one-dimensional):

For the holes in a n-type semiconductor we get:

∂p

∂t
= Gp −

p− pn0

τp
− p µp

∂E
∂x
− µp E

∂p

∂x
+Dp

∂2p

∂x2
(14.15)

For the electrons in a p-type semiconductor we get:

∂n

∂t
= Gn −

n− np0

τn
− nµn

∂E
∂x
− µn E

∂n

∂x
+Dn

∂2n

∂x2
(14.16)

The calculations are left behind. The final result for the current density J is:

J = JS

[
exp

(
eVa
kBT

)
− 1
]

(14.17)

in which the saturation current density JS (for backward bias) equals to:

JS = e

(
Dnnp0
Ln

+
Dppn0

Lp

)
(14.18)

This is the famous Schockley equation (see figure 14.11). We can clearly recognize the diode char-
acteristic. Finally we notice that the total current in both biases is determined by the magnitude
of the diffusion current at the edges of the depletion region. In other words: the current in a
pn-junction is diffusion-limited.

14.2.2 Heterojunctions and double heterojunctions

A heterojunction is a junction consisting of two semiconductors with a different composition. When
the semiconducors are the same type, it is called an isotype heterojunction, otherwise an anisotype
heterojunction. Let us look e.g. at the case of a P-n junction. This is a heterojunction of a p-type
semiconductor with a n-type semiconductor whereby Eg is the largest in the p-area. A similar
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Figure 14.11: The current-voltage characteristic of a pn-junction.

Figure 14.12: Heterojunction and double heterojunction.

band-bending occurs as in the pn-homojunction. At the boundary plane a discontinuity however
occurs. The situation for forward bias is depicted in figure 14.12, where we have left the band-
bending behind. A heterojunction has an extra degree of freedom when designing a component.
In a regular pn-junction, forward biased, there is an electron as well as a hole current through the
junction. The relative magnitude of these two currents is determined by the relative doping levels.
In a heterojunction the current will mainly consist of charges coming out of the material with
the highest bandgap into the one with the lowest bandgap, independent of the doping. A very
important structure is the double heterojunction in which a layer with a low bandgap is placed
between two layers with a large bandgap. On the right in figure 14.12 the basic band diagram
of a double heterojunction is depicted. Such a structure forms a potential well for the electrons
and the holes. Most of the semiconductor lasers are based on the charge confinement in such
a potential well. This can for example be realized with a N-p-P heterojunction. When forward
biased, electrons are brought out of the N-area and holes out of the P-area. The confinement of a
large electron and hole density in the p-layer leads to population inversion and the recombination
results in laser emission. Furthermore, the material with a lower bandgap usually has a higher
refractive index. The structure thus acts as a waveguide in which the photons are trapped by total
internal reflection.
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Figure 14.13: Surface-emitting LED.

14.3 Light emitting diodes

14.3.1 Electroluminescence

We already know that electron-hole recombination in a semiconductor can cause light emission.
In a semiconductor at thermal equilibrium, the concentration of electrons and holes is small so
that the light emission is very small too. We can however strongly increase photon emission by
bringing the semiconductor out of thermal equilibrium using an external source of electron-hole
pairs. This can be done e.g. by illuminating the material, but it is usually caused by forward-
biasing a pn-junction. In that case the holes diffuse from the p-area to the n-area, and the electrons
diffuse from the n-area to the p-area, respectively. This light source is called a light emitting diode
(LED) and the generation of light is called electroluminescence.

The rate of photon emission can be calculated using the rate G by which the electron-hole pairs
are injected. The photon flux generated per unit volume is proportional to G. In static conditions,
G = ∆n/τ has to apply, with ∆n the surplus of electron-hole pairs and τ the lifetime. As only
radiative recombinations produce photons, we have to introduce an internal quantum efficiency ηi:
ηi = Ur/U = τ/τr. The photon flux Φi generated in a volume V then becomes:

Φi = ηiGV = ηi
V∆n
τ

=
V∆n
τr

(14.19)

The efficiency of a LED is strongly dependent on ηi. As ηi is a lot larger for direct semiconductors
than for indirect semiconductors, LEDs and lasers are usually made of direct semiconductors.

14.3.2 LED-characteristics

Efficiency

A basic problem in LED’s is that the generated photons are not easily extracted from the semicon-
ductor material. Let us consider for example the case of a planar surface-emitting structure, as
shown in figure 14.13. Internally the light is emitted isotropically in all directions. 50% is lost due

14–13



to emission to the substrate. For the other 50%, not radiated towards the substrate, a large part
is lost due to total internal reflections at the semiconductor-air interface. Indeed, light rays can
only escape to the air if the angle between the ray and the normal of the surface is smaller than
the critical angle for total internal reflection, which is approximately 17o for III-V semiconductor
like GaAs. Furthermore, a part of the light is lost because of the reflection on the upper electrode
(which is usually ring-shaped). The overall extraction efficiency is typically smaller than 1%. The
(external) radiation characteristic of this kind of LED is approximately Lambertian. This is the
result of an internally isotropic light distribution combined with refraction at a plane surface.

Thus, next to the internal quantum efficiency, we have to introduce an extraction efficiency ηe. The
photon flux Φo leaving the LED, is:

Φo = ηeΦi (14.20)

The low efficiency can be countered by curving the semiconductor-air interface so that as many
incident rays as possible are approximately perpendicular to the interface. This is however very
hard to realize technologically. Therefore, the LED is often integrated in another material (with a
refractive index as high as possible) in which a curved interface can easily be made. This curved
interface can even act as a collimating lens. Many display-LEDs are manufactured in this way.

Φo can also be written as

Φo = ηeηi
i

e
= ηex

i

e
(14.21)

with i the current through the pn-junction and ηex the external quantum efficiency.

The optical power P0 of the LED then equals to

P0 = hνΦ0 = ηexhν
i

e
(14.22)

Modulation bandwidth

A last important aspect of LEDs concerns the modulation bandwidth. The modulation bandwidth
can be defined by considering the sinusoidal variation of the drive current of the LED with a
frequency ω around a fixed bias drive current. This results in a sinusoidal modulation of the
optical output power, with an amplitude depending on the modulation frequency. For LEDs, this
amplitude decreases monotonically with increasing frequency of the drive current. Typically, the
modulation bandwidth is defined as the frequency of the drive current for which the amplitude
of the modulated optical output has decreased by a factor of 2 compared to the case of a low
frequency drive current (3dB bandwidth).

This modulation bandwidth is primarily determined by the lifetime τ of the injected minority
carriers, that recombine radiatively. For a sufficiently low injection, the transformation of current
variation to light variation is linear, corresponding to a first-order transfer characteristic:

R(f) =
∆P
∆I

=
R(0)√

1 + 4π2f2τ2
(14.23)

Here f is the frequency of sinusoidal modulation of the diode current (around a static working
point, so that the total current always remains positive), ∆I is the amplitude of this modulation
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and ∆P is the amplitude of the resulting sinusoidal variation in optical power. Thus, the 3dB-
bandwidth becomes

f3dB =
1

2πτ
(14.24)

In III-V semiconductors the lifetime is typically a few ns, so that the bandwidth is about 50 to
100 MHz. Some LED-types have bandwidths up to 1 GHz.

14.3.3 LED-types

Besides the previous case of the isotype pn-junction, a LED can also consist of an anisotype het-
erojunction. In this case, recombination primarily occurs at the side with the smallest bandgap. A
third kind of device is the anisotype double heterojunction. Here the middle layer (low bandgap)
is filled with electrons from the n-layer and with holes from the p-layer, which causes recom-
bination in this middle layer. At static equilibrium, the electron- and hole-concentration is just
large enough so that the input of charges is compensated by recombination. This concentration is
sometimes higher than the doping concentration. Due to neutrality:

n ≈ p (14.25)

So the electron-hole spontaneous emission recombination rate U becomes

U ≈ Bnp ≈ Bn2 ≈ Bp2 (14.26)

The lifetime is then inversely proportional to the concentration and therefore dependent on the
current. The LED emits light at a photon energy that is approximately equal to the bandgap of
the material. In order to have different colors, different semiconductors need to be used. In the
following table, the most common types are given:

λ [nm] Color Material Application
1000-1600 Infrared InxGa1−x AsyP1−y Optical fiber communication
850-900 Infrared GaAs Idem + wireless communication
650 Red GaAs60P40 of InGaP Displays
620 Orange GaAs35P65:N Displays
590 Yellow GaAs15P85:N Displays
570 Green GaP:N Displays
400-500 Blue SiC, II-VI SC, InGaN Displays

GaAs1−xPx is by far the most used material for visible LEDs. For x > 45% it is an indirect semicon-
ductor however. This problem is solved by an isoelectronic doping with nitrogen (GaAsP:N). Here
the nitrogen atom (also a group V atom) replaces a phosphor atom which results in new energy
levels close to the conduction band, that act as centers of recombination. The internal efficiency
of good infrared and red LEDs lies close to 100%. For other colors, particularly green and blue,
the efficiency is a lot lower. However, progress is still being made by employing new material
technologies.

Besides inorganic semiconductors, more and more organic semiconductors are being used for
LEDs. These plastic LEDs are called OLEDs. Their performance is for now far below that of
inorganic LEDs.

14–15



Figure 14.14: Edge-emitting LED.

A completely different kind of LED is the edge-emitting LED (see figure 14.14). Here, the LED is
fitted into a waveguide structure (the double heterostructure can fulfill this function in one direc-
tion). Part of the light is guided through the waveguide to the edge of the chip, where it is emitted
into the air. The structure looks a lot like the laser diode (see further), with one major difference:
there may not be a cavity present. The reflections at the end-mirrors are thus suppressed. The
extraction efficiency of the edge-emitting LED is equal to that of the surface-emitting LED. There
is however an important difference in radiance (luminance). The emitting surface of a surface-
emitting LED is usually a lot larger than for an edge-emitting LED, where it is determined by the
waveguide dimensions. Because of this, the radiance of the edge-emitting LED is, at equal power,
larger than the radiance of the surface-emitting LED. This is e.g. important for imaging to a little
spot (e.g. for use in optical fibers). There is also a difference in the spectrum. The spectrum of a
surface-emitting LED is approximately equal to the spectrum of internal spontaneous emission.
In an edge-emitting LED however, light travels a certain distance through the light-generating
material. Therefore shorter wavelengths in the spectrum are absorbed (and thus the spectrum is
narrower). Finally, an edge-emitting LED can also be used as a superluminescent LED. For this
purpose the current is chosen so large that stimulated emission becomes more important than ab-
sorption. The spontaneously emitted light is then amplified while propagating in the waveguide.
This narrows the spectrum and increases the efficiency.

14.3.4 Applications

LEDs have many applications. Indicator lights on all sorts of devices are the most common appli-
cation. Green, orange (amber) and red LEDs are commonly used here. Until now the use of LEDs
in displays had been limited (except for the very large displays in stadia e.g.), because blue LEDs
were expensive and had a low efficiency. However, the recent development of the blue LEDs has
made a breakthrough because of the use of GaN.

Another application that is gaining ground is the ‘LED-lights’. Nowadays, many red LEDs are
already used in car lights and street signs, instead of the classic incandescent lamps, mainly be-
cause of their longer lifetime. There are also LEDs that emit white light. These are actually blue
(or UV) LEDs, covered with a phosphor layer in which the highly energetic blue light is converted
to white light (like in a TL-tube). Infrared LEDs are used for ‘invisible lighting’ (security), and
especially for transmission of information. The latter application is found e.g. in remote controls
and optical fiber connections (mainly short range connections). Another use is the opto-coupler
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Figure 14.15: Population inversion in a semiconductor.

(or opto-isolator) in which a LED and a photodetector are joined in a closed packaging in order to
have a galvanic separated information connection.

Compared to the laser diode, the LED has a lot of shortcomings: low efficiency, low power, low
radiance, low modulation bandwidth and a broad spectrum. On the other hand, LEDs are less
sensitive to temperature, cheaper and more reliable. In addition, the low temporal coherence is
an advantage in a number of applications, as this suppresses the sensitivity to interferometric
disturbances.

14.4 Laser diodes

After the demonstration of the first ruby laser in 1960, it quickly became clear that semiconductor
material would also make lasing possible, with the major advantage that the ‘pump’ would be an
electric current. In 1962, three different research groups, independent of each other, showed lasing
in semiconductor diodes. Today the laser diode has become an indispensable component in lots
of applications. As main applications we mention optical fiber communication and data recording
on compact disks.

14.4.1 Amplification, feedback and laser oscillation

The structure of a semiconductor laser diode resembles that of the LED. In both cases photons
are generated because of an electric injection in a pn-junction. The emitted light of a laser diode
originates however from stimulated emission instead of spontaneous emission, as is the case in a
LED. The optical feedback necessary for laser oscillation is obtained by mirrors, typically formed
by cleaving the semiconductor wafer.
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Amplification

When a semiconductor is pumped to population inversion, optical amplification can occur with a
peak value gp given by

gp = α

(
J

JT
− 1
)

(14.27)

Here J is the injected current density, JT the current density for transparence and α the absorption
when there is no current injection. In order to reach population inversion, the conduction band
in the semiconductor has to be strongly occupied and the valence band relatively empty. In other
words, a large concentration of free electrons and free holes are needed. It can be proven that
population inversion occurs only if the energy distance between the quasi-Fermi levels are larger
than the bandgap (condition of Bernard and Durrafourg). The photon energy of the gain maxi-
mum then lies between both values (see figure 14.15). In practice we have to keep in mind that the
photon energy of the emitted light is approximately equal to the bandgap. Typically an electron
and hole concentration of the order 2×1018 cm−3 is needed for the material to be transparent. This
is a very high concentration and would be difficult to achieve in a large volume of semiconductor
due to thermal reasons. The active volume in a laser is therefore made as small as possible.

Feedback

Feedback is usually obtained by two cleaved surfaces perpendicular to the plane of the junction.
The reflection on the surfaces causes the active area of the pn-junction to function as an optical
resonator. The power reflectance R is given by

R =
(
n− 1
n+ 1

)2

, (14.28)

with n the refractive index of the semiconductor. For GaAs e.g. n = 3.6 so that R = 0.32.

Resonator losses

The partial reflection at the cleaved surfaces enables photons to leak out. These photons are emit-
ted as usable laser light. For a resonator with length L, these loss terms can be expressed as a loss
αm per unit length in the resonator

αm =
1

2L
ln

1
R1R2

(14.29)

The total losses αr contain another term αs due to scattering at optical irregularities. We can write

αr = αs + αm (14.30)

Laser resonance

The amplitude condition for laser resonance is given by gp = αr. Using (14.27) we find the thresh-
old for the current density

Jth =
αr + α

α
JT (14.31)
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The threshold current density Jth is (αr +α)/α times larger than the transparency current density
JT due to resonator losses. Jth is an important parameter concerning the performance of a laser
diode: smaller values of Jth mean a better laser diode.

14.4.2 Laser diode characteristics

When J > Jth laser oscillation begins and the photon flux Φ is built up in the resonator. For an
internal photon flux Φ, we can write

Φ =
{
ηi
i−ith
e , i > ith

0, i < ith
(14.32)

with i = JA the current flowing through the junction with surface area A. The internal laser
power P is then given by

P = ηi(i− ith)
hν

e
(14.33)

The photon flux Φo leaving the resonator is the product of the internal photon flux and the emis-
sion efficiency ηe

Φo = ηeηi
i− ith
e

(14.34)

If the light coming out of both mirrors is used then ηe = αm/αr. For mirrors with identical re-
flectance R we get

ηe =
1
αrL

ln
1
R

(14.35)

The emitted laser power is then given by

Po = ηd(i− ith)
hν

e
(14.36)

in which ηd = ηeηi is the external differential quantum efficiency. The emitted laser power Po in
function of the injection current i is shown in figure 14.19.

The differential responsivity (in W/A)Rd can be defined as

Rd =
dPo
di

= ηd
hν

e
(14.37)

Finally, the overall efficiency η is defined as the ratio of the emitted laser power to the electrical
input power iV and is given by

η = ηd

(
1− ith

i

)
hν

eV
(14.38)

We can now easily deduce that mirrors with a high reflectivity cause low mirror losses and thus a
low threshold current, but also a low extraction efficiency. In practice, there is no point in making
the mirror losses αm smaller than the other losses αs.
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Figure 14.16: Semiconductor laser diode of the first generation.

Figure 14.17: Double heterostructure laser.

14.4.3 Laser diode types

The first semiconductor lasers consisted of a simple forward-biased pn-junction (see figure 14.16).
The threshold current density Jth was very high however (> 10 kA/ cm2) and the efficiency was
low so that only pulsed operation was possible. We mention several reasons. First, the minority
carriers spread out on both sides of the junction because of diffusion, so that a very large current
density is needed to obtain a sufficiently high charge carrier concentration. Second, light ampli-
fication is only obtained over a small area with a thickness of a few µm. The light generated in
this amplification layer will therefore diffract quickly and leave this layer. In addition, because
one uses the plane walls of the cleaved crystal as mirrors, the diverging light does not bend into
convergence. All this means that the cavity shows high losses, and the material has to be pumped
far above transparence.
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Figure 14.18: Typical dimensions of a laser diode.

The double heterostructure laser

The double heterostructure laser (see figure 14.17) brought a solution to all these problems. Here
a thin active layer of GaAs e.g. (typically 0.2µm) is surrounded by other layers (‘cladding’ layers)
consisting of another material (e.g. AlGaAs) with a larger bandgap. One side is p-type doped and
the other side n-type. When the junction is forward-biased, high concentrations of electrons as
well as holes are created in this thin middle layer. The charge carriers can not spread out because
of diffusion, as they are trapped between the potential barrier of the higher bandgap on both
sides of the active layer. Due to this charge confinement it is possible to achieve transparency at
a much lower current density (typically 500 A/cm2). Optically the situation is also very different.
Usually semiconductors with a higher bandgap have a lower refractive index. Thus, the active
layer is confined between two layers with a lower refractive index. This forms a waveguide.
So the photons generated by stimulated emission do not spread out because of diffraction, but
they are ‘locked inside’ the waveguide due to total internal reflection (optical confinement). This
strongly reduces the cavity losses.

Until now we have only discussed what happens in the transversal direction (perpendicular to
the double heterostructure) and the longitudinal cavity direction. In the third direction (lateral
direction) we also try to confine the electrons and holes as well as the photons, just as in the
transversal direction. To this end different techniques are used that we will not discuss here.
However, it is important to keep in mind that a typical laser with active layer dimensions of
0.2µm thick × 5µm wide × 300µm long has a threshold current of approximately 10 to 20 mA. A
three-dimensional sketch of a laser diode is depicted in figure 14.18.

The light propagating in the cavity can no longer be described with Gaussian beams (chapter 5).
There, free diffraction in a uniform medium was assumed, while here we are using a waveg-
uide. When solving Maxwell’s equations, similar results are obtained however, i.e. a number of
modi with a longitudinal, lateral and transversal mode number (see chapter 7). Only one lat-
eral/transversal mode is desired in practice, and this is obtained by correctly choosing the dimen-
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Figure 14.19: Characteristics of a laser diode.

sions and differences between the refractive indices. The suppression of multiple longitudinal
modes is more difficult however. The gain spectrum of the material is broad as the semiconductor
has a band structure instead of discrete levels. Despite the large mode spacing because of the short
cavity (typically 0.3 mm long), multiple modes arise easily. Special structures have to be used in
order to suppress the side modes. To this extent a strongly filtering object is brought inside the
cavity. If this object is tunable, the laser can emit light at each wavelength in the gain spectrum.
In figure 14.19 a number of typical characteristics are shown of a GaAs-AlGaAs laser diode. The
far-field radiation pattern of a laser diode is usually strongly divergent. If a laser has only one lat-
eral/transversal mode, the field profile is clock-shaped and behaves roughly as a Gaussian beam.
Thus, the divergence angle is inversely proportional to the bundle width. As the bundle usually
has an elliptical shape (due to the rectangular shape of the active layer cross section), the far field
will also be elliptical. In the direction in which the rectangular waveguide cross section is the
narrowest the far field pattern will be the broadest (and vice versa).

In this example we used a GaAs/AlGaAs combination. The III-V semiconductors (consisting on
the one hand of one or more elements of group III (Al, Ga, In) and on the other hand of one or
more elements of group V (P, As, Sb)) offer a variety of possibilities. This is shown in figure 14.2
in, where the bandgap and crystal lattice constant are denoted for most of the combinations. The
points denote binary combinations, the lines ternary combinations (these are actually certain mix-
tures of two binary combinations) and the planes between the lines denote quaternary combi-
nations. In order to make a laser with a certain emission wavelength, we have to use the right
semiconductor with the proper bandgap (=photon energy) for the active layer. Furthermore, for
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the cladding layers a semiconductor has to be used with a larger bandgap (and thus a smaller
refractive index).

There is however a technological restriction. In order to fabricate layers with proper crystalline
quality, all layers and the substrate need to have the same lattice constant. The used materials
therefore have to be located along a line on the diagram. Therefore the number of appropriate
substrates is limited. The substrates always consist of a binary combination, with GaAs and InP
the most important examples. We can easily deduce from the figure that with a GaAs substrate,
it is possible to create lasers with emission wavelengths between 700 and 900 nm. With an InP
substrate the emission wavelengths lie between 900 and 1600 nm. The first are used ubiquitously
for optical data recording (e.g. compact disk) and optical fiber communication at short range,
while the latter is very important for optical fiber communication at long range (especially at 1.3
and 1.55µm).

It took a while to fabricate semiconductor lasers that emit visible light. Since 1988 however, red
laser diodes are commercially available. These lasers have an active layer of InGaP and cladding
layers of InAlGaP on a GaAs substrate. The wavelength is approximately 650 nm. Applications
are for example replacement of the He-Ne lasers, barcode readers, new generations of CD systems,
etc.

14.4.4 Comparison laser diodes and other lasers

Let us finally list the important differences between semiconductor lasers and most of the other
lasers:

• energy bands instead of discrete levels

• cavity with waveguide and plane mirrors instead of free diffraction and spherical mirrors

• very small dimensions

• emitted light bundle can be diffraction limited (this means: good spatial coherence), but
still have a large divergence angle (e.g. 20o) due to the small dimensions of the field in the
waveguide. A lens is required in order to obtain a collimated bundle.

• the spectrum can contain different longitudinal modes (this means bad temporal coherence)

The main advantages of the laser diodes are:

• very compact packaging, comparable with electronic components

• simple pump system with low voltages and currents

• possibility of modulation (due to current variations) with a large bandwidth (a few GHz)

• high efficiency (10 to 50 %)

• broad range of usable wavelengths (naturally not in the same component)

• tunable in wavelength by varying the temperature or by integrating tunable filters inside the
cavity
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Chapter 15

Semiconductor Detectors

Contents
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15.1 Introduction

In a photodetector optical power is converted into something measurable, usually an electric cur-
rent. There are generally two types of photodetectors: thermal detectors and photoelectric detec-
tors.

Thermal detectors (bolometers)

In thermal detectors photons are converted into heat, and the resulting change in temperature
is detected by measuring the resistance of a temperature sensitive resistor. Most of the thermal
detectors are inefficient and relatively slow because of the large time constant when there is a
change in temperature. Therefore, they are not suitable for the majority of applications.

Photoelectric detectors

The principle of photoelectric detectors is based on the photoeffect or photoelectric effect. Absorp-
tion of a photon in certain materials results in the generation of mobile charge carriers. When an
electric field is applied, they cause a measurable electric current.

In this chapter we will discuss photoelectric detectors more thoroughly.
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Figure 15.1: The photoeffect: (a) External photoeffect in metals. (b) External photoeffect in semiconductors.
(c) Internal photoeffect in semiconductors.

15.1.1 The photoeffect

There are two kinds of the photoeffect: the external and the internal photoeffect. In the external
photoeffect the generated electrons escape from the material and are called free electrons. This
is also called photoelectron emission. In the internal photoeffect the generated free charge carri-
ers remain inside the material and they increase the conductivity. This process is also known as
photoconductivity and occurs in nearly all semiconductors.

External photoeffect

The principle is depicted in figure 15.1. A photon with energy hν incident on the metal releases an
electron from a half-filled conduction band (figure 15.1a). Due to the conservation of energy, the
maximal energy of the free electron is

Emax = hν −W (15.1)

where W is the energy difference between the vacuum level and the Fermi level of the metal.
W is also called the work function of the metal. Free electrons originating from levels below the
Fermi level have a lower energy. The lowest work function of a metal is approximately 2 eV, so
that photoemission detectors based on metals are only applicable in the visual and ultraviolet
spectrum. Photoelectric emission is even possible in semiconductors (figure 15.1b). In that case
the free electrons mainly originate from the valence band and have a maximal energy

Emax = hν − (Eg + χ) (15.2)

with χ the electron affinity of the material (χ = Evac − Ec) and Eg the bandgap. Eg + χ lies mini-
mally around 1.4 eV, so that photoemission detectors based on semiconductors are also applicable
in the near-infrared.

Photodetectors based on photoelectric emission are usually built in the form of vacuum tubes,
also called photomultiplier tubes (see figure 15.2). Here electrons are emitted from the surface of
the cathode and move towards the anode, which is kept at a higher electric potential. Because of
this, an electric current arises proportional to the photon flux. The emitted electrons gain kinetic
energy as they travel through the electric field and can impact metals or semiconductors placed in
the tube, the so-called dynodes, resulting in the release of multiple secondary electrons. This causes
an amplification of the generated electric current.
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Figure 15.2: Schematic representation of a photodetector based on photoelectric emission: the photomulti-
plier tube.

Internal photoeffect

When absorbing a photon with an energy hν an electron in the conduction band and a hole in the
valence band arises (figure 15.1c). When an electric field is applied, the electron and the hole move
in opposite directions through the semiconductor, which causes an electric current in the electric
circuit of the detector.

The photodiode

The photodiode consists of a pn-junction and is based on the internal photoeffect. Charge carriers
are created by photons that are absorbed in the depletion layer of the junction. These charge car-
riers are subjected to the local electric field, which causes an electric current to flow. Some of the
photodiodes have internal gain mechanisms that physically amplify the current in the semicon-
ductor to improve detection. If the electric field in the depletion layer becomes sufficiently high,
electrons and holes can acquire enough energy to create other electrons and holes due to impact
ionization. This situation can be obtained by applying a sufficiently large reverse bias across the
junction. This type of photodiodes are called avalanche photodiodes (APD).

In summary, the following processes can be distinguished in a semiconductor photodiode:

• Generation: absorbed photons generate free charge carriers.

• Transport: an applied electric field drains the electrons and holes away, causing an electric
current.

• Gain: In APDs internal gain occurs because of impact ionization.

15.1.2 Quantum efficiency

The quantum efficiency η of a photodetector is defined as the probability that a single photon inci-
dent on the detector creates an electron-hole pair that contributes to the electric detector current,
as not every incident photon contributes to this current. A part of the photon flux is reflected at
the surface of the detector. Furthermore, light intensity decreases exponentially inside the semi-
conductor. This means that not every photon will be absorbed in a photodetector with a limited
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Figure 15.3: (a) and (b) Efficiency and (c) responsivity of a photodetector

thickness d (see figure 15.3a and 15.3b). Finally, recombination can occur at the surface of the
photodetector caused by a high concentration of recombination centers. These charge carriers will
also not contribute to the photoelectric current.

Therefore η (0 ≤ η ≤ 1) is written as:

η = (1−R)ζ[1− exp(−αd)] (15.3)

with R the optical power reflectance, ζ the fraction of electron-hole pairs contributing to the de-
tector current and α the absorption coefficient. R can be reduced by covering the surface with an
antireflection coating. ζ can be optimized by careful material growth, and the exponential factor
can be reduced by making the photodiode sufficiently thick. η will also be a function of the wave-
length as α is wavelength-dependent. For large wavelengths, when hν = hc/λ < Eg, η becomes
very small because of the very low absorption. However, for sufficiently short wavelengths, most
of the light is absorbed near the surface of the photodetector, but then recombination gets the
upper hand so η decreases.

15.1.3 Responsivity

The responsivityR is the ratio of the detector current to the incident optical power. If each incident
photon would produce a photoelectron, a photon flux Φ would create an electron flux Φ. In a
closed circuit, this results in an electric current if = eΦ. An optical power P = hνΦ would then
result in a current if = eP/hν. Because only a fraction η of the incident photons contributes to the
electron current, we get

if = ηeΦ =
ηeP

hν
= RP (15.4)

The responsivityR can thus be written as

R =
ηe

hν
= η

λ

1.24
(15.5)

This relation is shown schematically in figure 15.3c. If one does not take the wavelength depen-
dence of η into consideration, R is a linear function of the wavelength. This is easily understood
because of the very large photon energy at small wavelengths. When absorption of such a highly
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Figure 15.4: Working principle and schematic representation of a photoconductor detector.

energetic photon occurs, the electron is excited from the valence band to a higher energy level
in the conduction band, where it will relax to the bottom of the conduction band. The released
energy is lost.

In detectors with a gain G, the responsivity has to be multiplied with the factor G. In this case the
quantum efficiency can be larger than 1.

15.2 The photoconductor

In a photoconductor detector the photon flux is determined by measuring the photoconductivity.
When an external electric field is applied to an illuminated semiconductor, mobile charge carriers
create an electric current in the detector circuit. Photoconductor detectors detect either the pho-
tocurrent, which is proportional to the photon flux, or the voltage drop across a load resistor in
the circuit. The detector consists of a layer of semiconductor material, and usually the cathode as
well as the anode is attached to the same side of the surface. The distance between the cathode
and the anode has to be optimized in order to maximize light transmission on the one hand and
minimize the transit time of the charge carriers on the other hand.

The increase in conductivity caused by a photon flux Φ (number of photons per second incident
on a volume wA, see figure 15.4a) is calculated in the following way. A fraction η of the photon
flux is absorbed and generates electron-hole pairs. The pair-production rate GL (per unit volume)
is thus GL = ηΦ/wA. If τ is the lifetime of these additional charge carriers, recombination will
take place at a rate U = ∆n/τ , with ∆n the photoelectron concentration. In static conditions we
obtain

∆n =
ητΦ
wA

(15.6)

This results in an increase of the conductivity of

∆σ = e∆n(µe + µh) =
eητ(µe + µh)

wA
Φ (15.7)

This increase is in fact proportional to the photon flux.

As the current density is given by Jf = ∆σE and ve = µeE and vh = µhE, with E the electric
field, we can write

Jf =
eητ(ve + vh)

wA
Φ (15.8)
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Figure 15.5: Working principle of a photodiode.

and

if = AJf =
eητ(ve + vh)

w
Φ (15.9)

As usually vh � ve, this becomes
if = eη

τ

τe
Φ (15.10)

with τe = w/ve.

Gain

If we compare (15.10) to (15.4), we notice an internal gain mechanism G = τ/τe. This gain is
caused by the difference in recombination lifetime and transit time. Assume for example that the
electrons are more mobile than the holes and that the lifetime is very long. The mobile electron will
in that case reach the edge of the conductor a lot faster than the hole, which travels to the opposite
edge. The continuity condition of the electric current forces the external circuit to provide another
electron immediately. This electron is then injected at the opposite side of the detector. The new
electron travels to the right again, faster than the hole travels to the left, and this process repeats
itself until recombination occurs. The number of passages of an electron per photon is thus τ/τe,
which is the gain factor. If τ < τe only a fraction of the electron-hole pairs will contribute to the
current. τe is determined by the dimensions of the detector and the applied voltage. Typical values
are w = 1 mm and ve = 107 cm/s so that τe ≈ 10−8 s. Then the recombination time varies from
10−13 s to several seconds, depending on the material and the doping.

15.3 The photodiode

15.3.1 Working principle

A photodiode is mainly the opposite of a light emitting diode. It suffices to reverse the applied
electric voltage to change a LED into a photodiode. The working principle is depicted in fig-
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Figure 15.6: Schematic representation and IV-characteristic of a photodiode.

ure 15.5. Light is incident on a semiconductor diode. The bandgap of the semiconductor is chosen
in such a way that the light is strongly absorbed. The light intensity thus decreases exponentially
and rapidly in the semiconductor.

Electron-hole pairs are created because of the absorption of light. If these pairs are created in a
neutral area of the semiconductor, they will quickly recombine (and may cause light emission).
However, if the electron-hole pair is created in the depletion layer of the pn-junction, then the
electron is led away to the n-area and the hole to the p-area because of the present electric field.

If an external resistor is attached to the diode, a current is able to flow. This current is called
the photocurrent. The IV-characteristic of a diode with and without illumination is depicted in
figure 15.6. In the third and fourth quadrant we find an inverse current that increases proportional
to the incident light intensity. The third quadrant is the normal photodiode region: the current is
almost not dependent on the applied voltage and nearly zero if there is no lighting (‘dark current’).
In the fourth quadrant, the diode produces electric power. This is the photovoltaic or solar cell
working principle.

For photovoltaics, both crystalline, poly-crystalline and amorphous semiconductors can be used.
For consumer applications, silicon solar cells are used, since they show the best efficiency to cost
ratio. A cross-section of a silicon solar cell is shown in figure 15.7, showing the p-n junction and a
texturized and AR-coated surface to improve the efficiency of the solar cell.

The pin photodiode

The regular pn-photodiode has the disadvantage that the depletion area is relatively thin com-
pared to the distance across which absorption occurs. For this reason, a pin structure is often used
(see figure 15.8). In a pin structure a weakly doped (almost intrinsic, i-) area is placed between the
p- and n-area. When applying a reverse bias the i-area is completely cleared and there is a weak
electric field. This i-area is chosen to be a lot larger than the depletion layer in a pn-junction. A
great part of incident light is thus absorbed in the area with the electric field. In this way, respon-
sivity is increased.
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Figure 15.7: Cross-section of a solar cell

Figure 15.8: Working principle of a pin-photodiode.

Figure 15.9: Schematic representation of a heterostructure photodiode.
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Figure 15.10: Collection of charges in a MOS-capacitance.

The heterostructure photodiode

In a pin structure, the absorption near the surface remains a problem. A solution is given by the
heterostructure photodiode (see figure 15.9). Here a p+n−n-structure is used. For a certain wave-
length range, light is not absorbed by the p-layer with a large bandgap, but it will be absorbed by
the n-layers with a smaller bandgap. Quantum efficiency may approach 100 % in this structure.

15.3.2 Modulation bandwidth

The modulation bandwidth of photodiodes is determined by two factors. First, the charges need
a certain time to travel in the area in which an electric field is present. This time is usually of the
order of a few tens to hundred ps. Second, and more constraining, the diode forms a capacitance
that, together with the load resistor, has a RC time constant. For this reason it is important to
choose the surface area of the diode as small as possible.

15.4 Semiconductor image recorders

When multiple photodetectors are brought together in a matrix, it becomes possible to register the
photon flux as a function of place and time. In that way, an electronic version of an optical image
can be obtained. Three functions have to be fulfilled in these image recorders

• collection of charges

• transfer of charges

• measurement of charges

The (historically) most important family of semiconductor image recorders is the CCD sensor
(charged coupled device), although recently (±10 years) for some applications a better alternative
can be found in the CMOS-sensor.

The CCD camera

In a CCD camera charges are collected by means of a metal-oxide-semiconductor capacitance
(MOS) (see figure 15.10). When a positive voltage is applied at the gate electrode, the holes are
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Figure 15.11: Working principle of (a) a CCD camera and (b) a CMOS camera.

driven away and a depletion area is created. The absorption of a photon in the silicon layer gives
rise to an electron-hole pair. Subsequently the electron remains captured in the depletion area,
which acts as a potential well. The number of electrons that can be captured (“well capacity”) de-
pends on the applied voltage, the thickness of the silicon and the surface area of the gate electrode.
The collected charge is proportional to the incident photon flux, unless saturation occurs.

Once the electrons are captured in the MOS capacitance, the charge can be transported form one
gate to another, by applying the right voltages to the matrix of gate electrodes. Charges are in that
way drained to the read-out structure, where they are converted into a voltage (see figure 15.11a).

The CMOS camera

The collection of charges in a CMOS camera is the same as in a CCD camera. However, the charge
to voltage conversion now happens in each pixel itself (see figure 15.11b). CMOS cameras can
be integrated with analog and digital circuits onto the same chip (“Camera on a chip”). For the
time being CCD cameras are superior to CMOS cameras concerning image quality, but the CMOS
technology is evolving rapidly. Due to integration higher frame rates can be obtained and they
can be produced relatively cheap. CMOS cameras are therefore ideal for low-cost applications like
webcams.

Color cameras

Apart from the wavelength-dependent sensitivity because of material absorption, no mechanism
is present in a CCD or CMOS to select a specific wavelength for detection. Colors can only be
detected by adding some kind of color filter.
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Chapter 16

Technology of Optoelectronic
Semiconductor Components
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The realization of optoelectronic semiconductor components used for research, telecommunica-
tions and optical information processing demands a number of specific materials, technological
processes and special facilities. In this chapter we will give a realistic view of the fabrication of
optoelectronic components like lasers, LEDs and detectors. However, a lot of technological details
are left out.

We start with a brief description of a few fundamental steps that occur in the production process
of e.g. semiconductor lasers:

• epitaxial growth: the growth of the layer structure

• photolithography: defining structures into the photoresist

• etching processes: the removal of material

• plasma deposition and plasma etching

• metallization: placing contacts and connections

In the last paragraph, we describe the concrete production of laser diodes in GaAs/AlGaAs.
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The so-called III-V semiconductors are used for nearly all the applications in optoelectronics. The
two most important substrate materials are GaAs and InP, on which layers of InGaAs, AlGaAs
and InGaAsP can be grown epitaxially. In contrast with Si, which is by far the most used semicon-
ductor material, III-V materials have a direct bandgap. This enables the efficient generation (light
emitting diodes and laser diodes) and detection (optical detectors, solar cells. . . ) of light. A lot
of the technological process steps used in the fabrication of III-V components, are derived from
production techniques for integrated circuits in silicon. A modification of each process is required
however as we are dealing with other materials and want to make other components.

16.1 Crystal growth

The basic material for the fabrication of semiconductor components is a wafer with a thickness
of 0.4 to 1 mm that is being cut off of a perfect monocrystal and polished afterwards. For the
fabrication of Si-circuits, wafers are used with a diameter between 4”1 and 300 mm. For III-V
materials, 2” to 4” wafers are employed usually. The wafers are smaller as it is more difficult to
obtain a uniform composition of the material during growth, for the basic material (e.g. the same
number of Ga-atoms and As-atoms) as well as for the doping elements. This wafer is only used
as a substrate, because an optoelectronic component consists of a number of layers with different
optical and electrical properties, in other words layers that consist of different materials.

16.2 Epitaxial growth

Using epitaxial growth techniques, monocrystalline semiconductor layers are deposited on the
monocrystalline substrate. In this way the crystal lattice is continued from the substrate to the
deposited layer, although they have a different chemical composition (e.g. a AlGaAs layer onto
a GaAs substrate) or doping (e.g. a n-doped layer on a semi-isolating substrate). Naturally we
have to make sure that the lattice constants are the same for the different materials. A lot of
optoelectronic components are based on such a piling up of layers. Different growing techniques
exist for the fabrication of the layer structures. These are however always derived from one of
the three basic techniques: Liquid Phase Epitaxy (LPE), Metal Organic Chemical Vapour Deposition
(MOCVD) or also called Metal Organic Vapour Phase Epitaxy (MOVPE) and Molecular Beam Epitaxy
(MBE). The most popular technique is MOCVD, of which a schematic representation is given in
figure 16.1.

When using MOCVD an epitaxial layer is grown from the gas phase. When growing III-V mate-
rials, we start from metalorganic materials (group III) and hydrides (group V). The carrier gas is
hydrogen gas. By controlling the flow and temperature of the different gas components, the ratio
of the different gases in the reactor is varied. These gases are sent through the reactor by a valve
system and the remaining gases are led to the exhaust pipe via a bypass.

The substrate is located onto a so-called susceptor in the reactor which is electrically heated, with
IR-lamps or RF-induction. The high temperature causes a reaction above the substrate resulting
in the deposition of epitaxial layers.

11 ” ' 25.4 mm
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Figure 16.1: Schematic representation of a MOCVD device.

Figure 16.2: Successive steps in a photolithographic process.

16.3 Photolithography

For the fabrication of laser diodes numerous other steps, besides the growth of crystalline layers
on the substrate, have to be followed, such as the etching of material and metallization. Only
certain parts of the substrate need etching and the metallization has to occur in specific patterns.
To accomplish this a masking layer is needed in order to protect certain parts of the substrate.

The most commonly used materials for this purpose are UV-sensitive polymers or the so-called
photoresist. The pattern of a mask is first transferred photolithographically in this substance and
then this resist pattern is used as a mask for the final process step. There are numerous pho-
tosensitive polymers on the market, each with their own specific spectral sensitivity and range
of layer thickness. The needed resist is chosen as a function of the application. UV-lithography
(λ ∼ 300− 400 nm) is by far the most used technique, though we continuously strive after smaller
dimensions, so other light sources are used like deep-UV, X-rays. . . The minimal detail size W de-
pends on the wavelength: for contact lithography (see further) there is a rule of thumb W ∼

√
λg,

with g the distance between the mask and the bottom of the resist layer. For projection pho-
tolithography W ∼ kλ/NA applies, with NA the numerical aperture of the projection system and
k a correction factor.

Photolithography consists of the sequence of a number of constituent processes (see figure 16.2):
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1. cleaning of the substrates

2. putting on the resist

3. baking of the resist

4. alignment of the substrate w.r.t. the mask

5. lighting of the resist

6. development of the resist

The first step can be considered as one of the most important steps in the entire process. The
cleaning includes a degreasing with solvents. Afterwards the samples are rinsed with deionized
water and heated up for a long time to make the surface completely free of moisture.

Then the photoresist layer is applied, which can generally be done in two different ways. When us-
ing dip-coating the substrate is submerged in the photopolymer and then slowly pulled up. When
using spin-coating the substrate is covered with resist and then spinned around at high speed (3000
to 5000 rpm). Uniform and well reproducible layers are obtained in this way. After putting on the
resist, the polymer is baked in a nitrogen environment according to a carefully controlled proce-
dure.

In the next step the desired pattern is transferred via UV-illumination in a mask-aligner from the
mask to the resist layer. This mask is a glass plate on which the designed pattern is present in
a thin metal film (usually chrome). Using a microscope and micrometer screws, the substrate is
aligned w.r.t. the pattern on the mask. This alignment is critical as different process steps (in a
mask design these are called different levels) have to be carried out after each other in order to
get a full component. When the substrate is well positioned, the resist layer is lit through the
transparent zones in the chrome layer. In that way the mask pattern is copied into the resist layer.

INTEC uses contact lithography as lighting technique. In this method the substrate is pressed
against the mask by creating a vacuum in the space between the mask and the substrate. When
illuminated, a 1 to 1 image of the mask is obtained. The simple optics is an advantage of this
technique but the mask can be damaged due to the mechanical contact between the chip and the
mask. Alternatively, when using projection lithography, a lens system is needed between the mask
and the substrate. An enlarged version of the pattern is put on the mask. This is then projected
reduced onto the substrate. Afterwards the substrate is shifted and projected again. In that way
the whole substrate can be projected with the same chip design. Such a device is called a stepper.
Projection lithography is often used in production environments.

After illumination, the polymer layer is developed in a basic solution. We can choose between pos-
itive or negative photosensitive substances, where either the illuminated or the non-illuminated
parts are developed and removed.

16.4 Wet etching

There are two types of etching processes: wet etching and dry etching. The term wet etching denotes
the fact that the chemicals are used in their liquid phase. In a dry etching process on the other
hand, chemically reactive gases are used. Dry etching is discussed in the next section.
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Figure 16.3: Reaction-limited wet etching process versus diffusion-limited wet etching process.

When using wet etching of III-V materials, we have to keep in mind that these materials are built
from different elements. E.g. if we want to etch GaAs, the etch mixture has to react with Ga as well
as with As. The situation becomes even more complex when working with ternary or quaternary
combinations. This problem is handled in the same way for nearly all materials. In the first step
the surface is oxidized. Afterwards the oxides are dissolved in an acid or basic environment. In the
classic etch mixture H2SO4/H2O2/H2O, that is used in the processing of the laserdiode to etch the
mesa-stripe, H2O2 oxidizes the surface and H2SO4 dissolves the oxide. Both constituent processes
are in competition with each other. For certain ratios of the products, the oxidation takes place
quickly and the dissolution (determined by the diffusion process) will be speed-limiting so we can
call it a diffusion-limited etching process. Using other ratios the oxidation process (determined by
the chemical reaction) will be a lot slower than the diffusion process, and we obtain a reaction-
limited etching process.

The obtained etching profile depends on the type of process that occurs (see figure 16.3). With
a diffusion-limited process, the diffusion time, and thus the distance between the semiconductor
surface and the etching mixture, will determine the etching speed. Because of this, a circular
profile arises at the edge of the mask. When using a reaction-limited process, the etching speed
will be determined by the chemical reactivity and as this is dependent of the crystallographic
direction, lattice planes will become visible (in the case of GaAs these are typically (111)-planes).

By choosing the right etching mixture, we can ensure that certain materials are etched while others
remain untouched. These are called selective etching mixtures.

The greatest limitation of wet etching processes is the dependence of the etching speed on the
opening in the mask and the impossibility to etch fine structures because of underetching. As a
rule of thumb we can assume that structures smaller than three times the etching depth will cause
problems when using wet etching.

16.5 Plasma deposition and plasma etching

The metal patterns that connect the underlying components and form the electric contacts with
the environment have to be isolated from each other and from the underlying layer structure. To
this end, one uses polyimide and dielectrics such as SiO2 or Si3N4. Plasma activated processes are
being used to create these isolating layers and etch the patterns: Plasma Enhanced Chemical Vapour
Deposition (PECVD) and Plasma Etching (PE), with the following variants Reactive Ion Etching (RIE)
and Inductive Coupled Plasma Reactive Ion Etching (ICP-RIE).

During the deposition (PECVD), the choice of gases determines the composition of the layers:
SiO2, Si3N4 or a combination in between (oxynitrides) can be obtained. For Si3N4 the gas mixture
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Figure 16.4: Schematic representation of a PECVD-device.

Figure 16.5: Differences between the etching profile when using dry and wet etching.

SiH4-NH3-N2 is used, while for SiO2 the mixture SiH4-N2O is used. The gas mixture is brought
in the reactor through small holes in the upper electrode. By applying an AC-voltage between
the electrodes, the gas mixture will be ionized. During the reaction, radicals and ions from this
plasma create a uniform film on the substrate with the desired composition and quality. Eventual
reaction products and the rest of the gases are sucked out of the room to the pump installation
through an opening at the bottom electrode (see figure 16.4).

The most important advantage of this dry deposition technique is the low reaction temperature,
enabled by the use of extremely reactive chemical radicals (e.g. monoatomic N). The formation of
high quality Si3N4 can normally only take place at temperatures above 700 ◦C, but these tempera-
tures have to be avoided in the III-V technology. This deposition process is furthermore omnidi-
rectional which enables a good coverage of non-planar structures (this is hard to get with sputter
processes).

The principle of plasma etching is analogous. Radicals and ions react with the material that has
to be etched by choosing an appropriate gas mixture. These materials can be dielectrics, semi-
conductors as well as metals. The volatile reaction products are then sucked away by the pump
system.

The major difference between wet and dry etching processes becomes clear when looking at a cross
section of the etched material (see figure 16.5). When using a wet etching process, nothing stops
the chemicals from etching the material vertically as well as horizontally, and thus under the mask.
Thus, in the case of a wet etching process, we always have a profile in which a clear underetching
is observed. When using dry etching we can accelerate the ions in a certain direction, by adapting
the structure of the reactor and the process itself, and make sure that there is only vertical etching.
The resulting profiles are steeper and there is almost no underetching.
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Due to the high investment costs and the complexity of the process, dry etching is used only
if wet etching is not possible. Typical applications are the etching of narrow, deep structures,
independent of the crystal orientation.

16.6 Metallization

The application of metal patterns is of course an indispensable step in the production of each
electronic component, as they are the contacts of the device with the environment. The quality of
the metal-semiconductor contact can greatly influence the performance of a component.

The most important part of the installation for the deposition by evaporation is the vacuum tube in
which the required pressure is obtained by a combination of vacuum pumps and turbomolecular
pumps. The lower the final pressure, the better the contact will be. Typically a pressure lower
than 10−5 mbar is desired as the gas molecules cause contamination.

There are two techniques to deposit a metal film: thermal deposition by evaporation and sputter-
ing. When using thermal deposition by evaporation we can further distinguish Joule evaporators and
electron beam evaporators.

• In Joule evaporators, a large current (> 100 A) is sent through a crucible in which an amount
of the material that has to be evaporated is present. This causes the metal to evaporate
and deposit itself on the edges of the vacuum tube and on the substrates. The speed of the
evaporation depends on the temperature of the crucible (determined by the current) and can
be as large as a few tens of nm per minute.

• When evaporating with an electron beam device, the metal is melted and evaporated by
directing a highly energetic electron bundle with magnets onto the material holder. The
kinetic energy of the electrons is hereby converted into the necessary heat. The obtained
temperatures are considerable so that nearly all materials can be evaporated in this way.

When using sputtering, the material that has to be put onto the semiconductor is present as a
massive block, serving as an electrode, with on top a second electrode between which an electric
voltage is applied. A plasma is created in the present argon gas. The Ar-ions are drawn to the
electrode, which is made of the material that has to be deposited. Metal atoms are then released
because of heavy collisions with the Ar-ions. These metal particles fill the vacuum tube and are
also deposited onto the substrate that is placed above the source. The speed of sputtering in
this process is typically a few nm per minute and is determined by the applied voltage, the gas
pressure and the material.

In each of these methods, the metal forms a continuous film on the whole substrate. To create the
desired patterns, we can use an etching process or the lift-off technique, as illustrated in figure 16.6.

In the etching process, the lithographic pattern is defined in the already deposited metal. In the
lift-off technique, the lithographic pattern is first applied and afterwards the metal layer. The
polymer pattern is then dissolved, causing the upper metal parts to be removed as well. The
obtained pattern is thus the inverse of the resist pattern. From figure 16.6 it is clear that such a
lift-off process is only possible if the metal film does not completely cover the resist profile. With a
positive profile, the resist can no longer be dissolved in the solvent and the lift-off will fail. When
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Figure 16.6: Deposition of metal layers and definition of patterns: the etching technique versus the lift-off
technique.

having a straight profile, the resist can be removed but the raised edges may remain. A negative
profile is ideal for the lift-off technique. This leaning profile can be obtained by image-reversal
during the photolithography, in which advanced kinds of polymer are used as photoresist.

16.7 Packaging

Mounting and packaging of a component is required as the component itself, as fabricated during
the processing, is hard to handle and subject to all sorts of influences from the environment. Pack-
aging of components is done in different ways and the quality of the packaging usually determines
the lifetime of the component.

The packaging of electric components ensures protection against the outside world and electric
connections have to be made when the component is mounted. Die-bonding ensures the fixing of
the chip inside the packaging, while wire-bonding takes care of the wires between the chip and
the pins of the packaging. The placement of the chip inside the package is not so critical, as the
wires can counter a wrong positioning. More important is that the thermal aspects are taken into
account, in order to counter temperature rises.

A number of extra aspects occur for optical and optoelectronic components. Usually an extra
protection is provided for the exit facets and mirrors of the component. Furthermore, we have to
be aware of the temperature as a lot of the characteristics of the components strongly depend on
it. We also have to take care of the optical entries and exits. This means that the component has to
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Figure 16.7: Alignment of laser diodes and optical fibers using V-grooves.

be aligned w.r.t. the micro-optics or optical fibers. Packaging is therefore a large part of the costs
of a component. For a device connected with an optical fiber for example, the packaging embraces
more than 60 % of the cost price. To reduce this cost price, active2 alignment has to be avoided
especially. This is e.g. realized by designing structures in which passive alignment occurs. Let
us examine the alignment of a number of optical fibers (see figure 16.7). A Si-carrier is equipped
with a number of contact planes and grooves. Optical fibers are placed in these grooves and the
laser row is mounted onto the contact planes via a flip-chip3 technology. The optical fibers are
thus aligned and positioned in the V-grooves. These V-grooves are lithographically defined and
aligned w.r.t. the contact planes for the laser diode. The laser is then placed via flip-chip on these
contact planes, and thus perfect alignment is obtained.

The packaging costs are reduced further by integrating multiple components in one single package
or even in one single chip. In that way, the alignment problem is avoided. In the present world
of optoelectronics, there is a large tendency towards smaller components with more integration,
better performance and lower costs.

16.8 Example: fabrication of a laser diode

The production of a typical laser diode (see chapter 14) consists schematically of 8 process steps:

1. growth of the appropriate crystalline layer structure

2In active alignment, the alignment is optimized by measuring and maximizing the usable exit power during the
process.

3In this flip-chip technology, a chip is provided with contact planes over its entire surface on which an extra metal
layer is put afterwards (bumps). The same happens on the carrier and the chip is then mounted upside down onto the
carrier. In this way, a two-dimensional contact can be realized
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2. lithography and etching of the mesa

3. deposition, lithography and etching of an isolation layer

4. lithography and application of the upper contact

5. lithography and application of an extra contact-metallization

6. thinning of the substrate by polishing it

7. placing of the bottom contact

8. cleaving the laser mirrors

We emphasize that the production scheme of these components changes continuously, evolving
to more reliable and reproducible processes. Meanwhile, the scheme currently used at INTEC has
also evolved compared to the one described here, but this one is chosen as it is a more traditional,
commonly known and used procedure.

The layer structure needed for the fabrication of a laser diode depends strongly on the wanted
characteristic of the final component. For a simple double heterostructure laser diode we start
from a structure as depicted in figure 16.8 (a). As it is technologically difficult to put a good
electric contact on AlGaAs, a highly doped GaAs-layer is put on top of the laser structure.

Subsequently a mesa4 is created in the layer structure with etching processes (see figure 16.8 (b)-
(e)). This mesa has two functions. First, the mesa acts as an optical waveguide that, combined with
the laser mirrors, forms an optical cavity. Second, when a current is injected, the mesa prevents
the current from leaking away laterally into the layer structure. This improves the operation of
the laser as a high current concentration is obtained in the active layer, where the optical field is at
its maximum.

After this step, the metal contact can be placed. However, this has to be put on top of the mesa, as
only there a sufficiently good contact is ensured. On the other hand, the dimensions of the contact
have to be sufficiently large in order to allow connections with other components or measuring
probes. In such a large contact the current leakage that may be injected next to the laser stripe can
then no longer be neglected and can interrupt the proper operation of the laser. An isolating layer
is therefore applied to avoid contact of the metal film with the layer next to the mesa.

The contact between the metal film and the semiconductor will usually show a diode current-
voltage characteristic. By alloying at high temperatures (350-450 oC), where the metal atoms dif-
fuse in the GaAs, the diode behavior is transformed into a low-resistive contact and a linear I-V
characteristic. An example of such an ohms contact is a n-type AuGe/Ni contact for GaAs laser
diodes.

In our example, the isolating layer consists of 300 to 500 nm Si3N4, deposited over the entire sur-
face. After this plasma deposition, the Si3N4-layer above the mesa and the electric contacts are
lithographically etched away with a dry etching technique. The result is shown in figure 16.8 (h).

After a new lithographic step and by using a lift-off process, the upper contact can be applied
with different metal layers (Ti/Au is usually employed for a p-type contact and AuGe/Ni is used

4A mesa is a plateau with steep edges, commonly found in the southwest landscape of the USA.
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Figure 16.8: Process flow for the fabrication of a laser diode.
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for a n-type contact). In case of a laser diode with a n-type substrate, the upper contact has to
be p-type and vice versa. Using the same process, an extra metallization (TiW/Au) is often put
on the contact plane at the upper side of the laser to further reduce the serial resistance of the
electric contacts. If an even lower serial resistance is required, a thick (2 tot 4µm) Au-layer is
added electrochemically (Au-plating).

The substrate on which the whole laserdiode is fabricated, has an initial depth of approximately
400µm. As the thermal conductivity of GaAs is pretty low, this often causes a problem for the
stable functioning of the component. Therefore, in nearly all cases the substrate is thinned to
approximately 100µm by polishing techniques. In this way, the cleaving of the individual compo-
nents is also simplified.

The second electric contact is put on the back side of the substrate (Ti/Au or AuGe/Ni, depending
on the type of substrate). This metal film is deposited by evaporation over the entire back side of
the sample and no lithographic step is thus required. As was the case for the upper contact, this
one needs to be alloyed in order to get an ohms contact.

The final process step is the creation of the laser mirrors. The planes obtained by cleaving the
component according to the desired dimensions, are perfect crystal planes and therefore extremely
suitable as mirrors. The finished laserdiode with some typical dimensions is shown in figure 16.8
(k).
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Chapter 17

Lighting
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We are often confronted with light and lighting as the eye is one of the most important senses
to mankind. Therefore an engineer has to have some knowledge of the proper use of light in
numerous circumstances. We mention for example lighting at work, at home, in the streets, etc.

The following paragraph deals with a few basic concepts of lighting. We pay attention to the
measurement of light emitted by a lighting device and lighting calculations. Subsequently the
most common types of lamps are discussed.

17.1 Lighting calculations

There are numerous methods to calculate the light of a lighting installation. Generally they can
be divided into two classes: the point-by-point method and the integral method. In the point-by-
point method the illuminance caused by directly incident light as well as the light reflected onto
the walls and such (figure 17.1) is calculated. Such a calculation is only possible if the luminous
flux of all the light sources as well as the polar luminous intensity curves are known. Furthermore
we have to know all the characteristics of the reflecting walls if we want to take these contributions
into account. The point-by-point method is very accurate, but a lot of calculations are needed,
especially if reflections are taken into account. However, software packages are available that can
execute these calculations.

The integral method can be divided into two methods: method of the lighting efficiency (also
called: method of the coefficient of efficiency) and the British Zonal(‘BZ’) method. In these meth-
ods, the average illuminance, caused by the directly incident light on the work plane as well as
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Figure 17.1: Lighting calculations with the point-by-point method.

Figure 17.2: Lighting calculations with the integral method.

the reflected light (from walls, ceiling and floor: figure 17.2) is immediately calculated. Thus, this
method does not allow to calculate the illuminance in a specific point, but is very simple and
quick.

The method of the lighting efficiency uses a quantity η that is called the coefficient of efficiency).
This quantity η is defined as the fraction of the luminous flux, produced by the lamps, that reach
the floor (or an imaginary work plane 1 meter above the floor). Thus, we can write:

η =
Fwork plane
Ftotal

(17.1)

The average illuminance Eaverage on the work plane is given by:

Eaverage =
Fwork plane

S
(17.2)

with S the surface area of the floor of the room. We get:

Eaverage = η
Ftotal
S

(17.3)

With this relation, we can calculate the (average) illuminance when the total luminous flux pro-
duced by the lamps is known. Naturally η has to be known.

η is tabled for several lighting devices in function of the reflection coefficient of the walls, ceiling
and floor and also the shape index k of the room, defined as

k =
lw

h(l + w)
, (17.4)
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Figure 17.3: Direct and indirect lighting.

Incandescent lamps Lighting efficiency
ρp = 0.7 ρp = 0.5 ρp = 0.3

System η k ρm = ρm = ρm =
[%] 0.5 0.3 0.1 0.5 0.3 0.1 0.5 0.3 0.1

Direct 0.5 0.28 0.21 0.17 0.27 0.21 0.17 0.26 0.21 0.17
0
↑ 1 0.47 0.41 0.37 0.46 0.41 0.36 0.45 0.39 0.36

80
↓ 2 0.64 0.58 0.55 0.62 0.58 0.54 0.60 0.56 0.53

80
5 0.76 0.74 0.71 0.74 0.72 0.70 0.73 0.70 0.68

Mainly 0.5 0.24 0.19 0.15 0.18 0.15 0.12 0.13 0.11 0.09
indirect 69

↑ 1 0.40 0.35 0.32 0.32 0.28 0.25 0.22 0.20 0.18
89
↓ 2 0.54 0.50 0.46 0.42 0.39 0.37 0.31 0.29 0.27

20
5 0.65 0.63 0.60 0.50 0.49 0.48 0.37 0.36 0.35

Table 17.1: Lighting efficiency as function of the type of lighting and the reflection of the walls and ceiling.

with l and w respectively the length and width of the room. h is the distance between the work
plane and the lighting device in case of mainly direct lighting, or the distance between the work
plane and the ceiling in case of indirect lighting via the ceiling.

The lighting efficiency for two types of settings - a mainly direct and a mainly indirect - is repre-
sented in table 17.1 (figure 17.3). The first column denotes the amount of light, produced by the
lamp, that leaves the fitting and the percentage radiated upwards respectively downwards. The
other columns represent the lighting efficiency as function of the shape factor k and the reflection
coefficient of the ceiling ρp and the walls ρm.

In the case of mainly direct lighting, we see that ρp only has a small influence on the efficiency.
The efficiency also decreases and depends more on ρm as the room gets higher.

This method can only be used if the following conditions are approximately fulfilled:
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Lighting method Max. distance between the lighting devices
direct lighting 1.35h
mixed lighting with diffusers 1.70h
mixed lighting with TL-tubes 1.50h
indirect lighting 3g

Table 17.2: Guidelines for the maximal distance between light sources in different types of lighting.

• the room is closed and rectangularly shaped,

• the walls have a uniform and well known reflection coefficient,

• enough identical lighting devices are placed so that a certain uniformity of the illuminance
is guaranteed.

Concerning this last fact, a number of rules of thumb for the maximal distance between the lighting
devices can be deduced from table 17.2. A main distinction can be made between the case of direct
lighting and indirect lighting.

Hereby h is the height of the light sources above the work plane, and g the distance between the
fittings and the ceiling.

The method of the coefficient of efficiency is very good if the η-tables are known for the used
lighting device. However, if this is not the case, the reference table that best fits the lighting device
has to be used. Large margins of error can be introduced in that way. Therefore the British Zonal
method has been developed. This is just an extension of the method of the coefficient of efficiency,
in which a more systematic method is used to determine the reference device with which the given
device corresponds the most.

17.2 Light color

The color of the illumination happens to be very important. When it is necessary to easily dis-
tinguish colors, a source that emits light as white as possible has to be used, approaching the
characteristics of daylight. Furthermore, the color of artificial light plays a significant subjective
role. Bright light is preferably as white as possible, while a softer ‘warmer’ hue is usually cho-
sen for weaker light. Lighting with a uniform color is mostly favored to heterogeneous lighting
(unless special effects are desired). The latter because the eye adapts itself to the color of the light
source and will barely notice, in uniform lighting, that the objects do not look the way they do in
daylight.

17.3 Characterization of light sources

17.3.1 Measurement of the illuminance and calculation of the luminous flux

The luminous intensity I(θ, φ) of a light source in function of the angles θ and φ can be measured
by rotating this light source in a horizontal and vertical plane w.r.t. a photocell. For small light
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Figure 17.4: Measurement of a light source.

sources like incandescent lamps, there are no problems. However, when the sources have large
dimensions, e.g. a device for fluorescent tube lamps, we have to pay attention to the fact that the
luminous intensity needs to be measured at a large distance compared to the dimensions of the
lighting device. Once the luminous intensity I(θ, φ) is determined, the total luminous flux F can
be calculated by numerical integration.

F =
∫ ∫

I (θ, φ) dΩ =
∫ ∫

I (θ, φ) sin θdθdφ. (17.5)

If an analytical expression is known for the luminous intensity, the integral can be calculated. The
light flux of a radiator satisfying Lambert’s law, is thus given by:

F =
∫ ∫

I0 cos θdΩ = πI0 (17.6)

17.3.2 Direct measurement of the total luminous flux

If we want to measure the total luminous flux of a light source, we can avoid performing a num-
ber of measurements of the illuminance by using an integrating sphere photometer (also called a
sphere of Ulbricht). This device immediately gives us the total luminous flux of the considered
source. The integrating sphere or sphere of Ulbright (figure 17.5) consists of a hollow sphere, with
a diameter much larger than the dimensions of the light source. The inner side of the sphere is
painted in a white mat paint with reflection coefficient ρ that scatters the light following Lambert’s
law.

The paint reflects a fraction ρ of the optical power (and absorbs the rest). The light source is
placed in the middle of the sphere. A photodetector is placed in the surface of the sphere and a
small screen shields the detector from direct incident light. We now prove that the response of the
photodetector, thus the illuminance E on this detector, is proportional to the total luminous flux
F of the light source. A part dF of the luminous flux of the source illuminates the surface area dS
around a point A and scatters there according to Lambert’s law:

I = Im cos θ with Im =
ρdF

π
so that I =

ρdF

π
cos θ. (17.7)

The luminous flux d2F ′ originating from dS1 that reaches a surface area dS2 around an arbitrary
point B is:

d2F ′ =
ρdF

π
cos θ

dS2 cos θ
|AB|2

(17.8)
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Figure 17.5: Direct measurement of a light source with an integrating sphere photometer.

with |AB| = 2R cos θ. Consequently:

d2F ′ =
ρdFdS2

4πR2
(17.9)

Thus, the illuminance dE′ in B, due to this first reflection of dF , is:

dE′ =
d2F ′

dS2
=

ρdF

4πR2
. (17.10)

This does not depend on θ so that, considering all first reflections, a constant illuminance E′ is
obtained over the entire surface of the sphere:

E′ =
ρF

4πR2
. (17.11)

Let us now calculate the illuminance E′′ due to the 2nd reflection. The surface area dS3 now acts
as a secondary radiator emitting a luminous flux

ρ2F

4πR2
dS3 (17.12)

according to Lambert’s law. On dS2 this contribution is:

d2F ′′ =
ρ2dF

4πR2

cos θ′

π

dS2 cos θ′

|CB|2
(17.13)

=
ρ2FdS2

4πR2

dS3

4πR2
. (17.14)
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Thus, the illuminance dE′′ in the point B, due to the 2nd reflection on the surface area dS3, is:

dE′′ =
ρ2F

4πR2

dS3

4πR2
(17.15)

This is again independent of θ, so that the illuminance E′′ due to all secondary sources - this is the
entire surface of the sphere - becomes:

E′′ =
ρ2F

4πR2
(17.16)

Thus, the total illuminance Et in an arbitrary point on the inner surface of the sphere, due to all
reflections, is

Et =
ρF

4πR2

(
1 + ρ+ ρ2 + . . .

)
(17.17)

or
Et =

F

4πR2

ρ

1− ρ
. (17.18)

We notice that the illuminance on the detector is directly proportional to the total luminous flux
of the light source. The following factors limit the accuracy of the integrating sphere:

• the paint does not scatter the light according to Lambert’s law,

• the reflection coefficient depends on the wavelength,

• the source is not a point and thus impedes further reflections.

The relationship above can also be deduced in another manner. As the illuminance E′ after one
reflection is the same on the entire inner surface (see above), the total illuminance Et (apart from
direct illumination) also has to be the same on the entire surface. The following power balance can
then be formulated. The total luminous flux responsible for this illuminance is ρF . The luminous
flux that is continually being absorbed by the surface (apart from direct illumination) is 4πR2(1−
ρ)Et. These two quantities have to be the same at static equilibrium from which the relationship
between Et and F follows.

17.3.3 Measurement of luminance

The relationship derived in chapter 2 between the luminance of a source and the luminous inten-
sity on the retina is also used to measure the luminance of a light source. Instead of the eye, we
consider a system with a lens and a photodetector. The latter is mounted in the plane where an
image of the light source is formed by the lens (figure 17.6). The relationship E = LdΩ′′ between
the illuminance E on the detector and the luminance L applies again. The detector then gives an
electric signal proportional to the total luminous flux on its surface (we also have to take care of
the fact that the spectral sensitivity of the detector has to be the same than that of the eye).

This luminous flux is proportional to the average luminance of that part of the light source that
is imaged onto the detector. The size of the detector thus determines the spatial resolution by
which the luminance can be measured (resolution on the radiant surface that has to be measured).
Analogously, the size of the lens determines the angular resolution of the (direction-dependent)
luminance.
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Figure 17.6: Measurement of the luminance with the eye or with a detector.

17.4 Thermal (blackbody) radiators

17.4.1 The blackbody radiator

It is a common fact that hot objects emit electromagnetic radiation. Hot metal coming out of a
blast-furnace, has a yellowish white color. This radiation is caused by thermal agitation of the par-
ticles (atoms, molecules, electrons) inside the hot material as moving particles will emit radiation
according to Maxwell’s laws.

A blackbody radiator is an object of which the emitted radiation is solely determined by the tem-
perature of that object. Therefore, a blackbody radiator will not reflect any radiation. It is a perfect
absorber. Planck was the first to calculate the blackbody radiation spectrum (figure 17.7):

M e
S(λ) =

8πhc
λ5

1

e
hc
λkT − 1

(17.19)

This spectrum shows a maximum determined by Wien’s law:

λmax ≈
2.9 [µm]
T [1000K]

(17.20)

The ‘color’ of a blackbody radiator is thus solely determined by its temperature. It does not mat-
ter how this temperature is achieved, for example by absorbing external radiation or by internal
energy production. The sun is a blackbody radiator at a temperature of approximately 6000 K.

Real objects typically are ”grey body radiators”. How close a real object can resemble a blackbody
radiator is determined by its emissivity ε. It is a measure of a material’s ability to radiate absorbed
energy. Absorptivity describes how easily a material absorbs the incident radiation. Kirchhoff’s
law states that absorptivity equals emissivity. This means that the more reflective a material is, the
lower its emissivity.
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Figure 17.7: The blackbody radiation spectrum.

Figure 17.8: The incandescent lamp.

The total radiant exitance is simply written as the law of Stefan-Boltzmann:

M e = σT 4 (17.21)

with σ = 5.67.10−8 W
m2K4 the constant of Stefan-Boltzmann.

17.4.2 Incandescent lamps

An incandescent lamp consists of a balloon of glass or quartz (which is vacuum or filled with an
inert gas) in which an incandescent filament is placed that is heated to high temperatures by the
Joule effect (figure 17.8). To a first approximation the filament can be considered as a blackbody
radiator. Wien’s law then states that the higher the temperature is, the greater the part of radiation
will be that is located in the visible range. The sun has a temperature of 6000K and will thus emit
nearly perfectly white light.

In incandescent lamps, the filament usually consists of Tungsten heated to a temperature of 2000 to
3000 K. Higher temperatures would evaporate the filament too quickly. The radiation maximum
still lies in the infrared. The light output is typically 20 lumen per Watt (electric power). Remember
that a 100% efficient lamp delivers 680 lumen per Watt. The lifetime of an ordinary incandescent
lamp is a few 1000 hours. In high power lamps, the balloon is always filled with a noble gas. This
reduces the evaporation of the filament but causes another problem: heat losses due to conduction
in the gas. This is partially solved by winding the filament into a spiral.

In halogen lamps, the balloon is filled with a halogen, usually iodine (figure 17.9). The evaporated
tungsten atoms, together with this iodine, then form tungsteniodide (WI2) in the parts of the lamp
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Figure 17.9: The halogen lamp.

where the temperature is below 500◦C. In the vicinity of the filament, having a temperature of 3000
K, the WI2 will dissociate again causing an increase of the concentration of tungsten atoms near
the filament, which counteracts the evaporation of the filament. The lifetime or the luminous flux
per Watt is therefore 25% larger than for a normal incandescent lamp. The high temperature of
the surface of the balloon, in order to have a good operation, is a practical problem.

Halogen lamps are often very compact and usually operate on low voltages (at least for low pow-
ers). The light is very white because of the high temperatures. All this makes the halogen lamp an
appropriate candidate for decoration purposes. Halogen lamps are often dimmed although it is
useful to know that dimming the lamps can effect the lifetime negatively. Halogen lamps are also
omnipresent in the headlights of cars.

17.5 Gas discharge lamps

A gas discharge consists of an electric current through a gas or metal vapour. The light emission
in a gas discharge is caused by the spontaneous transition of an atom in an excited state to a lower
energy level (figure 17.10). The released energy is then emitted as an electromagnetic energy
quantum hν = E1 − E0. The frequency of the emitted light is thus given by:

ν =
E1 − E0

h
(17.22)

The advantages of gas discharge lamps compared to incandescent lamps are amongst others:

• larger efficiency

• longer lifetime (10000 hours and more)

• lower temperature

Because the V I characteristic of a gas discharge lamp displays a negative resistance character-
istic, a stabilization-resistor or self-induction (in case of alternating current) has to be provided
(‘ballast’).
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Figure 17.10: Principle of the gas discharge lamp.

The ignition of a discharge lamp can happen by a combination of the following elements:

• short but large voltage pulse by:

– disruption of the current in an inductive circuit.

– resonance in a tuned circuit.

• addition of a noble gas (neon or argon) in metal vapours.

• heating of the electrodes until thermal electron emission occurs.

Figure 17.11 shows a typical circuit diagram that is often used in TL lamps. Initially the entire
voltage is across the glow starter. This starter is a small discharge lamp, usually filled with helium
and hydrogen. This causes a gas discharge and heat is thus generated. This heat will curve the
bimetallic electrode of the starter until contact is obtained with the other electrode. A current then
flows through the resistance electrodes of the main discharge lamp. These electrodes warm up and
ionize the surrounding gas. The bimetallic cools down after a few seconds and the circuit is dis-
rupted, causing a large voltage across the lamp (due to the inductive ballast). A full gas discharge
now arises in the lamp, causing a continuous flowing current. The final operating voltage across
the lamp and the starter is too small to ignite this latter one. The capacitance C1 improves the
work factor (cosφ) of the whole circuit. Different types of discharge lamps are available according
to the nature of the gas.

17.5.1 Low pressure Sodium lamps

The electric energy is converted in two resonance radiations of Na: one at 589.0nm and one at
589.6nm. The optimal conditions are 5µbar for the pressure and 270◦C for the temperature. The
lamp usually consists of an U-shaped tube filled with sodium and neon (to start the discharge).
The applied voltage is big enough to get a discharge of the neon in the cold lamp. This will cause
the sodium to evaporate and to participate in the current conduction. First the lamp burns red
and afterwards yellow. Thermal isolation is important. Therefore the U-tube is placed vacuum
in a second tube. High efficiency: 140 lumen/Watt. Application: monochromatic, orange-yellow
light, mainly used in traffic lighting.

17–11



Figure 17.11: Ignition circuit of a TL lamp.

17.5.2 High pressure Sodium lamps

High pressure sodium lamps contain a mixture of sodium and mercury, with a small amount
of xenon. The lamp is ignited with a short voltage pulse that causes a discharge in the xenon
gas, having a bright white-blue color. After a few minutes, the warming up of the discharge has
evaporated the sodium and the mercury. These will carry the largest part of the discharge current.
The lamp then emits an orange-white light. Color-corrected lamps have recently come onto the
market, strongly approaching daylight. The efficiency is a lot lower however. High efficiency:
80-120 lumen/Watt. Application: street lighting, outside lighting.

17.5.3 High pressure Mercury lamps

The mercury vapour is at a pressure of 1 to 20 bar. At 1 bar the light consists of a few powerful
spectral lines, while a continuous spectrum joins these lines at high pressure. The temperature of
the discharge is 6000K and the emitted light is whitish. The temperature is typically 800◦C at the
outer surface and the whole is therefore placed in a balloon filled with nitrogen. The output is 30
to 50 lumen/Watt. At low pressure (< 1 bar) UV-light is created especially. The balloon is often
made fluorescent by putting Ba-silicates on the surface. Then the UV-light is converted into visible
light. Application: street lighting, lighting of large, high spaces.

17.5.4 Fluorescent lamps

(TL-lamps) These lamps consist of a glass tube filled with mercury vapour at very low pressure
(7µbar). Mainly one line is excited: 253.7nm (non-visible: UV). A fluorescent layer, put on the
inner surface of the tube, converts this UV-light into visible light. The composition of this layer
(Zn-silicate, Cd-silicate) determines the color of the emitted light. The spectrum of a fluorescent
lamp consists of a continuous spectrum increased with a few lines. The output is typically 70 lu-
men/Watt. The fluorescent lamp exists in tube-shape, but also in a more compact shape (energy-
saving lamps), which makes it compatible w.r.t. dimensions with incandescent lamps. In recent
years, a new variant of the fluorescent lamp has been developed: the induction lamp. A gas dis-
charge is aroused with RF magnetic induction by means of a coil outside the lamp. No electrodes
are thus present and there are barely any signs of wear in the lamp itself (100000 hours).
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17.5.5 Xenon lamp

This lamp is filled with pure Xenon at high pressure. The electrodes are brought close to each
other and an extremely intense blue-white spark arises. The luminance of this spark can be higher
than the luminance of the sun. This compact lamp is more and more used in headlights of cars
(replacing the less efficient halogen lamps).

17.5.6 Metal Halide lamp

This is a low pressure mercury lamp to which halides of metals like Thallium, Indium or Sodium
are added. The lamp produces an intense white light that is very close to sunlight. This lamp is
therefore very suitable for work places.

17.6 Light emitting diodes (LED)

LEDs are semiconductor components (usually made out of III-V semiconductors like GaAs) that
have an efficient radiative recombination process. Although LEDs were, until now, mainly used
for telecom applications or indicators in electronic devices, the first lighting applications of LEDs
have already come onto the market. Lighting with LEDs is often called Solid State Lighting (SSL).
White LEDs are realized by putting a phosphor layer on blue or UV LEDs, as the spectrum of
LEDs is relatively limited. These kind of LEDs are already found in flashlights, car headlights,
etc. In certain applications LEDs have started to replace the traditional lamps. Especially when
durability, compactness and efficiency are an issue, LEDs are introduced.

Besides light emitting diodes based on semiconductor materials, organic light emitting diodes for
lighting are a booming research topic. First commercial applications are already appearing (e.g.
40 inch OLED television screens). The advantage of organic LEDs is that they can be produced
on large surfaces at a low cost. The biggest technical problem for OLEDs however is the limited
lifetime of the organic materials.
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Chapter 18

Displays
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An important application of photonics and one with which we are confronted daily, are displays.
This term denotes the technology that enables us to visualize information in a dynamic way. To
this end there is a great variety of techniques. In this chapter we first briefly discuss the (visual)
human perception, and especially the ability to see colors. Afterwards we discuss the different
display technologies.

18.1 The human vision

18.1.1 The eye and the retina

The eye is the most commonly used sense of people to get an idea of their environment, or to
perceive information from their surroundings. Figure 18.1 shows a schematic representation of
the human eye. An image of the light coming from our surroundings is made by the eye lens onto
the light sensitive retina. We already discussed the eye as an optical image system in chapter 3.

The retina is the light sensitive element of the eye. It converts light intensities in electrochemical
impulses in the eye nerve that can be interpreted by the visual cortex. A cross section of the eye
is depicted in figure 18.2. The retina contains two types of light sensitive cells: the ca. 120 million
rods perceive an intensity image (grey image) of the environment (scotopic sight). There exist three
types of the ca. 6 million cones, mainly concentrated around the yellow spot: red, green and blue.
These are responsible for the perception of color (photopic sight). The retina consists of different
layers of cells. In contrast with our intuition, the light sensitive cells are not on top, but buried
under a number of supporting cells. The nerves that transport the signal to the eye nerve (blind
spot) are on top.
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Figure 18.1: The human eye. The yellow spot is the most sensitive area of the retina.

Figure 18.2: Structure of the retina. (a) The different layers of cells. (b) Rods.
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Figure 18.3: Spectral eye sensitivity curve of the rods and the cones in the human eye.

In chapter 2 we discussed the photometric quantities as well as the standardized eye sensitivity
curves for the rods and the cones. These are once more depicted in figure 18.3. We notice that the
maximal sensitivity of the cones and rods lie at different wavelengths.

18.1.2 Responsivity of the retina

The human sight has a certain slowness. This is caused by chemical processes in the retina itself
as well as the actual processing in the brain. A perceived view ‘stays’ a finite time in the brain.

This slowness is very important for viewing applications. The brain can interpret a sufficiently
quick succession of static images as movement. Joseph Plateau already comprehended this prin-
ciple (see chapter 1). The threshold lies around 16 frames per second.

Display applications that have to produce a moving image, need a sufficiently high so-called re-
fresh rate. In cinema, this rate is 24Hz, for television in Europe 25Hz (America: 30Hz) and most
computer screens have a refresh rate of over 60Hz.

18.1.3 Depth of sight and parallax

Humans have got two eyes, separated approximately 8 cm from each other. This enables us to
deduce depth information from a two-dimensional image on the retina. Let us look at the example
in figure 18.4. The tree is further away from the observer than the girl. Because both eyes see the
scene from a slightly different angle, the image of the girl is positioned differently for both eyes
compared to the image of the tree. This phenomenon is called parallax.

This shift of both images enables us to calculate the distances between the different objects using
simple trigonometry. The brain fulfills this task very efficiently.
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Figure 18.4: Depth of sight using parallax. The left eye (b) and the right eye (c) perceive a different image
of the scene (a).

18.2 Colorimetry

18.2.1 Primary colors

The eye is sensitive to colors. However, it is not able to decompose the light in its spectral colors.
As mentioned, the light sensitivity arises because the eye contains three different types of cones,
each with its own spectral sensitivity (figure 18.5). These three receptors are excited differently
according to the spectrum of the incident light. We can say that the maximal sensitivity of the
receptors lies roughly at blue, green and red, respectively. Each combination of receptor stimuli
causes a certain color impression. Each color impression corresponds to one point in the three-
dimensional space formed by the three receptor intensities. This means that the eye strongly
reduces the amount of information in the spectrum of the incident light to only three quantities.
This also implies that two different spectra can cause the same color impression, as long as they
excite the three types of receptors the same (the two spectra then form a metameric pair).

If we have three light sources, each mainly exciting one type of receptor, we can synthetically
generate every color impression (figure 18.6a). This is called additive mixing of the three ground
colors or primary colors. Red, green and blue are used for this. E.g. illuminating a reflective screen
equally with red and green light, gives the impression of yellow light. A color television screen is
also based on additive mixing. The different types of light dots on the screen that are placed next
to each other, generate the impression of a uniform color as the resolution of the eye is too small to
distinguish the dots separately. Notice that complementary colors are colors that give white light
after mixing them (or better: the impression of white light).

An alternative to additive mixing is subtractive mixing (figure 18.6). Then different light sources
are not added together, like in additive mixing, but we begin with white light of which parts are
removed. To obtain every color with subtractive mixing, other primary colors are used, namely
colors that excite two of the three types of receptors but not the third one. The subtractive ground
colors are thus simply obtained by mixing two regular ground colors:

• blue + green gives cyan

• green + red gives yellow
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Figure 18.5: Conversion of the spectrum of a light source to color values perceived by the eye.

Figure 18.6: Mixing of the primary colors in order to get different hues. (a) Additive color mixing, (b)
Subtractive color mixing.
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Figure 18.7: Color coordinates.

• blue + red gives magenta

A material having such a subtractive ground color, e.g. cyan, in fact absorbs the third ground
color (red). If objects that are illuminated with a white light source appear colored, it is caused
by a subtractive process: certain parts of the spectrum are absorbed by the object. Subtractive
processes are amongst others:

• looking at a white light source through a number of color filters in series (each filter absorbs
a part of the spectrum)

• mixing of paint (each color pigment absorbs a part of the spectrum)

• color prints (several prints are made with cyan, yellow and magenta above each other, black
is eventually added for contrast)

18.2.2 Colorimetry

As the eye is very color-critical, one has studied methods to quantify color impressions. As dis-
cussed in the previous paragraph, this can be done by choosing three light sources with primary
colors and subsequently determining the needed intensity of each to mimic the color impression
of a given spectrum by adding the colors additively. So three color coordinates are obtained that
give a color impression. The question now is: what is the best choice for these three basic col-
ors? Before going in to this, it is important to notice that such color coordinates may be added
linearly (this is a physiological observation). This means that when looking at two spectra and
determining the color coordinates of each, additive mixing of these two spectra will have a set of
color coordinates that is the sum of the two original sets. Let us now look at a color coordinate
system based on spectral (monochromatic) ground colors: a red, a green and a blue spectral line
(figure 18.7). We can now ask ourselves whether or not we can copy each spectral color, starting
from these spectral ground colors. If Ir, Ig and Ib represent the intensities of the three ground
colors and Iλ the intensity of the other spectral color with wavelength λ, it seems to be that always
one of the following metameric pairs can be formed:

Iλ + Ir = Ib + Ig (18.1)
Iλ + Ig = Ir + Ib (18.2)
Iλ + Ib = Ir + Ig (18.3)

The equal sign denotes metameric equivalence, while the plus sign denotes additive mixing. The
following question now imposes itself: can we create the new spectral color using additive mixing
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Figure 18.8: Color coordinates.

of the three basic colors, in other words,

Iλ = Ir + Ig + Ib (18.4)

The metameric equivalences above state that this would be possible if one of the three intensities
may be negative. This means of course that additive mixing is physically not possible, but mathe-
matically each spectral color can be represented by a set of coordinates of the three spectral colors.
These three coordinates are represented in figure 18.8 (for a certain choice of red, green and blue).

Because the choice of spectral colors leads to negative coordinates for a large number of colors,
a new set of ground colors has been defined in 1931 by the Commission International de l’Éclairage
(CIE) that always results in positive coordinates. These coordinates are denoted as X , Y and
Z. X is the coordinate for the new red ground color, Y for the green and Z for the blue color.
These coordinates are linearly related with the coordinates based on the spectral ground colors.
Furthermore, the green ground color has been chosen in a way so that its spectral sensitivity
approaches the one of the human eye. The Y -coordinate is then also a measure for the luminous
flux in lumen. We can also normalize the (X,Y, Z) coordinates:

x =
X

X + Y + Z
(18.5)

y =
Y

X + Y + Z
(18.6)

z =
Z

X + Y + Z
. (18.7)

x, y and z thus denote the relative contribution of the three ground colors. Naturally, two of these
coordinates are enough to define a color. This has the advantage that the colors can be repre-
sented in a two-dimensional plane (usually the xy-plane): the ‘CIE chromaticity diagram’. This is
depicted in figure 18.9. We can indicate the spectral colors in this figure. They form a horseshoe-
shaped line. Due to the definition of the CIE XY Z-system, all these spectral colors have positive
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Figure 18.9: CIE chromaticity diagram, or the Y xy-coordinate system.

coordinates. This implies immediately that all existing colors (formed by an additive mixing of
spectral colors) are located inside the horseshoe. It implies furthermore that the basic colors red,
green and blue, that form the base of this diagram (the unit vectors) do not exist physically. The
line that connects the two end points of the horseshoe is called the purple line. When two colors
are chosen in this xy-plane, we can form by additive mixing each color that lies on the line be-
tween these two points. When we take three ground colors, we can reach each point inside the
triangle formed by the three ground colors. Such a triangle for the spectral colors is shown in
figure 18.9. We see that most of the other spectral colors lie outside this triangle, which confirms
the previous: we can not copy the color of other spectral colors with three spectral ground colors.
The color range we can obtain with a certain set of basic colors is called the ‘gamut’.

The ‘hue’ and ‘chroma’ of an arbitrary color is also defined. If K is an arbitrary color (see fig-
ure 18.9), then the dominant hue of this color is the spectral color S. The chroma is given by the
ratio of the lines |OK|/|OS|, with O the point that represents white light (approximately located
in the point x = y = z). Next to the hue and chroma, an arbitrary color is also characterized by its
‘value’ of light or dark, determined by the quantity Y .

The color of a blackbody radiator as a function of its temperature is also represented in the same
figure. We notice how the color evolves from red to white and finally to blue. Thus we can define
a color temperature for broadband light sources. This is the temperature a blackbody would need
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Figure 18.10: L ∗ a ∗ b∗ color coordinates.

to create a similar color effect as the light source itself. Such a definition of course only makes
sense if the spectrum of the light source is approximately equal to the one of a blackbody.

The Y xy-system is not the only used coordinate system. A disadvantage of this system is the fact
that the ‘distance’ between two colors

√
x2 + y2 is not at all a good measure for the physiologically

sensed color difference. Alternative color systems are the Y u′v′ and the L∗a∗b∗-system. The Y u′v′

system (standardized by CIE in 1976) is simply related to the Y xy-system as follows:

u′ =
4x

−2x+ 12y + 3
(18.8)

v′ =
9y

−2x+ 12y + 3
(18.9)

(18.10)

The L ∗ a ∗ b∗-system (figure 18.10) is strongly based on the concepts ‘hue’, ‘chroma’ and ‘value’.
TheL∗-coordinate is a measure for the ‘value’. a∗ and b∗ together represent the ‘hue’ and ‘chroma’.
The ‘chroma’ is given by the quantity C∗ =

√
a ∗2 +b∗2.

a∗ and b∗ may be positive or negative. The −a ∗ / + a∗-axis runs from green to grey and then to
red. The−b∗/b∗-axis runs from blue to grey and then to yellow. The conversion formulas between
L ∗ a ∗ b∗ and XY Z are given by the following expressions:

L∗ = 116 3

√
Y

Y0
− 16 (18.11)

a∗ = 500

[
3

√
X

X0
− 3

√
Y

Y0

]
(18.12)

b∗ = 200

[
3

√
Y

Y0
− 3

√
Z

Z0

]
, (18.13)

(18.14)
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in whichX0, Y0 and Z0 are the coordinates of the light source that illuminates the object that has to
be characterized. The L ∗ a ∗ b∗-coordinates are in that way characteristic for the object and rather
independent of the illumination. An important advantage of the L ∗ a ∗ b∗-system is the fact that
the distance between two colors, defined as

√
L ∗2 +a ∗2 +b∗2 is a good measure for the sensed

color difference.

18.2.3 Color rendering index

The color rendering index (CRI) (often denoted as Ra) is a quantitative measure of the ability of a
light source to reproduce the colors of various objects being lit by the source. The best possible
rendition of colors is specified by a CRI of 100, while the very poorest rendition is specified by a
CRI of zero. For a source like a low-pressure sodium vapor lamp, which is monochromatic, the
CRI is nearly zero, but for a source like an incandescent light bulb, which emits essentially black-
body radiation, it is nearly a hundred. The CRI is measured by comparing the color rendering of
the test source to that of a ‘perfect’ source which is generally a black body radiator. The precise
definition is beyond the scope of this course.

18.3 Display technologies

Displays have become an important instrument in the present day information society. Therefore
it is a field that undergoes a rapid technological evolution. In this section we briefly describe the
different technologies, after explaining a few important concepts.

18.3.1 Important aspects of a display

Resolution

The term resolution is used in optics to denote the detail size by which something can be observed.
In the display technology, this term is used to denote the number of separate image points or pixels
(picture element) that can be represented. The larger the number of pixels, the better one is able to
represent fine details. Sometimes resolution is expressed in image lines.

Refresh rate

This gives us the number of times per second (unit: Hertz) that the image is regenerated. This is
important because the refresh rate has to be sufficiently high for the eye to observe a continuous
moving image. Television images are transmitted at 25Hz. However, to obtain a more stable
image, the transmission is interlaced: first the even image lines are represented, then the uneven
lines. Because of this, the refresh rate seems doubled.
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Gamut

The color range that a display can represent depends strongly on the used display technology. An
accurate color reproduction is especially important in the graphic world.

Scanning

A lot of display technologies use scanning to create an image. The pixels are hereby sequentially
updated (very short pulses). The image is formed serially. This is then continuously repeated.
Phosphors e.g. are used to maintain the image long enough until the pixel is updated again.

Active matrix

In an active matrix display the pixel actively maintains its own state until it is updated again.
Transistors that are incorporated in the pixel, are usually employed for this.

18.3.2 Photography and cinema

The first techniques to reproduce images accurately used an irreversible chemical reaction to cap-
ture an image. This principle is employed for over a century now in photography and cinema.

To create ‘moving’ images, like in most movie theaters, a stop-and-go mechanism is used: the image
is brought before the lens, the film is then stopped, the image is represented and afterwards the
film moves one frame further. A diaphragm is used during the movement so that the eye only
gets to see a succession of stationary images. This process repeats itself 24 times per second for
classic cinema. It is obvious that the fraction of time that the image is visible has to be sufficiently
large.

The major disadvantage of classic cinema projection is the fact that it is a mechanic process. This
does not only cause wear to the equipment, but considerable forces act on the pellicule during
the stop-and-go process. Therefore this technique is avoided more and more in favor of digital
projection.

18.3.3 The cathode ray tube

The cathode ray tube (CRT) has been the most wide-spread display technology until recently and
was mainly used for television sets and computer screens. Because of the development of new
technologies, the market share of CRT screens is decreasing drastically.

General principle

A schematic principle of a cathode ray tube is depicted in figure 18.11. A high voltage field is
applied in a vacuum tube between a cathode and an anode, that also acts as the screen. The cath-
ode is heated which causes electrons to escape. These electrons are drawn to the anode. Steering
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Figure 18.11: The cathode ray tube.

electrodes apply a lateral electric field to direct the electron bundle onto a specific place on the
anode. In this way the electron beam scans the anode. The latter contains a phosphor layer that il-
luminates when the electron bundle impinges. By modulating the intensity of the electron bundle,
synchronous with the steering electrodes, an image can be created on the screen.

The phosphor layer plays an important role. Although the electron beam scans the image very
quickly (each phosphor point is illuminated during 1/15000 of a second), the phosphor will emit
light during a longer time. Therefore the image remains visible before it is being refreshed

Color

To represent color on a CRT-screen, a green, red and blue image is projected simultaneously. Three
different layers of phosphor are therefore put on the anode. The pattern depends on the used
technique.

Originally a combination of a triangular pattern and a shadow mask (figure 18.12a) was used for
color reproduction. Three electron guns were therefore steered simultaneously. Because of their
different initial positions, the electron bundles will reach the anode under a different angle. A
shadow mask is located there. This consists of one hole for each group of RGB color pixels in
the phosphor pattern. This hole will create a different ‘shadow’ on the phosphor screen for each
electron bundle, just at the right place of the right color phosphor.

The shadow mask is a very simple method to create color images. This method is however not
very efficient as the greater part of the electron bundle is blocked by the shadow mask. This not
only requires a larger current for the same light intensity, but also strongly heats up the shadow
mask. The mask is therefore always made out of INVAR, a material with a very low thermal
expansion coefficient.

Nowadays, an aperture grille is used more and more instead of a shadow mask. This is illustrated
in figure 18.12b. Very fine metal wires are hereby tightened vertically. The red, green and blue
phosphor pixels are now grouped horizontally. This was originally developed by Sony under the
name Chromatron. Only one electron bundle is used and a voltage is applied between two neigh-
bouring wires to sequentially direct the bundle to the red, green and blue pixels. This steering
mechanism is however complex and susceptible to disturbances.
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Figure 18.12: Color cathode ray tube. (a) Shadow mask. (b) Aperture grille.
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For the time being, such an aperture grille is still used, but as a shadow mask (especially known
under the Sony brand name Trinitron). Three electron guns are then again used (or one gun with
three bundles). The advantage compared to a shadow mask, is that a large fraction of the electrons
reaches the phosphor and that the thermal expansion is compensated by the tension in the wires.
Vibrations are however insufficiently dampened due to the suspension in a vacuum. Two or more
horizontal stabilization wires are therefore placed, dependent on the size of the screen. These
wires are visible as fine horizontal lines on the screen.

Conclusion

Although the market share of CRT-screens is decreasing, they still give the best color reproduction
because of the high quality of the phosphors.

Cathode ray tubes are also used for projectors. Three different cathode ray tubes are then used
for RGB. The different images are then projected with lenses on a screen. The three colors have
got to be well aligned of course. Although such projectors are clearing the path for alternative
technologies, they are still used for large events, in which high powers, high light intensity and
a high resolution is needed. Furthermore deep black can be obtained, a difficulty in LCD- and
DLP-based projectors (see further).

18.3.4 Field emission displays

An important disadvantage of classic CRT-screens is the depth of the electron ray tube. Although
improvements are continuously being made, the fact remains that the length of the tube increases
proportional to the width of the screen as the electron bundle has to be able to reach the outer
corners of the screen. With the common tendency for larger displays, CRT screens become un-
manageably large.

Instead of scanning all the pixels with one single cathode ray tube, we can provide each pixel
with its own ‘electron gun’. Then the bundle does not have to scan, and the screen can be made
less deep. Of course ten thousands of electron emitters have to be provided that together require
approximately the same power as the original electron gun.

A possible solution was sought in field emission. When applying a sufficiently large electric field,
electrons can be ‘pulled out’ of a material. A strong electric field needs to be created that enables
the electrons to gain enough energy from the electric field E to overcome the work function W of
the anode (see also chapter 15).

e∇E > W. (18.15)

In a classic cathode ray tube, this happens by applying a high voltage and warming up the cath-
ode.

The first (experimental) Field Emission Displays (FED) are based on a cathode with a very sharp tip.
At the tip, a lot of field lines will come together on a small surface, so that no high voltages are
required to obtain sufficiently high field strengths. This principle is represented in figure 18.13a.
A ring-shaped secondary anode is used to obtain a strong field concentration around the tip. The
electrons are then accelerated towards the primary anode, that is provided with a phosphor layer.
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Figure 18.13: Principle of a field emission display. (a) Field emission at a sharp tip. (b) Surface emission.

These structures can be fabricated with lithography and etching processes. The sharp tip is usually
made of silicon.

This technology had to deal with two important difficulties. The lower voltages that are used
in a FED cause the electrons to impact the phosphors with lesser energy than in a CRT-screen.
There has been a lot of research to develop phosphors that also had a good light efficiency at these
lower energies. It appears on the other hand to be very difficult to fabricate a sharp tip that can
withstand electric currents. The point often becomes blunt after an unacceptably short time and
the field emission effect is then lost. The latter problem prevented the field emission displays from
reaching a commercial stage.

Recently new life was brought to the idea under the name of Surface Emission Displays (SED). A
sharp tip is no longer used, but a material with a very low work function, palladiumoxide (PdO).
The difficulty of making a sharp tip is now gone. Displays based on this principle would be ready
for the market in 2006 and could compete with LCD displays and plasma screens. An important
advantage of this technology is that they can produce strongly saturated colors and deep black
like CRT-screens.

18.3.5 Plasma screens

An alternative for CRT-screens is the plasma screen. Every pixel is controlled individually like in
a FED. The phosphors are however not excited by an electron bundle, but by UV-radiation from a
plasma discharge.

A pixel of a plasma screen is depicted in figure 18.14. A pixel consists of a small chamber filled
with gas of which the walls are covered with red, green or blue phosphors. By applying a voltage
between the two electrodes, the gas in the chamber is ionized and a plasma is thus created that
emits UV-radiation. The UV-radiation is converted by the phosphor into visible light. This dis-
charge can take place thousands of times per second. By increasing that frequency, the intensity
of the pixels can be regulated.

Plasma screens have a very good image quality. They are however costly to produce, and therefore
occur in the more expensive market of home cinema systems. They also require a lot of power
compared to other technologies.
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Figure 18.14: Plasma screen: the UV-light of a gas discharge is converted by the phosphors into visible
light. A pixel consists of such a cell for red, green and blue.

18.3.6 Liquid Crystal Displays

At present cathode ray tubes make place for flat screens based on liquid crystals (LCD: Liquid
Crystal Display).

Liquid Crystals

Liquid crystals are a group of materials with a number of special properties. As the name already
mentions, they have properties of a liquid as well as of a crystalline material.

Liquid crystals consist of long stretched molecules, that have the tendency to align themselves
in a regular way. Dependent on the type of crystal, the molecules align themselves in the same
direction (a so-called nematic liquid crystal), and sometimes even in a regular position in space.
At a molecular level, a liquid crystal acts as a regular material, in other words as a crystal. At a
macroscopic level, a liquid crystal is a liquid, that can be poured from one recipient to another, or
that can be ‘sucked’ between two plates because of capillarity.

The preferential direction of the liquid crystal molecules is influenced by external factors. In fig-
ure 18.15a, we see how a liquid crystal aligns itself with a plate with a grooved pattern. When
we bring an amount of liquid crystals between two plates with grooves that are perpendicular to
each other (figure 18.15), the molecules at the edges will align themselves with the grooves and the
molecules in the bulk will gradually change direction to enable a transition between the boundary
conditions.

Liquid crystals also react to an external electric field. When we use the contact plates as electrodes
and apply a voltage, the molecules try to align themselves with the electric field.

Liquid crystals have interesting optical properties. Because of molecular anisotropy, a liquid crys-
tal has a different refractive index for different polarizations (so-called double refraction). If po-
larized light is incident on a layer of liquid crystals, the polarization of the outgoing light depends
on the orientation of the liquid crystal molecules.

LCD

Liquid crystal displays are based on the rotation of the polarization in a layer of liquid crystals.
The principle is depicted in figure 18.16. Light coming from a white light source is sent through a
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Figure 18.15: Nematic liquid crystal between electrodes with a grooved pattern. (a) If only a single plate
is present, the crystal aligns itself with the grooves through the entire material. (b) When placing a second
electrode and without applying a voltage, the molecules near the electrodes align themselves with the
grooves. The molecules in the bulk turn continuously. (c) When applying an electric field, the molecules in
the bulk align themselves with the electric field.

Figure 18.16: Display based on liquid crystals and polarizers.

polarizer that is linearly polarized and through a liquid crystal layer divided in pixels that can be
separately controlled electrically. Afterwards the light passes through a second polarizer, perpen-
dicular to the first one that is called the analyzer.

The thickness of the liquid crystal layer is chosen so that the polarization of the light is rotated 90
degrees if no voltage is applied. When applying the maximum voltage, the original polarization
is preserved. Intermediate voltage levels bring about a partial rotation of the polarization. The
analyzer lets the rotated polarization completely through and blocks the non-rotated polarization.
Colors are represented by means of red, green and blue color filters on the pixels.

The control of the pixels can happen in several ways. Originally, two rows of crossed electrodes
were used. Each pixel could then be controlled by using the right combination of the electrodes.
Nowadays however, each pixel is provided with its own (transparent) transistors, located near by
the pixel, the so-called thin-film transistors or TFT.

A liquid crystal cell emits no light on its own and has to be provided with an external light source.
The first LCDs used regular daylight and worked with reflections. This made it very difficult to
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represent colors properly. Nowadays LCDs are provided with background lighting. This lighting
is usually a fluorescence tube or LED that emits white light located on the edge of the screen. The
light is brought to the pixels using a light pipe (this is a glass plate in which the light is trapped
by total internal reflection). By providing this light pipe with the proper roughness, we can take
care that at each pixel the light pipe emits the same amount of light, resulting in a homogeneous
background lighting.

A liquid crystal cell can of course also be used in projection, in which a good white lamp and
a projection system is used. LCD-projectors become cheaper every day, although they have to
compete with projectors based on digital light processors (see further).

Liquid Crystals on Silicon (LCoS)

Instead of using a liquid crystal cell in transmission, they can also be used in reflection. One of the
electrodes then acts as a mirror. The principle remains the same apart from the fact that the light
now has to pass two times through the crystal. The polarizer now also acts as analyzer.

The advantage of this technique is that the steering logic no longer has to be transparent, which
enables us to use standard CMOS-circuits. Because of this, very small displays can be made with
a large number of pixels. Such a Liquid Crystal on Silicon (LCoS) is used in high-performance
television sets.

Disadvantages of liquid crystals

However liquid crystals also have a number of disadvantages compared to CRT-screens. First of
all, they operate by blocking light selectively. This blocking is not always that selective, which
causes a black screen to emit some light. Also the color production (gamut) is not as good as in
CRTs. LCDs are therefore not popular in the graphics world.

Liquid crystals do not switch that fast. While CRTs have no problems with refresh rates over
100Hz, the best LCDs can go to 50Hz maximally. They are therefore less suitable to represent
quick movements.

18.3.7 MEMS, Digital Light Processors

This last decade, a strong competitor for liquid crystals has shown up in the projection market.
The so-called Digital Light Processor (DLP) or Digital Micromirror Device (DMD) consists of a large
number of minuscule mirrors that can be placed very fast in different positions by applying an
electric field (a so-called MEMS: Micro Electromechanical System). These chips can be made in ad-
vanced silicon technology. Each pixel is controlled separately by its own circuit.

A DLP is illuminated with an external light source. Dependent on the position of the mirrors,
the light is projected on a screen or it is lost. The mirrors can be switched ‘on’ and ‘off’ up to a
thousand times per second. The fraction of time that the mirrors project on the screen determines
the intensity of the image, as our eye is too slow to see the fast switching.
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Projectors based on DLPs have become competitive with liquid crystals the last few years. Ad-
vanced realizations are also used in digital cinema, to drive away the use of pellicule.

Although DLPs can switch more quickly than a LCD, they also have got problems with the repre-
sentation of deep black, as the turned away mirrors still scatter some light.

18.3.8 Projectors

Digital projection has recently become common in the corporate world, the living room as well
as the cinema. Liquid crystals and DLPs are still fighting a battle for market domination. The
different technologies separate themselves especially in the representation of color images.

Transmission screens based on liquid crystals are the simplest. In these we can choose to use a
liquid crystal cell that has individual color filters for the different pixels. This liquid crystal cell
can be used in transmission or reflection.

The situation becomes more difficult for monochromatic liquid crystal cells or DLPs. Then we can
choose between the use of one single chip for the three colors or the use of a separate chip for
red, green and blue. Both techniques are depicted in figure 18.17. In the first case, the colors will
be represented sequentially: a red image is first projected, then a green image and finally a blue
image. A rotating color filter is used for this. Although we only need one single chip, we have to
switch three times faster to represent different images. This technique is therefore mainly used in
combination with DLPs.

We can also use a different chip for each color. The white light bundle is then split in three different
bundles with a different color using a cube, consisting of different types of glass that show a
strong material dispersion. Because of this, total internal reflection occurs for certain wavelengths,
while other wavelengths are let through. Each bundle is reflected by its own chip after which the
resulting bundles are brought together with a similar component.

18.3.9 Laser projection

An alternative projection method consists of directly projecting laser light. The principle is de-
picted in figure 18.18. A different laser is used for red, green and blue. The laser light is pointed
on to a column of switchable diffractive elements (a so-called grating light valve or GLV). Depen-
dent on the state of the element, the light is either reflected or diffracted in a different direction.
The diffracted bundles of the different colors are then brought together and projected onto the
screen. Each bundle will project an entire column of pixels (there is a GLV for each pixel). The
lines are then scanned by a rotating mirror. Just like in a DLP, a GLV switches very fast and the
intensity of each pixel is determined by the fraction of time the GLV is in its ‘on’-state.

Laser projection can give us very bright images on a large surface. Until recently, the technique
had to deal with the lack of an efficient blue semiconductor laser.
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Figure 18.17: Principle of a projection screen. (a) Projection screen based on a single DMD and a rotat-
ing color filter. (b) Projector based on 3 different DMDs or (reflective) liquid crystal elements and bundle
splitters.
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Figure 18.18: Direct laser projection

18.3.10 LED screens

Displays based on light emitting diodes (LEDs) have already been used for a long time in con-
sumer electronics, going from the first electronic calculator to stereo sets. However, most of these
screens were monochromatic and limited to textual information.

Since the introduction of the blue LEDs in the late 90’s, LEDs can also be used for displays. The
most striking application are the very large displays, like the Sony Jumbotron, used in stadia for
large events. The red, green and blue LEDs are packed individually and the pixels are thus very
large.

Recently, the first LED displays have turned up in small devices such as mobile phones and digital
cameras. These displays do not work with the classic LEDs based on semiconductors, but with
organic molecules, the so-called organic LEDs or OLEDs. OLED screens are very new and are still
dealing with some problems like stability and bleaching (the gradually decreasing color emission
as the LED ages).

Displays based on LEDs undoubtedly have a bright future, as LEDs convert electric energy into
light very efficiently. Furthermore, LEDs have no need of an external light source like LCDs or
DLPs.

18.4 3-D imaging

Until now we discussed displays that render a plane image. When we want to represent three-
dimensional images, we have to use artificial tricks to bring parallax in the images.
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Figure 18.19: LCD-screen with a 3-D view: The background lighting is no longer homogeneous, but consists
of a number of thin lines. Therefore the different pixel columns are projected either on the left eye or on the
right eye.

18.4.1 3-D glasses

The simplest manner to represent three-dimensional images is giving each eye separate informa-
tion. In the early stage of cinema, the technique of projecting a red and green image over each
other had already been developed. With the proper glasses, each eye would see the right image.
This however results in a grey image.

To make it possible to view color images, glasses are used of which the sides transmit perpendicu-
lar polarizations. Different images are then projected with a different polarization. The disadvan-
tage of this technique is that it is only applicable in cinemas and not on television screens.

With the introduction of computers and 3-D games, a new possibility was introduced. Instead of
projecting both images through each other, they are projected separately. Glasses with a liquid
crystal cell then synchronously shields the unwanted image of the proper eye. The final refresh
rate is halved however. This makes the use of such glasses tiring for the eyes.

18.4.2 3-D LCD screen

Recently a technique has been introduced that enables us to generate a stereoscopic image without
special glasses. Instead of using a homogeneous background lighting, a lighting consisting of
vertical lines is used (figure 18.19). Each background line is provided with two columns of pixels.
Because of the slightly different angles under which the eye sees the image, the one eye will only
see the even lines, while the other will only see the uneven lines.

A disadvantage of this technique is that a good image is obtained only when sitting straight in
front of the screen. Furthermore, it works in a limited depth range. On the other hand, the tech-
nique is simple to implement, and we can change from 2-D to 3-D by switching the striped back-
ground lighting on or off.
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18.4.3 Holography

All technologies discussed thus far create an image by modulating the intensity of the emitted
light. In order to create full 3-D images, not only the intensities but also the phases of the wave
fronts have to be correct.

In holography, the phase front of a coherent illuminated object is saved in a light sensitive material
(e.g. a photographic plate) using interference. If the plate is then illuminated again with coherent
light, the original phase fronts arise again and the original image becomes visible from all angles.

Holography is discussed in further detail in the course Microphotonics.
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Appendix A

Basis van de Halfgeleiderfysica
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In dit hoofdstuk behandelen we enkele basisbegrippen van de halfgeleiderfysica. We stellen eerst
de dispersierelatie voor elektronen in een halfgeleiderkristal op. Aan de hand van de banden-
theorie stellen we een model op voor elektrische geleiding en elektronbeweging in halfgeleiders.
We onderzoeken de bezetting van de elektrontoestanden in het halfgeleiderkristal. Hierbij vat-
ten we een ontbrekend elektron met succes op als een tweede type ladingsdrager, en duiden het
aan als een holte. We bekijken vervolgens de invloed van onzuiverheden in het halfgeleiderkristal
en komen zo tot de begrippen n-type en p-type halfgeleider. We behandelen ook kort de juncties
tussen verschillende types. Tot slot bekijken we de optische eigenschappen van halfgeleiders.

A.1 Bandentheorie

A.1.1 Vrij elektron

Een elektron in een ééndimensionale, tijdsonafhankelijke potentiaal V (x) kan beschreven worden
aan de hand van de tijdsonafhankelijke Schrödingervergelijking:

− ~2

2m
d2ψ

dx2
+ V (x) ψ = E ψ (A.1)

Hierin is ~ de gereduceerde constante van Planck en m de elektronmassa. Wanneer we de po-
tentiële energie verwaarlozen, krijgen we oplossingen voor ψ van de vorm:

ψ = A ejkx, (A.2)

waarbij moet gelden

E =
~2k2

2m
. (A.3)
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Dit is de parabolische relatie tussen de (kinetische) energie E van het elektron en het golfgetal k,
ook wel de dispersierelatie genoemd. Voor een gegeven waarde van E ligt k vast. Of omgekeerd:
voor een gegeven waarde van k ligt E vast. Men ziet dat de massa m van het elektron een be-
langrijke rol speelt in deze relatie. Aangezien in de klassieke mechanica geldt dat de kinetische
energie gerelateerd is tot het moment p als

E =
p2

2m
(A.4)

volgt hieruit nog de eenvoudige relatie tussen moment p en golfvector k:

p = ~ k. (A.5)

A.1.2 Elektron in een periodieke potentiaal

Een elektron in een (ééndimensionaal) kristalrooster met roosterconstante a is onderhevig aan een
potentiaal V (x) met dezelfde periodiciteit, veroorzaakt door de atomen in het kristal. Er geldt
dus: V (x) = V (x+ a). Bloch heeft aangetoond dat de oplossingen ψ van (A.1) voor een dergelijke
potentiaal de volgende gedaante hebben:

ψk(x) = uk(x) ejkx, (A.6)

met uk(x) = uk(x + a), een functie met dezelfde periodiciteit als V (x) en gekenmerkt door het
label k. De oplossingen (A.6) worden Blochfuncties genoemd en hebben de gedaante van een
vlakke golf gemoduleerd met een functie met dezelfde periodiciteit als de potentiaal. De speci-
fieke vorm van uk wordt bepaald door de vorm van de potentiaal en het label k. Om de expliciete
oplossingen uk analytisch te berekenen, moeten we enkele veronderstellingen maken. Het Kronig-
Penneymodel is hier de meest gevolgde aanpak. In dit model worden de functies uk en de disper-
sierelatie E(k) uitgerekend voor een periodieke opeenvolging van rechthoekige potentiaalputten
met welbepaalde breedte en diepte (zie A.3.1). Het typisch E(k) verloop wordt geschetst in figuur
A.1. De fijne lijn geeft het parabolisch verband voor vrije elektronen weer en de volle curven zijn
het resultaat van het Kronig-Penney model. Het globale verloop volgt dat van de vrije elektronen
maar de afwijkingen nemen toe telkens k een veelvoud van π/a nadert. Voor k = mπ/a, met m
geheel, treden discontinuı̈teiten op met twee waarden voor de energie E, waartussen een gebied
ligt met ontbrekende E-waarden.

Gereduceerde k-ruimte

Een interessante eigenschap van Blochfuncties is de volgende. We beschouwen ψk(x) overeen-
komend met een bepaalde k en eigenwaarde E. Stellen we nu k

′
= k + 2mπ/a, dan vinden we:

ψk(x) = uk(x) ejkx = [uk(x) e−j2mπx/a] ejk
′
x (A.7)

De uitdrukking tussen vierkante haken heeft dezelfde periodiciteit als uk(x). Dit betekent dat
ψk(x) ook geschreven kan worden als een Blochtoestand met golfvector k

′
, voor dezelfde waarde

van E. Voor een gegeven E is k dus slechts bepaald op een waarde K = 2mπ/a na. De E(k)
curven herhalen zich dus periodiek met periode K. Deze K noemen we de primitieve vector van
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Figure A.1: (a) Dispersierelatie E(k) voor een elektron in een periodieke potentiaal. (b) Gereduceerd
bandenschema.

het reciproke rooster. Dit laat ons toe om het gehele bandenschema te reduceren tot het gebied
tussen −π/a en π/a, dat de (eerste) Brillouinzone genoemd wordt (zie figuur A.1 (b)). In de Bril-
louinzone vinden we dus verscheidene continue energiebanden En(k) terug, gescheiden door
verboden zones.

Meerdere elektronen in een kristal

De oplossing van de Schrödingervergelijking (A.1) voor één elektron in een periodieke potentiaal
resulteerde in eigenfuncties

ψk(x) = uk(x) ejkx, (A.8)

met geassocieerde energie E(k). Als we de interactie tussen elektronen verwaarlozen, kunnen we
een kristal met meerdere elektronen beschrijven door met elke toegelaten k-waarde één elektron
te laten overeenkomen, totdat alle elektronen opgebruikt zijn.

Tot nu toe hebben we enkel oneindig uitgestrekte kristallen beschouwd. Wegens deze oneindige
afmetingen verkregen we in elke energieband een continuüm van niveaus. Een reëel kristal bevat
uiteraard slechts een beperkt aantal atomen N , en heeft een beperkte lengte L = Na. De ver-
breking van de periodiciteit geeft aanleiding tot ingewikkelde randeffecten die we hier niet zullen
behandelen. Om de invloed van de beperkte afmetingen op de volumetoestanden te bespreken
dienen we randvoorwaarden in te voeren. Bij een dergelijk probleem is het gebruikelijk om cyclis-
che randvoorwaarden op te leggen, men stelt: ψ(x) = ψ(x+L). Voor een Blochfunctie ψk(x) geldt
dan:

uk(x+ L) ejk(x+L) = uk(x) ejkx. (A.9)

Aangezien L = Na geldt uk(x+ L) = uk(x) zodat

ejkL = 1. (A.10)

De toegelaten k-waarden zijn dan:

k = 0, ±2π
L
, ±4π

L
, · · · ,+Nπ

L
=
π

a
. (A.11)
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Figure A.2: Mechanisme voor elektrische geleiding door elektronen in een energieband. (a) en (b) Geleid-
ing in metalen. (c) en (d) Geleiding in halfgeleiders.

Hierbij hebben we de rij hebben afgebroken bij Nπ/L, de rand van de Brillouinzone. Het aantal
toegelaten k-punten in de Brillouinzone bedraagt dus precies N1. Houden we nu nog rekening
met de twee onafhankelijke spintoestanden per toegelaten k-waarde, dan besluiten we dat er bin-
nen de eerste Brillouinzone 2N beschikbare elektrontoestanden zijn per energieband. Het aantal
valentie-elektronen per eenheidscel bepaalt dan of we al dan niet met volledig gevulde banden te
maken hebben. Algemeen geeft een even aantal elektronen per eenheidscel aanleiding tot volledig
gevulde banden. Bij een oneven aantal is de bovenste band half gevuld.

Elektrische geleiding in kristallen

Het mechanisme waarbij elektronen in een energieband bijdragen tot de elektrische geleiding is
schematisch als volgt. In evenwicht (elektrisch veld2 E = 0) bevinden zich in de band evenveel
elektronen met positieve als met negatieve k en is de snelheid van elektronen die naar links of naar
rechts lopen gelijk verdeeld. Bij aanleggen van een elektrisch veld worden de elektronen versneld,
waarbij in de één-elektron benadering k verandert volgens:

dk

dt
= −1

~
eE. (A.12)

In deze formule wordt impliciet verondersteld dat er geen beperkingen zijn voor de toename van
k, m.a.w. dat het elektron zich naar onbezette k-waarden kan verplaatsen. Wanneer er in de band

1Het punt −Nπ/L = −π/a is in deze rij identiek aan π/a
2We noteren E voor een elektrisch veld en E voor een energie. Hoewel E algemeen een vector is, behandelen we in

dit hoofdstuk voornamelijk ééndimensionale problemen waarin we E kunnen opvatten als een scalaire grootheid.
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Figure A.3: Groepssnelheid vg en effectieve massa m∗ van een bandelektron.

meerdere elektronen aanwezig zijn zal men dus rekening moeten houden met de bezetting. De
situatie na een zekere tijd wordt voor een gedeeltelijk gevulde band weergegeven in figuur A.2.
Men ziet dat er meer elektronen naar rechts lopen dan naar links, wat resulteert in elektrische
geleiding. In een reëel kristal houdt deze versnelling niet onbeperkt aan, maar wordt verbroken
door botsingen (aan defecten of roostertrillingen). Er stelt zich een stationair regime in waaruit
begrippen als mobiliteit, geleidingsvermogen en driftsnelheid worden bepaald. Kristallen met
een gedeeltelijk gevulde band noemen we metalen. De resistiviteit ligt bij normale temperaturen
rond 10−4 − 10−6 Ωcm.

In kristallen met een even aantal valentie-elektronen per eenheidscel wordt de volledig gevulde
band meestal aangeduid als de valentieband en de volgende hoger gelegen band als de conduc-
tieband, gescheiden door de bandkloof met breedteEg. De situatie waarbij de valentieband volledig
gevuld is en de conductieband volledig leeg, is enkel strikt geldig bij de nulpuntstemperatuur T =
0. In deze situatie moet elke verandering in k gepaard gaan met een verandering in tegengestelde
zin (uitwisseling van k-toestanden). Het netto-effect op de snelheid is dan nul en geleiding is niet
mogelijk.

Bij hogere temperaturen zijn de elektronen verdeeld volgens de Fermi-Dirac distributie (zie A.2.1)
waardoor er ook enkele elektronen in de conductieband gevonden kunnen worden. Elk elektron
in de conductieband laat een holte achter in de valentieband. Bij aanleg van een elektrisch veld is
er dus elektrische geleiding mogelijk, aangezien de energiebanden niet volledig gevuld of volledig
leeg zijn. Bij kristallen met een voldoend kleine Eg is er een behoorlijke excitatie van elektronen
over de bandkloof mogelijk. Deze kristallen worden halfgeleiders genoemd. Het geleidingsver-
mogen is afhankelijk van de densiteit van elektronen in de conductieband en van holten in de
valentieband. In het vervolg van het hoofdstuk duiden we deze grootheden aan met n respec-
tievelijk p, beide uitgedrukt in cm−3. Zoals we verder zullen zien, kunnen n en p sterk beı̈nvloed
worden door onzuiverheden toe te voegen aan de halfgeleider. Enkele beter bekende en veel ge-
bruikte halfgeleiders zijn Si (Eg = 1.1 eV) en GaAs (Eg = 1.45 eV). De resistiviteit ligt in het gebied
10−2−109 Ωcm. Voor kristallen met hogere Eg-waarden is de excitatie veel moeilijker en het gelei-
dingsvermogen veel lager. Deze kristallen noemen we isolatoren. De resistiviteit is van de orde
1014 − 1022 Ωcm

Elektronbeweging

Om een bewegend elektron te lokaliseren als een deeltje, worden Blochgolven met licht verschil-
lende k samengesteld tot golfpakketten. De snelheid waarmee het golfpakket zich voortplant
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wordt gegeven door de groepssnelheid:

vg =
dω

dk
=

1
~
dE

dk
(A.13)

Voor een vrij elektron vinden we zoals verwacht vg = ~k/m. Voor een elektron in een kristal wordt
het verloop vg(k) weergegeven in figuur A.3. Uit de periodiciteit van E(k) en uit symmetrieover-
wegingen volgt dat bij bandextrema vg = 0.

We onderzoeken nu de bewegingsvergelijking van een vrij elektron onder invloed van een uitwendige
kracht, bv. bij aanleggen van een elektrisch veld E. De energiewinst in een tijdsinterval δt bedraagt

δE = −eE vgδt =
−eE

~
dE

dk
δt =

dE

dk
δk, (A.14)

waaruit
δk =

−eE
~

δt (A.15)

~
dk

dt
= −eE. (A.16)

Algemener kunnen we dit schrijven als:

~
dk

dt
= F, (A.17)

met F de uitwendige kracht. Voor een vrij elektron is dit niets meer dan de tweede wet van
Newton:

d(mv)
dt

= F. (A.18)

Voor het geval van een kristalelektron gaan we als volgt te werk:

dvg
dt

=
1
~
d2E

dkdt
=

1
~
d2E

dk2

dk

dt
=

1
~2

d2E

dk2
F (A.19)

[
~2

d2E
dk2

]
dvg
dt

= F (A.20)

Als we de uitdrukking tussen de rechte haken identificeren met een massa dan vinden we het
verband (A.18) terug. We noemen dit de effectieve massa m∗, gedefinieerd door:

1
m∗

=
1
~2

d2E

dk2
(A.21)

Door gebruik te maken van de effectieve massa kunnen we de beweging van een elektron in een
kristal beschrijven aan de hand van de bekende wetten van de fysica. Dit betekent niet dat in
een kristal de massa van een elektron zou veranderen of dat de tweede wet van Newton geweld
wordt aangedaan. Als men alle krachten die op het elektron inwerken in rekening brengt, nl.
zowel krachten afkomstig van het kristal als uitwendige krachten, dan blijft deze wet onveran-
derd gelden. De effectieve massa is k-afhankelijk. Deze afhankelijkheid is weergegeven voor een
eenvoudige energieband in figuur A.3. Bij buigpunten van E(k) bereikt m∗ oneindig grote waar-
den. Er bestaan ook gebieden met met negatieve m∗. Voor halfgeleiders zijn enkel de toestanden
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Figure A.4: Kristalstructuur en Brillouinzone van Si, Ge en GaAs.

in de buurt van de bandextrema van belang. Daar kan men de dispersierelatie benaderen door
een parabolisch verloop van de vorm:

E = E0 +A(k − k0)2, (A.22)

wat overeenkomt met een constante waarde van m∗ over een beperkt bereik.

Bandstructuur van enkele belangrijke halfgeleiders

In werkelijkheid is de bandstructuur van een halfgeleider vaak ingewikkelder dan tot hier toe
werd geschetst. Een reële halfgeleider heeft vanzelfsprekend een driedimensionaal kristalrooster
en dus ook een driedimensionale Brillouinzone. Bekijken we het geval van Ge, Si en GaAs. Deze
halfgeleiders bezitten de diamantstructuur of zinkblendestructuur, waarvan de kubische een-
heidscel geschetst is in figuur A.4. De overeenkomstige Brillouinzone is weergegeven in dezelfde
figuur. De dispersierelatie langsheen de assen ΓX en ΓL zijn geschetst in figuur A.5. Een belangri-
jke vaststelling is dat voor zowel Si als Ge het minimum van de conductieband en het maximum
van de valentieband bij verschillende k-waarde zijn gelegen. Men zegt dat ze een indirecte verbo-
den zone hebben. GaAs heeft een directe verboden zone, het minimum van de conductieband en
het maximum van de valentieband liggen bij dezelfde k-waarde. We komen hier nog op terug in
14.1.1 en 14.1.2.

A.2 Elektronen en holten in halfgeleiders

In A.1 is duidelijk gebleken dat de densiteit van ladingsdragers n en p een belangrijke rol speelt in
de geleidingseigenschappen van een halfgeleider. In deze paragraaf zullen we beide grootheden
berekenen rekening houdend met de thermische excitatie en met onzuiverheden (dotering).

De bezetting van het systeem wordt algemeen bepaald door het product van de dichtheid van
beschikbare niveaus en de waarschijnlijkheid van bezetting: D(E)P (E). Bij de berekening van n
en p in een halfgeleider kan men zich beperken tot de bovenste niveaus van de valentieband en
de onderste niveaus van de conductieband, en de niveaus in de verboden zone die afkomstig zijn
van onzuiverheden.
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Figure A.5: Bandstructuur van enkele belangrijke halfgeleiders.

A.2.1 Bezettingswaarschijnlijkheid

De waarschijnlijkheid dat een elektrontoestand met energie E bezet wordt door een elektron
wordt gegeven door de Fermi-Dirac distributie:

Pe(E) = f(E) =
1

exp[(E − Ef )/kBT ] + 1
(A.23)

Hierin is Ef de energie van het ferminiveau. Voor T = 0 zijn alle niveaus met E < Ef bezet en
alle niveaus met E > Ef leeg. Voor T > 0 varieert f(E) geleidelijk, met een bezettingswaarschijn-
lijkheid van 1/2 bij Ef . De waarschijnlijkheid dat een niveau niet bezet is, wordt gegeven door:

Ph(E) = 1− Pe(E) =
1

exp[(Ef − E)/kBT ] + 1
(A.24)

Ph(E) geeft de waarschijnlijkheid voor bezetting met een holte. De ontbrekende elektronen aan
de top van de valentieband kunnen inderdaad beschouwd worden als positief geladen deeltjes en
worden holten3 genoemd, waarbij men volgende relaties heeft tussen de eigenschappen van het
ontbrekende elektron en de holte:

k - vector: kh = −ke
lading: qh = −qe > 0
energie: Eh = −Ee
massa: m∗h = −m∗e

(A.25)

Pe(E) en Ph(E) worden grafisch voorgesteld in figuur A.6.
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Figure A.6: Toestandsdichtheid en bezettingswaarschijnlijkheid bij intrinsieke halfgeleiders.

A.2.2 Toestandsdichtheid

De toestandsdichtheidD(E) wordt gedefinieerd als het aantal toestanden per volume-eenheid dat
beschikbaar is in het energie-interval E + dE. Gebruik makende van de parabolische benadering
van de banden nabij het minimum van de conductieband en het maximum van de valentieband
kunnen we D(E) afleiden. Voor de conductieband vinden we:

Dc(E)dE = 8π
√

2(m∗e)
3/2h−3(E − Ec)1/2dE (A.26)

En analoog voor de valentieband:

Dv(E)dE = 8π
√

2(m∗h)3/2h−3(Ev − E)1/2dE (A.27)

Beide toestandsdichtheden zijn geschetst in figuur A.6.

A.2.3 Intrinsieke halfgeleiders

De dichtheid van elektronen in de conductieband wordt gegeven door:

n(E)dE = Dc(E)Pe(E)dE = Dc(E)f(E)dE (A.28)

In figuur A.6 wordt deze functie geschetst. Hier wordt ook duidelijk waarom we enkel toestanden
nabij Ec moeten beschouwen. Onder de aanname dat het ferminiveau ongeveer halverwege de

3Holten worden ook wel gaten of holes (Engels) genoemd.
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verboden zone ligt, neemt f(E) immers snel af voor E > Ec. De totale densiteit van elektronen in
de conductieband (n) wordt dan gegeven door:

n =
∫
CB

n(E)dE =
∫ ∞
Ec

Dc(E)f(E)dE. (A.29)

Na uitwerking volgt:

n = Nc exp
[
−
Ec − Ef
kBT

]
(A.30)

waarin

Nc = 2
[

2πm∗ekBT
h2

]3/2

(A.31)

Voor de dichtheid van holten in de valentieband geldt er:

p(E)dE = Dv(E)Ph(E)dE = Dv(E)[1− f(E)]dE (A.32)

Op analoge wijze verkrijgen we:

p = Nv exp
[
−
Ef − Ev
kBT

]
(A.33)

waarin

Nv = 2
[

2πm∗hkBT
h2

]3/2

(A.34)

Een intrinsieke halfgeleider heeft geen onzuiverheidsniveaus in de verboden zone. Elk elektron
in de conductieband laat dus een holte achter in de valentieband waaruit volgt dat n = p. Deze
voorwaarde laat ons toe om de ligging van het ferminiveau Ef te berekenen:

Ef =
1
2

(Ev + Ec) +
3
4
kBT ln

(
m∗h
m∗e

)
(A.35)

Als m∗e = m∗h ligt Ef precies halfweg in de verboden zone, wat in overeenstemming is met de
eerder gemaakte veronderstelling. Voor de intrinsieke densiteit van ladingsdragers ni = n = p
vinden we:

ni =
√
np =

√
NcNv exp

[
− Eg

2kBT

]
(A.36)

We merken op dat ni niet afhangt van de ligging van het ferminiveau, maar voor een bepaalde
halfgeleider enkel van Eg en T. De situatie voor intrinsieke halfgeleiders is geschetst in figuur A.6.

VOORBEELD: Voor GaAs bij T = 300 K en met m∗e = 0.07 m, m∗h = 0.6 m, Eg = 1.43 eV krijgen
we ni = 2.246× 106 cm−3.

A.2.4 Dotering

Men kan aan halfgeleiders zeer kleine concentraties (ppm-niveau) van onzuiverheidsatomen to-
evoegen (dotering). Deze introduceren nieuwe energieniveaus die tussen conductie- en valen-
tieband kunnen liggen. Donoren zijn onzuiverheden waarvan de elektronen een energietoestand
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Figure A.7: Donor- en acceptorniveaus in gedoteerde halfgeleiders.

hebben vlak onder de bodem van de conductieband, zoals weergegeven in figuur A.7. Deze elek-
tronen worden gemakkelijk thermisch geëxciteerd naar de conductieband, waarbij positieve ionen
achterblijven. Voor acceptoren geldt een volledig duale situatie. Zij hebben onbezette elektron-
niveaus vlak boven de valentieband. Elektronen kunnen er dus gemakkelijk naar toe geëxciteerd
worden, waarbij holten ontstaan in de valentieband.

Bekijken we eerst het geval van een halfgeleider gedoteerd met Nd donoren per cm3. Het donor-
niveau is gegeven door Ed. Indien Ec − Ef � kBT geldt er nog steeds4:

n = Nc exp
[
−
Ec − Ef
kBT

]
(A.37)

Hierin wordtEf echter niet langer gegeven door (A.35) maar wordt ook bepaald door de donoren.
Het aantal elektronen in de conductieband is nu afkomstig van zowel het intrinsieke proces en
als van de ionisatie van donoren, waarbij we veronderstellen dat alle donoren daadwerkelijk
geı̈oniseerd worden. Bij al deze processen moet het aantal gecreëerde negatieve ladingen gelijk
zijn aan het aantal positieve, of nog:

n = Nd + p (A.38)

Deze relatie bepaalt ondubbelzinnig de ligging van het ferminiveau Ef , voor elke waarde van T
en Nd:

Nc exp
[
−
Ec − Ef
kBT

]
= Nd +Nv exp

[
−
Ef − Ev
kBT

]
(A.39)

Veronderstellen we dat Nd � ni, dan krijgen we, gebruik makend van np = n2
i en (A.38):

n ' Nd (A.40)
n� p (A.41)

Ef ' Ec − kBT ln[
Nc

Nd
] (A.42)

We hebben te maken met een extrinsieke, n-type halfgeleider. Het aantal elektronen in de con-
ductieband overtreft ruimschoots het aantal holten in de valentieband. We noemen de elektronen
dan ook de majoritaire ladingsdragers en de holten de minoritaire ladingsdragers. De dichtheid
van conductie-elektronen is vrijwel gelijk aan de donordichtheid Nd. Het ferminiveau Ef ligt

4Aangezien we in de afleiding voor n en p in intrinsieke halfgeleiders enkel de veronderstelling E − Ef � kBT
hebben gemaakt, zijn de verkregen resultaten voor n en p ook geldig voor een extrinsieke (gedoteerde) halfgeleider
met n 6= p, evenals het resultaat n2

i = np. De ligging van het ferminiveau wordt uiteraard wel beı̈nvloed door de
aanwezigheid van onzuiverheidsniveaus.
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dichter bijEc dan bijEv. Typische getalwaarden voorNd zijn 1015 cm−3 voor een zwak gedoteerde
halfgeleider en 1019 cm−3 voor een sterk gedoteerde halfgeleider. Merk op dat deze getalwaarden
meerdere grootteorden hoger liggen dan de intrinsieke densiteit ni.

De duale situatie voor acceptoren leidt tot de volgende resultaten voor een extrinsieke, p-type
halfgeleider:

p ' Na (A.43)
p� n (A.44)

Ef ' Ev + kBT ln[
Nv

Na
] (A.45)

Hier zijn de elektronen minoritair en de holten majoritair, en ligt Ef dichter bij Ev dan bij Ec.

A.2.5 Geleidbaarheid

Zoals we in A.1 hebben gezien, kunnen we de beweging van een kristalelektron onder invloed
van een elektrisch veld E beschrijven door:

m∗e
dvg
dt

= −eE (A.46)

In een geı̈dealiseerd perfect en stijf kristalrooster wordt de beweging van ladingsdragers niet ver-
stoord en zal de elektrische geleidbaarheid oneindig groot worden. In een reëel kristal wordt
de beweging van elektronen echter continue onderbroken door botsingen aan roosterimperfecties
zoals onzuiverheidsatomen en roostertrillingen. Deze botsingen zijn vrijwel elastisch, zodat de
energie van het elektron (of holte) vrijwel constant blijft. De bewegingsrichting van het elektron
kan wel drastisch veranderen. De weg die de ladingsdragers gemiddeld afleggen tussen twee
botsingen, noemt men de gemiddelde vrije-weglengte l.

l = vT τ, (A.47)

met τ de gemiddelde tijd tussen twee botsingen en vT de thermische snelheid5:

vT =

√
2kBT
m∗e

(A.48)

Bij het aanleggen van een elektrisch veld E zullen de elektronen tussen twee botsingen versneld
worden volgens (A.46), en een gemiddelde verplaatsing ondergaan tegengesteld aan E. De resul-
terende driftsnelheid ve is dan

ve = − eE
m∗e

τn = −µnE (A.49)

µn =
eτn
m∗e

(A.50)

5Aangezien de effecten van het periodiek kristalveld begrepen zitten in de effectieve massa, kunnen we de en-
ergie van het gas van ladingsdragers beschrijven als louter kinetisch energie 1

2
m∗v2, waarop de Maxwell-Boltzmann

statistiek van toepassing is. Hieruit kunnen we de gemiddelde, thermische snelheid van de ladingsdragers berekenen.
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De constante µn noemen we de driftmobiliteit voor elektronen. Analoog krijgen we voor holten:

vh = −µp E (A.51)

µp =
eτp
m∗h

. (A.52)

De totale stroom door een eenheidsoppervlak is dan

J = −n e ve + p e vh = (n eµn + p e µp)E (A.53)

met n en p respectievelijk de elektron- en holtendichtheid. Gebruik makende van de relatie J = σE
krijgen we dan voor de geleidbaarheid σ:

σ = n eµn + p e µp =
ne2τn
m∗e

+
pe2τp
m∗h

(A.54)

Voor hoge E-velden satureert de driftsnelheid wat resulteert in een afwijking van het Ohms
gedrag.

A.2.6 Diffusie en recombinatie

In de vorige paragrafen hebben we de concentratie van ladingsdragers berekend voor een ho-
mogene halfgeleider in thermisch evenwicht (np = n2

i ). In een halfgeleidercomponent treden er
echter afwijkingen op ten opzichte van deze ideale situatie. We onderscheiden twee verschillende
gevallen:

• niet-homogene verdeling van n en p, met diffusie als gevolg

• afwijking van thermisch evenwicht: np 6= n2
i , wat recombinatie veroorzaakt

Diffusie

In een systeem van beweegbare deeltjes treden diffusiestromen op wanneer er een niet-uniforme
concentratieverdeling bestaat. Dit geldt eveneens voor de vrije elektronen en holten in een halfgelei-
der. Kijken we bv. naar de balans van ladingsdragers die door een zeker vlak op positie x0 en met
oppervlakte A stromen. Het aantal deeltjes dat van links naar rechts loopt gedurende een inter-
botsingstijd τ is

NL→R =
lA

2
n(x0 −

l

2
) (A.55)

terwijl het aantal dat van rechts naar links loopt gelijk is aan

NR→L =
lA

2
n(x0 +

l

2
) (A.56)

De factor 1/2 komt van het feit dat gemiddeld gezien slechts de helft van de deeltjes naar het vlak
toelopen. Het netto-aantal deeltjes dat dan van links naar rechts loopt is dan:

NL→R −NR→L = [n(x0 −
l

2
)− n(x0 +

l

2
)]
lA

2
' −1

2
∂n

∂x
l2A (A.57)
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Als j de deeltjesflux per eenheidsoppervlak is, kunnen we schrijven:

j = − l
2

2τ
∂n

∂x
= −D∂n

∂x
(A.58)

waarin D de diffusiecoëfficiënt is, die gegeven wordt door

D =
l2

2τ
(A.59)

We zullen de diffusiecoëfficiënt voor elektronen aanduiden als Dn en die voor holten als Dp.

Aangezien het bij diffusie opnieuw draait om netto-verplaatsing van botsende deeltjes, kunnen
we een verband verwachten tussen de driftmobiliteit en de diffusiecoëfficiënt. Inderdaad, gebruik
makende van (A.47) en (A.48) komen we tot de relatie

D =
kBT

e
µ (A.60)

die ook wel de Einsteinbetrekking genoemd wordt.

In aanwezigheid van zowel een elektrisch veld als een concentratiegradiënt, zal de stroomdichtheid
dus bestaan uit een drift- en een diffusiecomponent. Voor lage velden geldt dan:

Jn = n eµn E + eDn∇n (A.61)
Jp = p e µp E− eDp∇p (A.62)

J = Jn + Jp = e(nµn + p e µp)E + e(Dn∇n−Dp∇p) (A.63)

Recombinatie

Wanneer een externe oorzaak extra elektron-holte paren injecteert in een halfgeleider is np > n2
i .

Deze situatie treedt bv. op bij optische excitatie GL met licht waarvan de fotonenergie groter is
dan de bandkloof Eg. In deze situatie worden ladingsdragers dus gecreëerd door zowel optische
als thermische excitatie. Recombinatie van ladingsdragers treedt op wanneer een elektron een
holte ”tegenkomt”. Samengevat hebben we dus drie bijdragen: optische generatie aan een tempo
GL, thermische generatie Gth en recombinatie R. We kunnen ook het netto-recombinatietempo
definiëren als U = R − Gth. In thermisch evenwicht (zonder belichting) is GL = 0, U = 0 en
R = Gth. Algemeen kan U geschreven worden als

U = B(np− n2
i ) (A.64)

met B een evenredigheidsconstante. Aangezien n = n0 + ∆n en p = p0 + ∆p wordt dit

U = B(n0∆p+ p0∆n) (A.65)

Bekijken we het geval van een n-type halfgeleider, waarvoor nn = nn0 + ∆n en pn = pn0 + ∆p.
Aangezien bij kleine injectie pn0 � nn0 = Nd en ∆n = ∆p krijgen we

U ≈ BNd∆p =
pn − pn0

τp
(A.66)
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Hierin is τp = 1/BNd de levensduur van de minoritairen. U is dus evenredig met het overschot aan
minoritairen.

De nettoverandering van de holtedichtheid pn is dan

dpn
dt

= GL +Gth −R = GL − U, (A.67)

We vinden dus de volgende tempovergelijking voor holten in n-type, bij kleine injectie:

dpn
dt

= GL −
pn − pn0

τp
. (A.68)

Voor een p-type halfgeleider kunnen we volledig analoge resultaten afleiden. We vinden zo ook
een netto-recombinatietempo

U =
np − np0

τn
(A.69)

met τn = 1/BNa. De grootheden τp en τn hebben de betekenis van gemiddelde levensduur. Ze
zijn sterk afhankelijk van de dotering: hoe hoger de dotering, des te sneller de recombinatie van
de minoritaire ladingsdragers. De recombinaties kunnen stralend of niet-stralend zijn. De totale
recombinatiesnelheid is de som van de recombinatiesnelheden van de individuele processen:

R = Rr +Rnr (A.70)

met Rr de stralende recombinatiesnelheid en Rnr de niet-stralende.

Continuı̈teitsvergelijkingen

We kunnen nu de continuı̈teitsvergelijkingen opstellen voor de elektronendichtheid n(x, t) of de
holtendichtheid p(x, t), waarbij we rekening houden met de creatie en vernietiging van ladings-
dragers als gevolg van generatie- en recombinatieprocessen, evenals met drift en diffusie van
ladingsdragers. De toename van het aantal deeltjes binnen een volume dV per tijdseenheid is
immers gelijk aan de netto-instroom vermeerdert met het nettotempo waarmee deeltjes worden
gegenereerd binnen dV .

Voor holten in een n-type halfgeleider vinden we

∂p

∂t
= Gp −

p− pn0

τp
− 1
e
∇ · Jp (A.71)

Gebruik makende van (A.61) wordt dit in één dimensie

∂p

∂t
= Gp −

p− pn0

τp
− p µp

∂E
∂x
− µp E

∂p

∂x
+Dp

∂2p

∂x2
(A.72)

Voor elektronen in een p-type halfgeleider vinden we

∂n

∂t
= Gn −

n− np0

τn
− nµn

∂E
∂x
− µn E

∂n

∂x
+Dn

∂2n

∂x2
(A.73)
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Figure A.8: Periodieke potentiaal in het Kronig-Penneymodel.

A.3 Berekeningen

A.3.1 Het Kronig-Penneymodel

In het Kronig-Penneymodel wordt de periodieke potentiaal afkomstig van het kristalrooster be-
naderd door een periodieke opeenvolging van rechthoekige potentiaalputten met breedte t en
diepte V0, gescheiden door potentiaalbarrières met breedte s (zie figuur A.8). De kristalperiode is
Λ. We veronderstellen dat V0 > E.

We zijn op zoek naar Blochoplossingen ψk(x) = uk(x)ejkx voor de Schrödingervergelijking

− ~2

2m
d2ψ

dx2
= (E − V (x))ψ (A.74)

We definiëren
k2

1 = 2m(V0 − E)/~2

k2
2 = 2mE/~2 (A.75)

Voor de potentiaalbarrières waar V (x) = V0 vinden we

ψ(x) = ane
k1(x−nΛ) + bne

−k1(x−nΛ) (A.76)

Voor de potentiaalputten waar V (x) = 0 krijgen we

ψ(x) = cne
jk2(x−nΛ) + dne

−jk2(x−nΛ) (A.77)

Om de coëfficiënten an, bn, cn en dn te vinden dienen we randvoorwaarden in te voeren. De
voorwaarde dat ψ(x) en dψ(x)/dx continu zijn op x = nΛ levert op:

an + bn = cn+1e
−jk2Λ + dn+1e

jk2Λ (A.78)
k1an − k1bn = jk2cn+1e

−jk2Λ − jk2dn+1e
jk2Λ (A.79)

Dezelfde randvoorwaarden gelden op x = nΛ + t:

cn+1e
−jk2s + dn+1e

jk2s = an+1e
−k1s + bn+1e

k1s (A.80)
jk2cn+1e

−jk2s − jk2dn+1e
jk2s = k1an+1e

−k1s − k1bn+1e
k1s (A.81)

Uit deze vier vergelijkingen kunnen we het verband tussen (an, bn) en (an+1, bn+1) halen:[
an
bn

]
=
[
A B
C D

] [
an+1

bn+1

]
(A.82)
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Hierin is A, B, C en D gegeven door

A = e−k1s
[
cos k2t+ 1

2

(
k2
k1
− k1

k2

)
sin k2t

]
B = ek1s

[
1
2

(
k2
k1

+ k1
k2

)
sin k2t

]
C = e−k1s

[
−1

2

(
k2
k1

+ k1
k2

)
sin k2t

]
D = ek1s

[
cos k2t− 1

2

(
k2
k1
− k1

k2

)
sin k2t

] (A.83)

Met behulp van deze relatie kunnen we (an, bn) in elke eenheidscel berekenen van zodra hun
waarde in een bepaalde cel bekend is. We kennen dan ook (cn, dn).

Bekijken we de oplossing ψ(x) in de n-de eenheidscel ter hoogte van de potentiaalbarrière:

ψ(x) = ane
k1(x−nΛ) + bne

−k1(x−nΛ) (A.84)

zodat
ψ(x+ Λ) = an+1e

k1(x+Λ−(n+1)Λ) + bn+1e
−k1(x+Λ−(n+1)Λ)

= an+1e
k1(x−nΛ) + bn+1e

−k1(x−nΛ) (A.85)

Aangezien ψ(x) een Blochfunctie is, kunnen we schrijven

ψ(x+ Λ) = ψ(x)ejkΛ (A.86)

Deze laatste twee vormen van ψ(x) kunnen met elkaar verzoend worden als er geldt[
an
bn

]
=
[
an+1

bn+1

]
e−jkΛ (A.87)

Gebruik makende van (A.82) vinden we[
A B
C D

] [
an
bn

]
= e−jkΛ

[
an
bn

]
(A.88)

Dit eigenwaardeprobleem kan ook in de volgende vorm geschreven worden[
A− e−jkΛ B

C D − e−jkΛ

] [
an
bn

]
= 0 (A.89)

De voorwaarde dat er niet-triviale oplossingen zijn is dat de determinant van de matrix nul is. We
vinden:

e−jk1,2Λ =
1
2

(A+D)± j

√
1−

[
1
2

(A+D)
]2

(A.90)

waarin de subscripts 1, 2 in het linkerlid verwijzen naar de + en - in het rechterlid.

Hieruit kan de propagatieconstante k kan verkregen worden:

cos(kΛ) =
k2

1 − k2
2

2k1k2
sin(k2t) sinh(k1s) + cos(k2t) cosh(k1s) (A.91)
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Figure A.9: Reële oplossingen in het Kronig-Penneymodel.

Om deze vergelijking te vereenvoudigen veronderstelden Kronig en Penney dat de barrières als
deltafuncties opgevat kunnen worden. We laten V0 naar oneindig lopen en s naar nul waarbij sV0

constant blijft. (A.91) wordt dan

P sin(k2Λ)
k2Λ

+ cos(k2Λ) = cos(kΛ) (A.92)

waarin
P =

mV0 st

~2
(A.93)

Voor P = 0 vinden we k2Λ = kΛ. Dit is identiek aan de situatie bij een vrij elektron. In de
limiet P → ∞ vinden we de situatie van een elektron in een geı̈soleerde potentiaalput. Voor
0 < P < ∞ zijn de elektronen in min of meerdere mate gebonden aan de individuele poten-
tiaalputten. Aangezien cos(kΛ) tussen -1 en 1 ligt, legt (A.92) restricties op voor toegelaten k2-
waarden. Aangezien k2 direct gerelateerd is aan de elektronenergie via (A.75), zullen er energiege-
bieden zijn waar geen reële k-waarden kunnen gevonden worden. In deze verboden zones is
k = mπ/Λ + jkI en wordt de factor exp(jkx) uit de Blochfunctie

exp(jkx) = ej(mπ/Λ)x exp(−|kI |x) (A.94)

ψk(x) is dus een exponentieel evanescente functie. De situatie is geschetst in figuur A.9.
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3-D LCD screen, 18–22
3-D glasses, 18–22
3-D imaging, 18–21

A coefficient of Einstein, 10–8
Abbe constant, 3–34
Abbe sine relation, 3–14
Aberrations, 3–2, 3–25
Ablation, 13–29
Absorption, 3–35, 6–15, 10–9

in an optical fiber, 7–19
Absorption coefficient, 6–15, 14–4
Acceptance, 3–15
Acceptor, 14–4
Achromat, 3–26
Active alignment, 16–9
Active matrix, 18–11
Additive color mixing, 18–4
Airy equation, 6–20
Analytic signal, 4–3
Analyzer, 18–17
Angström, 2–2
Anisotype, 14–11
Anti-reflection coating, 3–36, 6–22
APD, 15–3
Aperture grille, 18–12
Aperture stop, 3–24
Apochromatic system, 3–35
Astigmatism, 3–28
Asymmetry parameter, 7–9
Atoms, 10–1
Attenuation, 7–13

in optical fibers, 7–19
Attenuation coefficient, 6–15, 7–19
Avalanche photodiode, 15–3
Average, 8–6

B coefficient of Einstein, 10–9
Ballast, 17–10
Band-bending, 14–8

Bandgap, 14–4
Bandwidth, 2–2
Bandwidth-length product, 7–15
Bernard and Durrafourg, condition of, 14–18
Best shape lens, 3–26
Betaluminescence, 10–12
Binary semiconductor, 14–2
Binoculars, 3–43
Bioluminescence, 10–13
Blackbody radiation spectrum, 10–11
Blackbody radiator, 17–8
Blackbody spectral energy density, 10–12
Blind spot, 18–1
Bolometer, 15–1
Boltzmann distribution, 8–6, 10–5
Boltzmann’s constant, 8–6
Bose-Einstein distribution, 8–7, 10–11
Boson, 10–11
Brewster angle, 6–13
Brightness, 2–9
British Zonal, 17–1, 17–4
Built-in electric field, 14–8
Built-in potential, 14–8
Bump, 16–9

Camera, 3–42
Camera obscura, 3–10
Camera on a chip, 15–10
Candela, 2–9
Cathode ray tube, 18–11
Cathodoluminescence, 10–12
Causality, 9–2
CCD camera, 15–9
CD data storage, 5–6
Chemiluminescence, 10–13
Chief ray, 3–14, 3–22, 3–24
Chroma, 18–8
Chromatic aberration, 3–30
Chromaticity diagram, 18–7
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Chromatron, 18–12
CIE, 18–7
CIE chromaticity diagram, 18–7
Circular polarization, 6–10
CMOS camera, 15–10
Coatings, 6–22
Coefficient of efficiency, 17–1,17
Coherence, 13–21

degree, 13–22
length, 13–22
partial, 13–22
spatial, 13–22
temporal, 13–22
time, 13–22

Coherent light, 4–17, 8–5
Collisional broadening, 13–6
Color, 17–4
Color camera, 15–10
Color coordinates, 18–6
Color mixing

additive, 18–4
subtractive, 18–4

Color rendering index, 18–10
Color temperature, 18–8
Colorimetry, 18–6
Coma, 3–28
Commission International de l’Éclairage, 18–7
Complex amplitude, 4–4
Condenser lens, 3–45
Conduction band, 10–4
Cone, 2–6, 18–1
Conjugate ratio, 3–25
Continuity equations, 14–11
Continuous spectrum, 2–2
Corner reflector, 3–47
Corner-cube prism, 3–47
Critical angle, 3–7
Crown glass, 3–34
CRT, 18–11
Crystal growth, 16–2
Cutoff frequency, 7–9,7

Damped oscillator model, 9–3
Dark current, 15–7
Decibel, dB, 6–15
Degenerate state, 10–5
Depletion region, 14–8

Depth of field, 3–32
Diaphragm, 3–32
Die-bonding, 16–8
Dielectric constant, 6–4

effective, 7–5
optical, 14–3
static, 14–3

Dielectric media, 6–3, 9–3
Differential deceleration, 7–18
Diffraction limit, 5–6
Diffuser, 3–42
Diffusion coefficient, 14–2
Diffusion current, 14–7, 14–10
Diffusion length, 14–10
Diffusion-limited etching, 16–5
Digital Light Processor, DLP, 18–18
Digital Micromirror Device, DMD, 18–18
Diode, 14–7

pn-junction, 14–7
Diopter, 3–15
Dip-coating, 16–4
Dipole moment, 9–4
Direct band structure, 14–3
Direction cosine, 3–11
Directionality, 13–23
Dispersion, 3–34, 6–5, 6–16, 7–14, 7–16

intramodal, 7–18
material, 3–30, 6–16, 7–17
multi-path

graded index, 7–15
step index, 7–14

multimode, 7–16
waveguide, 7–17,7

Dispersion curve, 7–10
Dispersion relation, 7–9
Display, 18–1
Distortion, 3–30

barrel, 3–30
pincushion, 3–30

Donor, 14–4
Doping, 14–4
Doppler broadening, 13–6
Doppler effect, 13–7
Double heterojunction, 14–12
Double heterostructure laser, 14–21
Double refraction, 18–16
Doublet, 3–26
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Drift current, 14–10
Drude model, 9–6
Dye laser, 13–31
Dynode, 15–2

Edge-emitting LED, 14–16
Effective index, 6–16

relative, 7–9
Effective index of a mode, 7–8
Effective mass, 14–1
Eigenmode, 7–1
Eigenvalue, 7–5
Eikonal equation, 4–11
Electric flux density, 6–2
Electroluminescence, 10–13, 14–13
Electromagnetic optics, 6–1

reflection, 6–11
refraction, 6–11

Electromagnetic radiation
particle nature, 8–2
wavelike character, 8–2

Electromagnetic spectrum, 2–1
Electron beam evaporation, 16–7
Electron vibration, 9–5
Electron-volt, 2–2
Electronic state, 10–2
Elementary electromagnetic waves, 6–5
Elliptical polarization, 6–8
Energetic quantities, 2–4
Energetic units, 2–4
Energy band, 10–2,10
Energy level, 10–2

occupation, 10–4
of isolated atoms, 10–2
of molecular systems, 10–2
of solid-sate systems, 10–3
rotational, 10–3
vibrational, 10–3

Energy-saving lamp, 17–12
Entrance pupil, 3–24
Epitaxial growth, 16–2
Etching

diffusion-limited, 16–5
reaction-limited, 16–5
selective mixture, 16–5
wet, 16–4

Etendue, 3–15

Evanescent mode, 7–5
Evanescent plane wave, 4–6, 6–15
Excimer laser, 13–29
Exit pupil, 3–24
External photoeffect, 15–2
External reflection, 3–7, 6–12
Extinction coefficient, 6–15
Eye, 2–6, 3–37, 18–1

depth of sight, 18–3
perceived magnification, 3–39
sensitivity curve, 2–8, 18–3
slowness, 18–3

Eyepiece, 3–38

F-number, 3–23
Fabry-Perot etalon, 6–16, 13–12, 13–15
Fabry-Perot interferometer, 4–21, 13–12
Fabry-Perot resonator, 6–20
Farsighted, 3–38
FED, 18–14
Fermat’s principle, 3–3
Fermi level, 14–2
Fermi-Dirac distribution, 10–6, 10–11
Fermion, 10–11
Fiber, see Optical fiber

cladding, 7–3
core, 7–3

Fiber bundle, 3–46
Field angle, 3–31
Field curvature, 3–30
Field emission display, 18–14
Field lens, 3–32
Field of view, 3–25
Field stop, 3–24
Filament, 17–9
Finesse, 4–21, 13–13
Flint glass, 3–34
Flip-chip technology, 16–9
Fluorescence, 10–13
Fluorescent lamp, 17–12
Focal length, 3–18
Focus, 3–5
Forbidden zone, 10–3
Four-level system, 13–5
Free electron laser, 13–32
Frequency

angular, 4–3
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band, 2–2
cutoff, 7–9,7
normalized, 7–9
of lasing, 13–13
of light, 2–1
plasma, 9–4
resonance, 9–4

Fresnel approximation, 4–8
Fresnel coefficients, 6–12
Fresnel lens, 3–47
Full Width at Half Maximum, 4–21, 10–7
Fundamental mode, 7–9
FWHM, 4–21, 10–7

Gain, 13–3
Gain medium, 13–1
Gain saturation, 13–7
Gamut, 18–8, 18–11
Gas discharge lamp, 17–10
Gas laser, 13–27

He-Ne laser, 13–27
ion laser, 13–28
metal vapor laser, 13–28
molecular laser, 13–28

Gaussian beam, 4–10, 5–1
beam divergence angle, 5–4
diffraction, 5–1
half width, 5–2,5
lens systems, 5–5
radius of curvature, 5–3

Gaussian beam optics, 5–1
Geometric distribution, 8–7
Geometric optics, see Ray optics
Glass fiber, see Optical fiber
Glow starter, 17–11
Graded index, 3–8
Graded index waveguide, 7–2
Graphical formalism, 3–22
Grating light valve, GLV, 18–19
GRIN, 3–8
GRIN lens, 3–46
Group index, 6–16, 7–17
Group velocity, 6–16, 7–17
Guided mode, 7–5, 7–8
Gyroscope, 4–17

Halogen lamp, 17–9
Hamiltonian, 10–1

Helmholtz equation, 4–4
paraxial, 4–10

Hermite polynomial, 5–8
Hermite-Gaussian beam, 4–10, 5–7
Hero’s principle, 3–4
Heterojunction, 14–11
Highly reflective coating, 6–23
Hole burning, 13–7
Holography, 3–10, 4–18, 13–22
Homogeneous broadening, 13–5
Homojunction, 14–7
Hooke’s law, 9–4
Hue, 18–8
Human vision, 18–1
Huygens, 4–1
Hybrid mode, 7–16

Illuminance, 2–9, 2–14
Image line, 18–10
Image recorder, 15–9
Image-reversal, 16–8
Imaging systems, 3–10
Impedance, 6–7
Incandescent lamp, 17–9
Incoherent light, 2–10, 3–3
Indirect band structure, 14–3
Induction lamp, 17–12
Inductive Coupled Plasma Reactive Ion Etching,

16–5
Infrared, 2–1,2
Inhomogeneous broadening, 13–6
Integral method, 17–1
Integrated optics, 7–1
Integrating sphere photometer, 17–5
Interference, 4–14

constructive, 4–16
destructive, 4–16

Interferometer, 4–17
Interlaced, 18–10
Internal photoeffect, 15–3
Internal reflection, 3–7, 6–12
Internal refraction, 3–7
INVAR, 18–12
Irradiance, 2–6
Isolator, 10–4
Isotype, 14–11

Joule evaporator, 16–7
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Kerr-effect, 14–7
Kramers-Kronig relations, 9–3

L∗a∗b∗-system, 18–9
Lagrange equation, 3–14
Lagrangian invariant, 3–14
Lambert’s law, 2–13
Lambertion emitter, 2–13
Laser, 13–1

applications, 13–1
axial mode, 13–14
beam theory analysis, 13–16
broadening, 13–5
cavities, 13–8
concentric, 13–17
confocal, 13–17, 13–20
continuous wave operation, 13–23
gain, 13–3
gain saturation, 13–7
Gaussian beam analysis, 13–19
longitudinal mode, 13–14, 13–20
oscillation frequency, 13–13
oscillation threshold, 13–10
phase resonance condition, 13–12
plane wave analysis, 13–12
pulsed, see Pulsed laser
pump, 13–3
radiance, 13–23
rate equation analysis, 13–9
resonance condition, 13–14
resonator, 13–8
transversal mode, 13–20
types, 13–27

Laser ablation, 13–29
Laser diode, 14–17

amplification, 14–18
compared to other lasers, 14–23
differential responsivity, 14–19
emission efficiency, 14–19
external differential quantum efficiency, 14–

19
fabrication, 16–9
feedback, 14–17,14
laser resonance, 14–18
overall efficiency, 14–19
resonator losses, 14–18
threshold current density, 14–18

types, 14–20
Laser projection, 18–19
Lattice constant, 14–4
Lattice vibration, 9–5
Layered structures, 6–16
LCD, 18–16

TFT, 18–17
LD, see Laser diode
LED, 14–13

applications, 14–16
characteristics, 14–13
efficiency, 14–13
external quantum efficiency, 14–14
extraction efficiency, 14–14
internal quantum efficiency, 14–13
lamp, 17–13
lights, 14–16
modulation bandwidth, 14–14
organic, OLED, 14–15
screen, 18–21
surface-emitting, 14–13
types, 14–15

Lens
meniscus, 3–26
plano-convex, 3–26
symmetrical, 3–26
systems, 3–19

Lifetime, 14–6
Lift-off, 16–7
Light

quantities, 2–1
units, 2–1

Light color, 17–4
Light emitting diode, see LED
Light pipe, 18–18
Lighting, 17–1
Lighting calculations, 17–1
Line spectrum, 2–2
Linear polarization, 6–9
Lineshape function, 10–7
Linewidth, 10–7
Liquid crystal display, see LCD
Liquid crystals, 18–16

on silicon, LCoS, 18–18
Liquid Phase Epitaxy, 16–2
Lithography, 16–3

contact, 16–3,16
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detail size, 16–3
projection, 16–3,16

Local field, 9–5
Loop gain, 13–9,13

spectral, 13–14
Lorentz contribution, 9–5
Lorentzian lineshape, 13–6
Low-resistive contact, 16–10
Luminance, 2–9, 2–14

measurement, 17–7
Luminescence, 10–12
Luminescent light, 10–12
Luminosity, 3–15
Luminous

exitance, 2–9
flux, 2–8

measurement, 17–4
intensity

measurement, 17–4

M2 factor, 5–8
Mach-Zehnder interferometer, 4–17
Magnetic flux density, 6–2
Magnetization density, 6–2
Magnifying glass, 3–38
Maiman, Theodore, 13–1, 13–30
Marginal ray, 3–14
Mask, 16–3

aligner, 16–4
Material dispersion coefficient, 7–18
Material properties, 9–1
Matrix optics, 3–15

a single lens, 3–17
a thin lens, 3–17
imaging, 3–16
spherical interface, 3–15
translation, 3–16

Maxwell’s equations, 6–2
boundary conditions, 6–4

Mean photon flux, 8–4
density, 8–4

Mendeljev’s table, 14–2
Mercury lamp, 17–12
Meridional plane, 3–28
Meridional rays, 3–9
Mesa, 16–10
Metal, 10–4

Metal halide lamp, 17–13
Metal Organic Chemical Vapour Deposition, 16–

2
Metal Organic Vapour Phase Epitaxy, 16–2
Metallization, 16–7
Metameric pair, 18–6
Michelson interferometer, 4–17
Micro Electromechanical System, MEMS, 18–18
Mobility, 14–2
Mode, 7–3
Mode density, 10–8
Mode-locking, 13–24
Modulation bandwidth, 14–14, 15–9
Molecular Beam Epitaxy, 16–2
Moment of inertia, 10–3
Monochromatic wave, 4–3, 6–5
Monochromaticity, 13–21
Monocrystal, 16–2
Multi-path dispersion

graded index, 7–15
step index, 7–14

Natrium lamp
high pressure, 17–12
low pressure, 17–11

Natural broadening, 13–5
Nearsighted, 3–37
Negative lens, 3–18
Nematic, 18–16
Newton’s law, 9–4
Nominal imaging, 3–11
Normalized frequency, 7–9
Numerical aperture, 3–23, 7–2

Objective, 3–40
Ocular, 3–38
OLED, 14–15

screen, 18–21
Optical

direction cosine, 3–15
energy, 8–4
path length, 3–3
power, 8–4
power density, 8–4
quality, 3–36

Optical confinement, 14–21
Optical fiber, 7–3, 7–12

absorption, 7–19
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attenuation, 7–19
electromagnetic description, 7–15
hybrid mode, 7–16
monomode, 7–13
multimode, 7–13
propagation, 7–14
ray model, 7–13
scattering losses, 7–20
single mode, 7–13
step index

guided modes, 7–15
Optical power reflectance, 15–4
Opto-coupler, 14–17
Opto-isolator, 14–17
Overhead projector, 3–45
Oxinitride, 16–5

P-polarization, 6–11
Packaging, 16–8
Palladiumoxide, 18–15
Parabolic index waveguide, 7–2
Parabolic wave, 4–8
Parallax, 3–10, 18–3
Paraxial theory, 3–11

angular magnification, 3–14
Lagrangian invariant, 3–14
lateral image magnification, 3–14
matrix formalism, 3–15
propagation, 3–13
ray, 3–11
refraction, 3–11
spherical mirror, 3–21

Paraxial wave, 4–9
Pauli principle, 10–3
Penetration depth, 9–8
Pentaprism, 3–43
Permeability, 6–2
Permittivity, 6–2, 6–4

complex, 6–15
Petzval surface, 3–30
Phase velocity, 4–6, 6–16, 7–17
Phasor diagram, 4–4
Phenakistiscoop, 1–4
Phonon, 14–6
Phosphorescence, 10–13
Photo-elastic effect, 14–7
Photoconductivity, 15–2, 15–5

Photoconductor, 15–5
gain, 15–6

Photocurrent, 15–7
Photodetector

absorption coefficient, 15–4
gain, 15–5
optical power reflectance, 15–4
photoconductor, see Photoconductor
quantum efficiency, 15–3
responsivity, 15–4

Photodiode, 15–3, 15–6
heterostructure, 15–9
modulation bandwidth, 15–9
pin, 15–7

Photoeffect, 15–2
Photoelectric detectors, 15–1
Photoelectron emission, 15–2
Photolithography, see Lithography
Photoluminescence, 10–12,10
Photometric quantities, 2–8
Photometric units, 2–4
Photon, 2–2, 8–1

energy, 2–2, 8–1
flux statistics, 8–4
interference, 8–3
intrinsic angular momentum, 8–1
lifetime, 13–10
mean flux, 8–4
modes, 8–2
momentum, 8–1, 8–3
polarization, 8–3
position, 8–2
spin, 8–1, 8–3
streams, 8–4
time, 8–3

Photon optics, 8–1
Photonics

applications, 1–6
definition, 1–1
education, 1–10
future, 1–5
history, 1–2
this course, 1–10

Photopic sight, 2–6, 18–1
Photoresist, 16–3
Phototube, 15–2
Pin photodiode, 15–7
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Pixel, 18–10
Planck’s constant, 2–2, 8–1
Plane wave, 4–5
Plasma deposition, 16–5
Plasma effect, 14–7
Plasma Enhanced Chemical Vapour Deposition,

16–5
Plasma etching, 16–5,16
Plasma frequency, 9–4
Plasma screen, 18–15
Plateau, Joseph, 1–4, 18–3
Plating, 16–12
Pockels-effect, 14–7
POF, 7–3, 7–12,7
Point-by-point method, 17–1
Poisson distribution, 8–5
Poisson equation, 14–9
Polar semiconductor, 14–3
Polarization, 6–8

causality, 9–2
definition, 9–1
models, 9–3
response function, 9–2
time invariance, 9–2

Polarization density, 6–2
Polarizer, 6–14, 18–17
Population inversion, 10–5, 13–2, 14–5
Positive lens, 3–18
Power reflection, 6–14
Power transmission, 6–14
Poynting vector, 6–2

complex, 6–6
Preform method, 7–13
Primary colors, 18–4
Principal plane, 3–20

common lens types, 3–22
Prism, 3–5
Probability density, 10–7
Projecting systems, 3–10
Projection systems, 3–45
Projector, 18–19
Propagating mode, 7–5
Propagation constant, 4–4,4, 6–16, 7–3

of a mode, 7–1
Pulsed laser, 13–23

mode-locking, 13–24
Q-switching, 13–23

Purple line, 18–8
Pyrex, 3–35

Q-switching, 13–23
Quality factor, 13–13
Quantum optics, see Photon optics
Quantum-electrodynamics, 8–1
Quarter-wave layer, 6–22
Quasi-fermi level, 14–10
Quaternary semiconductor, 14–3

Radial plane, 3–28
Radiance, 2–5
Radiant

energy, 2–4
exitance, 2–5
flux, 2–4
intensity, 2–4

Radiation
electromagnetic, see Electromagnetic radia-

tion
mode, 7–5
sinusoidal, 2–2

Ramsden eyepiece, 3–40
Rate equations, 13–9
Ray equation, 3–8, 4–12
Ray optics, 3–1

applications, 3–36
at an interface, 3–5
curved surfaces, 3–8
graphical formalism, 3–22
mirror reflection, 3–4
postulates, 3–3
propagation, 3–4
reflection and transmission, 3–7
sign convention, 3–14
theory, 3–2

Ray tracing, 3–2
Rayleigh range, 5–4, 5–6
Rayleigh-Jeans relation, 10–12
Reaction-limited etching, 16–5
Reactive Ion Etching, 16–5
Real image, 3–10, 3–14
Recombination, 14–5
Reflectance, 6–14
Reflection coefficient, 6–12
Reflection laws, 3–4
Refraction law, 3–5
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Refractive index, 2–1, 3–3, 6–4
complex, 14–4
effective, 7–3, 7–8, 7–17
semiconductors, 14–6

Refractive power, 3–15
Refresh rate, 18–3, 18–10
Relative aperture, 3–23
Relative effective index, 7–9
Relative permittivity, 2–1
Relativity theory, 6–1
Relaxation, 9–6
Resist, 16–3
Resolution, 3–2, 18–10
Resonance, 9–6
Resonance frequency, 9–4
Resonator, 13–8
Retina, 2–6, 18–1
RF-induction, 16–2
Rod, 2–6, 18–1
Rotational level, 10–3

S-polarization, 6–11
Sagittal plane, 3–28
Sagnac interferometer, 4–17
Saturable absorber, 13–26
Scanning, 18–11
Scattering, 6–25
Schockley equation, 14–11
Schrödinger equation, 10–1
SED, 18–15
Seidel aberrations, 3–25
Selection rules, 10–3
Selective etching mixture, 16–5
SELFOC, 3–46
Semiconductor, 10–4

absorption, 14–5
band structure, 14–3
optical properties, 14–4
types, 14–2

Semiconductor detectors, 15–1
Semiconductor image recorder, 15–9
Semiconductor laser, 13–31
Semiconductor light sources, 14–1
Shadow mask, 18–12
Shape factor, 3–26, 17–2
Singlet, 3–26
Skew ray, 3–28

Slab waveguide, 7–5,7
discrete mode, 7–8
eigenvalue mode, 7–8
guided mode, 7–8
radiation mode, 7–11
TE-modes, 7–7
three-layer, 7–6
TM-modes, 7–11

Slide projector, 3–45
Smith-Helmholtz equation, 3–14
Snell’s law, 3–5

paraxial theory, 3–11
Solar cell, 15–7
Solid angle, 2–5
Solid-state laser

doped isolator laser, 13–29
Spectral color, 18–7
Spectral density, 2–6, 2–10
Spectral distribution, 2–2
Spectral gain function, 13–7
Spectral loop gain, 13–14
Spectral width, 7–17
Speed of light, 2–1
Sphere of Ulbricht, 17–5
Spherical aberration, 3–25
Spherical mirror, 3–21
Spherical wave, 4–7, 6–7
Spin, 8–1, 8–3
Spin-coating, 16–4
Spontaneous emission, 10–7

semiconductor, 14–6
Spontaneous lifetime, 10–8
Spring constant, 9–4
Sputtering, 16–7
Standard deviation, 8–6
Stark-effect, 14–7
Stefan-Boltzmann’s constant, 17–9
Stefan-Boltzmann’s law, 17–9
Step-index waveguide, 7–2
Stepper, 16–4
Stigmatic, 3–2
Stimulated emission, 10–8

semiconductor, 14–5
Stop-and-go mechanism, 18–11
Subtractive color mixing, 18–4
Surface emission display, 18–15
Surface-emitting LED, 14–13, 14–16
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Susceptibility, 6–3
complex, 6–15

Susceptor, 16–2
Synthetic fused silica, 3–35

Tangential plane, 3–28
Technology optoelectronic, 16–1
Telescope, 3–41

astronomical, 3–41
Galilean, 3–41

TEM, 6–6
Ternary semiconductor, 14–3
TFT, 18–17
Thermal deposition by evaporation, 16–7
Thermal detector, 15–1
Thermal electron emission, 17–11
Thermal light, 8–6, 10–10
Thermal radiator, 17–8
Thermo-optic effect, 14–7
Thin lens, 3–17

formula, 3–19
Thin-film transistor, 18–17
Three-layer slab waveguide, 7–6
Three-layer structure, 6–16
Three-level system, 13–4
Throughput, 3–15
Time invariance, 9–2
Time-energy uncertainty, 8–4
Total internal reflection, 3–7, 4–7
Transfer matrix method, 6–16
Transition cross section, 10–7
Transmission coefficient, 6–12
Transmittance, 6–14
Transversal electric, TE, 6–11, 7–7
Transversal electromagnetic plane wave, 6–6
Transversal magnetic, TM, 6–11, 7–7
Trinitron, 18–14
Triplet, 3–35
Tungsten, 17–9
Turbomolecular pomp, 16–7
Two-level system, 13–3
Two-slit experiment, 8–4

Ulbricht, sphere of, 17–5
Ultraviolet, 2–1,2
Ultraviolet catastrophe, 10–12
Undulator, 13–33
Units for optical radiation, 2–4

V-value, 3–34
Vacuum wavelength, 2–2
Valence band, 10–4
Valence electron, 10–2
Value, 18–8
Variance, 8–6
Vibrational level, 10–3
Vignetting, 3–32
Virtual image, 3–4, 3–11, 3–14
Visual cortex, 18–1

Wave
elementary waves, 4–5
equation, 4–2
front, 4–4
intensity, 4–2, 4–5
number, 2–2, 4–7

complex, 6–15
of a mode, 7–1

paraxial, 4–9
power, 4–2
vector, 4–5, 8–3

Wave optics, 4–1
interference, 4–14
postulates, 4–2
reflection and refraction, 4–13

Waveguide
characteristics, 7–5
evanescent mode, 7–5
graded index, 7–2
guided mode, 7–5
modes, 7–3
optical fiber, see Optical fiber
parabolic index, 7–2
propagating mode, 7–5
radiation mode, 7–5
ray approximation, 7–2
slab, 7–5,7
step-index, 7–2
three-layer slab, 7–6

Waveguide optics, 7–1
Wavelength

of light, 2–1
Well capacity, 15–10
Wet etching, 16–4
Wien’s law, 17–8
Wiggler, 13–33
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Wire-bonding, 16–8
Work function, 15–2

Xenon lamp, 17–13

Yellow spot, 18–1
Yu’v’ system, 18–9
Yxy-system, 18–8

Zero-point energy, 8–2
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